Манипуляторы и промышленные роботы

Виды манипуляторов и их структурный синтез. Геометрические схемы кинематических цепей. Классификация движения захвата. Рабочий объем и зоны обслуживания промышленного робота. Влияние расположения кинематических пар устройства на его маневренность.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 19.09.2016
Размер файла 245,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Манипуляторы и промышленные роботы

1. Виды манипуляторов и промышленных роботов

Манипулятором называют техническое устройство, предназначенное для воспроизведения рабочих функций руки человека.

Первые конструкции манипуляторов не только по назначению, но и по внешнему виду напоминали руку человека.

Рис. 1.39

На рисунке 1.39 представлена схема копирующего манипулятора, состоящего из управляющего (У) и исполнительного (И) механизмов.

Оба механизма совершенно идентичны, причем вследствие механической, электрической или какой - либо другой связи движение звеньев исполнительного механизма повторяет (копирует) движения звеньев управляющего механизма.

Манипулятор образован из пространственной незамкнутой кинематической цепи. Звенья этой цепи по аналогии с рукой человека имеет следующие названия:

0 - корпус

1 - плечо

2 - предплечье

3 - кисть или захват

4 - палец.

Рассматриваемый манипулятор имеет 7 степеней свободы, т.к. число степеней свободы незамкнутой кинематической цепи равно сумме подвижных кинематических пар. Звено 4 (палец) при рассмотрении структуры, кинематики и динамики манипулятора объединяется со звеном в дальнейшем появились манипуляторы с большим числом звеньев и кинематических пар, и внешнее сходство с рукой человека стало утрачиваться.

Во всех вариантах сохранилось назначение манипулятора - воспроизводить пространственные движения, подобные движениям рук человека.

Копирующие манипуляторы применяются теперь во многих областях техники для выполнения операций в условиях исключающих возможность присутствия человека (радиоактивность, вакуум, высокая , повышенное давление, вредное химическое производство и т.д.).

В зависимости от вида системы управления различают манипуляторы с ручным управлением и манипуляторы с автоматическим управлением.

В манипуляторах с ручным управлением оператор, воздействуя на звенья управляющего механизма, приводит в движение звенья исполнительного механизма. При этом предельные усилия и перемещения исполнительного механизма ограничиваются возможностями оператора. От этого недостатка свободы, манипуляторы с сервоприводом, часто выполняются с дистанционным управление.

В манипуляторах с автоматическим управлением, звенья исполнительного механизма получают движение от сервопривода, работающих по заданной программе подобно станкам с программным управление. Управляющий механизм служит в этом случае только для выработка программы работ исполнительного механизма. Все действия оператора, связанные с перемещением звеньев управляющего механизма, преобразуются посредством датчиков перемещения в электрические и механические сигналы и записываются на магнитную ленту.

Полученная программа может многократно использоваться для управления манипуляторами.

2. Структура и геометрия манипуляторов

Структурные схемы кинематических цепей манипуляторов довольно разнообразны. Они отличаются числом звеньев, видами и расположением кинематических пар различной подвижности, числом степеней свободы.

На рис. 1.40 (а, б, в, г) показаны четыре схемы, применяемые в отечественных и зарубежных манипуляторах. Простейший пространственный манипулятор (рис. 1.40-а) имеет три пары подвижных звеньев, одну вращательную и две сферические пары. Если надо обслуживать большой рабочий объем, применяются манипуляторы с одной поступательной, одной сферической и двумя вращательными парами (рис. 1.40-б).

Обычно сферические пары заменяются кинематическими соединениями, составленные из вращательных пар, оси которых пересекаются. Например: на (рис. 1.40-в) показана схема манипулятора с шестью степенями свободы, в состав которого входят только вращательные пары. манипулятор промышленный робот кинематическая

Число степеней свободы может быть и больше 6. Например, на (рис. 40-г) показана схема манипулятора с числом степеней свободы равным 8, при одной поступательной, одной цилиндрической и пяти вращательных парах.

а) б) в) г)

Рис. 1.40

Рис. 1.41

Во многих конструкциях манипуляторов сферические пары заменяются кинематическими соединениями, состоящими из двух дополнительных и 3-ч вращательных пар, оси которых пересекаются в одной точке.

3. Рабочий объем манипуляторов и классификация движения захвата

а) б) в) г)

Рис. 1.42

Рабочим объемом манипулятора называется объем, ограниченный поверхностью, огибающей все возможные положения захвата. Однако не все части этого объема одинаково удобны для выполнения заданных движений захвата. В связи с этим движения захвата подразделяют на 4 класса.

К первому классу относятся движения в свободном рабочем объеме (рис. 1.42-а).

Движение в несвободном пространстве (рис. 1.42-б), при котором часть рабочего объема занята некоторым твердым телом, относится ко второму классу. К третьему классу относятся движения, согласованные со связями, наложенными на объект манипулирования (рис. 1.42-в). Наконец к четвертому классу относятся движения, совершенные в несвободном пространстве при несвободном объекте манипулирования (рис. 1.42-г).

Возможность выполнения заданных движений захвата различных классов определяется не только числом степеней свободы манипуляторов, но и расположением кинематических пар.

Влияние расположения кинематических пар манипулятора на его маневренность. Под маневренностью манипулятора понимается его число степеней свободы при неподвижном захвате. Одну степень маневренности имеет манипулятор, показанный на (рис. 1.40-а), т.к. при неподвижном захвате его звенья могу вращаться вокруг оси, проходящей через центры сферических пар. В манипуляторе по схеме, показанной на (рис. 1.40-б), при неподвижном захвате маневренность равна нулю, т.е. каждому положению захвата соответствует единственное расположение всех звеньев. Манипулятор по схеме (рис. 1.40-в), также не имеет маневренности. Однако одному и тому же положению захвата могут соответствовать два различных варианта расположения звеньев. Что позволяет оператору обходить некоторые препятствия в рабочем объеме.

Сравнение различных схем манипуляторов показывает, что маневренность зависит не только от числа степеней свободы захвата, но и от расположения кинематических пар. Повышение маневренности манипулятора позволяет выполнять движения более высоких классов и увеличивает свободу действия оператора при выполнении маневров.

4. Структурный синтез манипуляторов

Структурный синтез манипуляторов, т.е. определение числа звеньев, числа кинематических пар различной подвижности и их расположения, представляет значительные трудности из-за большого числа степеней свободы. Например, уже для манипулятора с тремя степенями свободы, если применять только вращательные и поступательные пары, получается 8 возможных комбинаций расположения этих пар. Поэтому при структурном синтезе манипуляторов с числом степеней свободы 6 и более все возможные варианты можно получить только с использованием ЭВМ. Для сравнения этих вариантов необходимо иметь коэффициенты, определяющие их кинематические и динамические свойства, а также коэффициенты, характеризующие возможность и удобство выполнения разнообразных типовых операций, для выполнения которых предназначен манипулятор.

Кинематические и динамические коэффициенты для каждого варианта схемы могут быть найдены на основании общих методов кинематического и динамического анализа.

5. Зоны обслуживания, угол и коэффициент сервиса

Зоной обслуживания (рабочей зоной) называется часть рабочего объема манипулятора. В которой можно выполнить данную операцию, характеризуемую расположением захвата по отношению к объекту манипулирования. Для каждой точки объема манипулятора можно определить некоторый телесный угол , внутри которого захват можно подвести к этой точке. Этот угол называется углом сервиса.

Отношение:

называется коэффициентом сервиса в данном точке. Значение этого коэффициенты может меняться от 0 до 1.

Литература

1. Артоболевский И.И. Теория механизмов и машин. М.: Наука, 1975.

2. Андрющенко В.М. Математические таблицы для расчета зубчатых передач. М.: Машиностроение, 1974.

3. Курсовое проектирование по теории машин и механизмов. / А.С. Кореняко, Л.И. Кременштейн, С.Д. Петровский и др. Киев: Вища школа, 1970.

4. Попов С.А. Курсовое проектирование по теории механизмов и механике машин. Учеб. пособие для машиностроительных вузов. / Под ред. К.В. Фролова. М.: Высшая школа. 1986.

5. Справочник по геометрическому расчету зубчатых передач. / Т.П. Болотовская, Г.С. Богаров, А.Б. Ефименко и др. М.: Машгиз, 196.

6. Кудрявцев В.И. Планетарные передачи. М.: Машиностроение. 1977.

7. Ястребов В.М., Кричевер М.Ф., Савинов А.П. ТММ в авиации. Учебное пособие. Самара., 199.

Размещено на Allbest.ru

...

Подобные документы

  • Определение степени свободы пространственного манипулятора промышленного робота. Расчет скорости вращения колес двухскоростной планетарной коробки передач. Вычисление скорости и ускорения коромысла рычажного механизма; составление векторного уравнения.

    контрольная работа [243,0 K], добавлен 01.05.2015

  • Применение лазерных технологий в трубопроводном строительстве. Технология лазерной сварки металлов. Синтез управления возмущенным движением автоматических манипуляторов. Расчет элементов матрицы кинематических характеристик через координаты механизма.

    презентация [616,6 K], добавлен 12.12.2016

  • Механизмы, их основные характеристики и виды (рычажные, кулачковые, фрикционные, зубчатые), структурные элементы и назначение; требования, предъявляемые к ним. Структурные формулы кинематических цепей. Пример образования плоского шестизвенного механизма.

    презентация [821,2 K], добавлен 24.02.2014

  • Структурная схема механизма робота-манипулятора в пространстве. Определение степени подвижности механизма робота-манипулятора. Анализ движения механизма робота-манипулятора и определения время цикла его работы. Определение и построение зоны обслуживания.

    курсовая работа [287,4 K], добавлен 06.04.2012

  • Использование промышленных роботов в процессе производства с опасными условиями труда. Разработка манипулятора: структурная схема механизма: определение уравнений движения, скорости и ускорения; расчёты параметров робота, построение зоны обслуживания.

    курсовая работа [541,9 K], добавлен 06.04.2012

  • Промышленные роботы как важные компоненты автоматизированных гибких производственных систем. Социальные факторы роботизации. Обзор преимуществ использования промышленных роботов в сварочных процессах. Отличия роботов от прочего капитального оборудования.

    презентация [798,1 K], добавлен 08.10.2015

  • Назначение и устройство мостового крана. Условия эксплуатации и ресурс приводного устройства к мостовому крану. Срок службы приводного устройства. Синтез привода к мостовому крану. Определение передаточного числа, силовых и кинематических характеристик.

    курсовая работа [290,2 K], добавлен 02.06.2014

  • Подвижные звенья и неподвижные стойки механизма. Построение планов скоростей. Расчет кинематических параметров. Построение планов ускорений механизма и кинематических диаграмм. Кинестетический анализ механизма. Определение сил, действующих на звенья.

    контрольная работа [528,2 K], добавлен 31.10.2013

  • Служебное назначение и особенность конструкции. Основные характеристики промышленного робота, параметры движения осей. Классификация по техническим характеристикам. Строение и структурный анализ. Основные параметры структурной схемы манипулятора.

    курсовая работа [1,9 M], добавлен 20.06.2014

  • Синтез системы управления механизма машины-автомата по заданной тактограмме, схема управления на пневматических элементах, формулы включений. Синтез рычажного механизма по коэффициенту неравномерности движения, определение реакций в кинематических парах.

    курсовая работа [204,6 K], добавлен 24.11.2010

  • Схема рычажного механизма. Классификация кинематических пар. Определение степени подвижности механизма. Синтез механизма. Силовой расчёт рычажного механизма. Определение силы полезного сопротивления. Определение сил инерции и моментов сил инерции звеньев.

    курсовая работа [2,3 M], добавлен 10.01.2009

  • Что такое промышленные роботы, их основные технические показатели и структурные составляющие. Основные конструктивно-технологические группы промышленных роботов. Основные типы технологических операций и вспомогательных функций, выполняемых роботами.

    презентация [229,0 K], добавлен 10.04.2013

  • Структурное и кинематическое исследование механизма: описание схемы; построение планов скоростей. Определение реакций в кинематических парах; силовой расчет ведущего звена методом Н.Е. Жуковского. Синтез зубчатого зацепления и кулачкового механизма.

    курсовая работа [221,8 K], добавлен 09.05.2011

  • Синтез рычажного механизма двигателя. Структурный анализ механизма, построение планов их положений, скоростей и ускорений, а также кинематических диаграмм. Расчет сил, действующих на звенья. Порядок определения уравновешивающей силы методом Жуковского.

    курсовая работа [512,3 K], добавлен 20.09.2013

  • Особенности манипуляторов, использующихся в составе модулей на долговременном орбитальном комплексе "Мир". Режимы работы, характеристики, управление и устройство манипуляторов Стрела, Буран, Декстор, Канадарм, их применение в космическом пространстве.

    реферат [2,4 M], добавлен 06.11.2013

  • Автоматическая машина, состоящая из манипулятора и устройства программного управления его движением. Назначение и применение промышленного робота. Структурная схема антропоморфного манипулятора. Задачи механики манипуляторов и ее кинематический анализ.

    реферат [179,3 K], добавлен 09.12.2010

  • Структурный и кинематический анализ рычажного механизма, план его положения, скоростей и ускорения. Определение сил и моментов сил, действующих на механизм, реакций в кинематических парах механизма. Синтез кулачкового механизма c плоским толкателем.

    курсовая работа [127,1 K], добавлен 22.10.2014

  • Выбор электродвигателя и кинематических параметров привода. Уточнение кинематических и силовых параметров двигателя и редуктора. Расчет цилиндрической зубчатой передачи. Определение допускаемых напряжений. Проверки долговечности и прочности подшипников.

    курсовая работа [570,5 K], добавлен 06.09.2016

  • Структурный анализ кривошипно-ползунного механизма. Построение планов положения, скоростей, ускорений и кинематических диаграмм. Определение результирующих сил инерции и уравновешивающей силы. Расчет момента инерции маховика. Синтез кулачкового механизма.

    курсовая работа [522,4 K], добавлен 23.01.2013

  • Синтез и анализ кулачкового механизма. Геометрический расчёт зубчатой передачи. Структурный анализ механизма. Определение передаточного отношения планетарной ступени и подбор чисел зубьев колёс. Построение кинематических диаграмм и профиля кулачка.

    курсовая работа [364,9 K], добавлен 08.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.