Определение фонового состояния воды
Исследование морфологических особенностей водотока, интересов водопользователей. Определение фонового состояния воды. Расположение створов в пункте наблюдений. Случайные погрешности и критерии их оценки. Источники неионизирующих полей и излучений.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 19.10.2016 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http: //www. allbest. ru/
Содержание
Введение
1. Расположение створов в пункте наблюдений
2. Случайные погрешности и критерии их оценки
3. Источники неионизирующих полей и излучений
Заключение
Список использованной литературы
Введение
В естественных условиях химический состав вод регулируется природными процессами. Поддерживается равновесие между поступлением химических веществ в воду и выведением из нее. Однако антропогенный фактор обуславливает попадание в гидросферу огромного количества сточных вод, содержащих отходы промышленности и сельскохозяйственного производства, коммунально-бытовые стоки, что в конечном счете ухудшает качество воды.
Качество воды - это характеристика состава и свойств воды, определяющая ее пригодность для конкретных видов водопользования. Качество воды оценивается комплексом разнообразных показателей. Основными показателями качества воды являются цветность, запах и вкус, жесткость и щелочность, содержание железа, марганца и некоторых других элементов. Водные объекты считаются загрязненными, если состав или состояние их вод изменены в результате деятельности человека до такой степени, что они стали непригодными для целей, которым они служили до начала их использования человеком. Веществом, загрязняющим воду, является каждое соединение, вызывающее нарушение норм качества воды. Под засорением поверхностных природных вод следует понимать поступление в водные объекты нерастворимых предметов, например, древесины, металлолома, шлака, строительного мусора и др. Органические загрязняющие вещества - это разнообразные вещества растительного и животного происхождения, а также многочисленные отходы в виде смол, фенолов, красителей, спиртов, альдегидов, серо - и хлорсодержащих органических соединений и т.д. Биологические загрязняющие вещества играют особую роль в жизни водоемов. С бытовыми сточными водами и стоками некоторых производств в водоемы и водотоки попадают болезнетворные бактерии и вирусы.
1. Расположение створов в пункте наблюдений
вода излучение погрешность морфологический
Для определения фонового состояния воды создаются специальные пункты наблюдений водоемов, не подверженных прямому антропогенному воздействию. Как правило, такие водные объекты находятся на территориях национальных парков и заповедников. В пунктах наблюдений предусмотрена организация створов. Створ - это условное поперечное сечение водоема, в котором производятся наблюдения за качеством воды. Расположение створов зависит от морфологии водоема, гидрометеорологической обстановки, топографии источников загрязнения, объема сбрасываемых загрязненных вод, а также от интересов водопользователей.
В пункте наблюдений организуют один или несколько створов. Местоположение створов устанавливают с учетом расположения источников загрязнения, морфологических особенностей водотока (водоема), интересов водопользователей. Каждому створу должен присваиваться свой порядковый номер. Количество и расположение створов наблюдений должно обеспечить контроль всех источников загрязнения. Один створ на водотоках следует организовывать в устьях коллекторов, дрен при отсутствии организованного сброса сточных вод. Два и более створа на водотоке следует организовывать при необходимости оценки нескольких источников загрязнения.
При наличии группы источников загрязнения верхний створ следует располагать выше первого источника, нижний - ниже последнего. Исходя из интересов землепользователей, для оценки каждого источника загрязнения необходимо организовывать дополнительные створы наблюдений.
На водоемах (водоприемник) следует организовывать два створа: в 500м выше и 500м ниже впадения дренажно-сбросных вод. Участок водотока для организации створа наблюдений должен отвечать следующим требованиям:
- дно и откосы водотока должны быть достаточно устойчивы;
- участок водотока должен быть прямолинейным с одинаковой площадью живого сечения потока, длиной не менее его пятикратной ширины;
- отсутствие на участке наблюдений подпоров, завихрений, мертвых зон и т. д.
В местах впадения водотоков, для стабилизации турбулентности потока, створ наблюдений должен находиться ниже его впадения на расстоянии не менее 50м. глубин потока. Створ наблюдений должен быть оборудован гидрометрическим мостиком, водомерной рейкой и постоянным высотным знаком (репером). Наблюдения за количественными и качественными показателями стока должны осуществляться одновременно.
Для осуществления контроля качества воды создаются специальные пункты контроля качества, которые делятся на 4 категории.
Пункты I категории располагают на средних и больших водоемах и водотоках, имеющих важное народнохозяйственное значение. В районах городов с населением свыше 1 млн. жителей, местах нереста и зимовья особо ценных видов промысловых рыб, районах повторяющихся аварийных сбросов загрязняющих веществ и в районах организованного сброса сточных вод, в результате которого наблюдается высокая загрязненность воды.
Пункты II категории устраивают на водоемах и водотоках в пределах следующих участков: в районах городов с населением от 0.5 до 1 млн. жителей, в местах нереста и зимовья ценных промысловых рыб (организмов), местах организованного сброса дренажных сточных вод с орошаемых территорий и промышленных сточных вод, в районах со средней загрязненностью вод.
Пункты III категории располагают на водоемах в районах городов с населением менее 0.5 млн. жителей, на замыкающих участках больших и средних рек, устьях загрязненных притоков больших рек и водоемов, районах организованного сброса сточных вод, в результате которого наблюдается высокая загрязненность воды.
Пункты IV категории устраивают на незагрязненных участках водоемов и водотоков, а также на водоемах и водотоках, расположенных на территории государственных заповедников и природных национальных парков.
В каждом пункте должно быть намечено не менее двух-трех створов, в которых производится наблюдения; один выше источника загрязнения и один-два створа ниже источника загрязнения.
2. Случайные погрешности и критерии их оценки
Случайная погрешность - это погрешность, изменяющаяся случайным образом при повторном определении одной и той же физической величины с помощью одной и той же измерительной аппаратуры при неизменных внешних условиях. Случайные погрешности вызываются большим количеством факторов, воздействия которых столь незначительны, что их нельзя выделить и учесть в отдельности.
Случайные погрешности могут возникнуть из-за погрешности округления при отсчете показаний, нестабильности переходного сопротивления в контактах коммутирующих устройств, нестабильности напряжения источника питания, влияния электромагнитных полей пылинки, воздушные течения и других влияющих величин. Но истинное значение измеряемой величины заключено в интервале от минимального до максимального результатов измерения.
Случайную погрешность нельзя исключить в каждом из результатов измерений. Но с помощью многократных наблюдений, а также используя методы теории вероятности и математической статистики, можно учесть их влияние на оценку истинного значения измеряемой величины. Это позволяет определить значение измеряемой величины со значительно меньшей погрешностью, чем погрешности отдельных измерений (наблюдений).
Наиболее полной характеристикой случайной величины является закон ее распределения. Различают две формы описания закона распределения: интегральную и дифференциальную. В метрологии принято использовать, в основном, дифференциальную форму.
Дифференциальный закон распределения можно определить через построение гистограммы. Для этого необходимо произвести n независимых наблюдений. При этом каждое наблюдение, возможно, отличается от предыдущего, так как содержит случайную погрешность. Следует разбить интервал между наибольшим и наименьшим измеренными значениями на ряд равных интервалов шириной Дх. По результатам подсчетов строится график. На ось абсцисс наносятся значения результатов наблюдений и обозначаются границы интервалов, на ось ординат - относительная частота попаданий в интервал.
Если устремить число измерений к бесконечности, а интервал h - к нулю, то гистограмма переходит в пределе в непрерывную кривую, которая является кривой распределения погрешностей. При некоторых условиях, которые обычно выполняются при проведении измерений, эта кривая представляет собой график функции Гаусса (нормальное распределение), имеющей следующий вид:
Основными числовыми характеристиками случайной погрешности являются математическое ожидание М(Д), дисперсия D и среднее квадратическое отклонение у. Дисперсия, т.е. средняя квадратическая погрешность отдельного измерения применяется лишь для оценки точности применяемого метода измерений. А средняя арифметическая погрешность обозначает оценку отклонения среднего арифметического отклонения от истинного значения искомой величины. Чем больше число опытов, тем ближе значение среднего арифметического отклонения к истинному значению искомой величины.
Вероятность того, что истинное значение измеряемой величины попадет в заданный интервал, называется доверительной вероятностью, или коэффициентом доверия Р, а соответствующий интервал, определяемый величиной абсолютной погрешности - доверительным интервалом. Достоверность результата при данном количестве измерений можно увеличить, уменьшая его точность, т. е. расширяя доверительный интервал. Случайную погрешность рассчитывают по формуле
е = ± t S( х ),
где е - доверительные границы случайной погрешности результата измерений; t - коэффициент Стьюдента, определяемый по заданным значениям доверительной вероятности Р и числу измерений n.
Таким образом, для характеристики величины случайной погрешности необходимо задать два числа: саму погрешность и доверительную вероятность, позволяющую оценить степень надежности полученного результата. Необходимая степень надежности определяется спецификой производимых измерений. Доверительная вероятность должна быть, например, очень высокой при контроле размеров деталей самолетов и достаточно низкой при аналогичном контроле деталей ручной тележки. При большинстве обычных измерений можно ограничиться доверительной вероятностью 0,9 или 0,95, если не требуется более высокая степень надежности. Случайные погрешности нельзя исключить полностью, но их влияние может быть уменьшено путем обработки результатов измерений.
3. Неионизирующие электромагнитные поля и излучения
Электромагнитные поля и электромагнитные излучения являются вредными факторами, которые негативно влияют на человека и окружающую среду. Электромагнитные излучения - это не только источник образования электромагнитного поля, но и сам процесс. Электромагнитные поля представляет собой особую форму материи, состоящую из взаимосвязанных электрического и магнитного полей. Напряженности этих полей расположены перпендикулярно друг другу. Непрерывно изменяясь, они возбуждают друг друга. Электромагнитное поле сохраняется и оказывает негативное воздействие еще долгое время после того, как источник его возникновения (излучатель) прекратил или приостановил свое действие.
Степень воздействия на работающих магнитного поля зависит от его параметров (основных характеристик). Основными параметрами источника ЭМП являются: частота электромагнитных колебаний (единица - Гц) и длина волны (единица - м). Критерием интенсивности электрического поля служит его напряженность (единица - В/м). Критерием интенсивности магнитного поля также является его напряженность (единица - А/м).
К основным неионизирующим ЭМП и ЭМИ относятся:
- геомагнитное поле Земли;
- электрические и магнитные поля промышленной частоты;
- электромагнитные излучения радиочастотного диапазона;
- электромагнитные излучения оптического диапазона;
- электростатические поля.
Геомагнитное поле Земли характеризуется постоянно изменяющейся напряженностью. Значительные изменения интенсивности ЭМП могут происходить при геомагнитных природных возмущениях -- магнитных бурях. Организм метеочувствительных людей реагирует на резкие возрастания естественного геомагнитного поля повышением артериального давления, головной болью, общей слабостью.
Электромагнитные поля в диапазоне частот от 0 до 3000 Гц условно называют электромагнитными полями промышленной частоты. Мощными источниками излучения электромагнитной энергии являются провода высоковольтных линий электропередач промышленной частоты 50 Гц. Напряженность электромагнитного поля непосредственно над проводами и в определенной зоне вдоль трассы линий электропередач может значительно превышать предельно допустимый уровень электромагнитной безопасности населения. На объектах железнодорожного транспорта источники электромагнитного поля - это системы электроснабжения электрифицированных железнодорожных линий, силовые трансформаторные подстанции, транспорт на электроприводе, системы и линии электропередач депо, грузовых районов станций, пунктов обработки вагонов и ремонтных производств, электросети административных зданий. К примеру, электротранспорт является весьма мощным источником магнитных полей промышленной частоты. В производственных помещениях с большим количеством различного электрооборудования всегда имеется большое количество электропроводки, находящейся под постоянным напряжением. При этом она не всегда экранирована. Наличие железосодержащих конструкций и коммуникаций в зданиях создает эффект «экранированного помещения», что усиливает электромагнитный фон, не позволяя ему рассеиваться. Воздействие ЭМИ особенно вредно для тканей с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный пузырь и мочевой пузырь). В условиях постоянного воздействия на рабочем месте ЭМП промышленных частот, превышающих ПДУ, у работников могут наблюдаться: нарушения функций иммунной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Возможны последствия на генетическом уровне. При местном воздействии ЭМП (прежде всего на руки) проявляются ощущение зуда, бледность, синюшность, отечность, уплотнение, а иногда ороговение кожных покровов.
Большую часть неионизирующих электромагнитных излучений очень широкого диапазона длин волн (от 10 км до 1 мм) и частот (от 0,003 до 300 ГГц) составляют электромагнитные поля радиочастотного диапазона (РМП РЧ), или радиоволны. Свойство электромагнитных волн распространяться в пространстве и различных средах широко используют в радиосвязи, телевидении, радиолокации, а свойство отражаться от границы разных сред нашло применение в дефектоскопии для выявления внутренних пороков в структуре металла. Источниками ЭМП радиочастотного диапазона в производственных процессах являются промышленные установки, предназначенные для:
- индукционного нагрева металлов под закалку;
- нанесения твердых покрытий на режущий инструмент;
- плавки металлов и полупроводников,
- выращивания полупроводниковых кристаллов,
- сварки синтетических материалов,
- прессовки синтетических порошков,
- дефектоскопии.
В радиоаппаратуре к сильным источникам ЭМИ и ЭМП в первую очередь относятся антенны, компьютеры и другая оргтехника, мобильные радиотелефоны; в медицине - приборы ультразвуковой диагностики, рентгеновские аппараты и др.
К излучениям оптического диапазона относятся:
- излучения видимой области спектра (человек имеет к ним наибольшую чувствительность); - ультрафиолетовые (УФ) излучения;
- излучения инфракрасного (ИК) спектра; - лазерные излучения (ЛИ).
Излучения видимой области спектра. Видимое (световое) излучение - это электромагнитные колебания с длиной волны 0,78-0,4 мкм. Источником видимого светового излучения является электродуговая сварка. Она дает световой поток большой энергии с присутствием УФ спектра излучения.
Электромагнитные излучения инфракрасного диапазона (ЭМИ ИК). Тепловое, или инфракрасное, излучение представляет собой часть электромагнитных излучений с длиной волны от 0,780 до 1000 мкм, энергия которых при поглощении веществом вызывает тепловой эффект. В производственных помещениях гигиеническое значение имеет более узкий диапазон от 0,78 до 70 мкм. Источниками ИК - излучений являются нагретые до высокой температуры плавильные печи, расплавленный металл, газосветные лампы, ртутные выпрямители и другое производственное оборудование.
Ультрафиолетовое излучение (УФИ) - это спектр ЭМИ с длиной волны от 0,2 до 0,4 мкм. Источники УФИ могут быть естественного и искусственного (техногенного) происхождения. Источником естественного происхождения является одна из составляющих потока солнечного излучения. Источниками искусственного происхождения являются лампы дневного света, электросварочные дуги, автогенное пламя, плазмотроны, ртутно - кварцевые горелки.
Лазерное излучение (ЛИ) представляет собой особый вид ЭМИ оптического диапазона с длиной волны 0,1- 1000 мкм. Отличие лазерного излучения от других видов ЭМИ заключается в том, что источник изучения испускает электромагнитные волны строго в одной фазе, одной длины волны и с острой направленностью луча. Основным источником ЛИ является лазер (оптический квантовый генератор).
На промышленных объектах внедряются лазерные установки для высокоточной механической обработки поверхностей из тугоплавких материалов и материалов высокой твердости, для их сверления, точной сварки. В электронных платах приборов автоматики и устройствах СЦБ с помощью лазеров прошивают высокоточные отверстия диаметром в сотые доли толщины человеческого волоса. В медицине с помощью лазеров проводят операции на глазах, сосудах, нервных волокнах.
Заключение
В настоящее время ведется активное изучение механизмов биологического действия физических факторов неионизирующего излучения: акустических волн и электромагнитных излучений на биологические системы разного уровня организации; ферментов, клеткок, переживающих срезов мозга лабораторных животных, поведенческих реакций животных и развитие реакций в цепях: первичные мишени - клетка - популяции клеток - ткани.
Развиваются исследования по оценке экологических последствий воздействия на природные и аграрные ценозы техногенных стрессоров - СВЧ- и УФ-В-радиации, основными задачами которых являются: изучение последствий истощения озонного слоя на компоненты агроценозов нечерноземной зоны России; изучение механизмов действия УФ-В-радиации на растения; исследование раздельного и комбинированного действия электромагнитного излучения различных диапазонов (СВЧ, гамма, УФ, ИК) на сельскохозяйственных животных и модельные объекты с целью разработки методов гигиенического и экологического нормирования электромагнитного загрязнения окружающей среды; разработка экологически чистых технологий, основанных на применении физических факторов, для различных отраслей АПП (растениеводство, животноводство, пищевая и перерабатывающая промышленность) с целью интенсификации сельскохозяйственного производства.
Таким образом, столь сложный и малоизученный аспект, как неионизирующие излучения и их влияние на экологию еще предстоит изучать в дальнейшем.
- ограничения места и времени нахождения персонала в зоне воздействия ЭМИ (защита расстоянием и временем);
- использования средств индивидуальной защиты;
- использования технических средств, ограничивающих поступление электромагнитной энергии на рабочие места (экранов, отражателей, ограждений);
- применения источников ЭМИ с минимально необходимой мощностью;
- выбора рациональных режимов работы оборудования;
- применения средств обозначений зон с повышенным уровнем ЭМИ.
Основной принцип защиты здоровья людей от электромагнитного поля ЛЭП заключается в определении и соблюдении границ санитарно-защитных зон. В защитной зоне запрещается размещать жилые здания и сооружения, устраивать детские площадки и остановки всех видов транспорта.
В помещениях защиту здоровья работников от воздействия ЭМП следует осуществлять:
- соблюдением безопасных расстояний от электросетей;
- неразмещением электрооборудования и приборов в углах помещений зданий с железобетонными конструкциями;
- заземлением электрооборудования, приборов;
- использованием оборудования с меньшими уровнями энергопотребления;
- размещением наиболее опасного оборудования на расстоянии не менее 1,5 м от мест продолжительного пребывания человека;
- использованием (по возможности) оборудования с автоматическим управлением, позволяющим не находиться рядом с ним во время работы.
Кроме того, работникам следует рекомендовать:
- не находиться рядом с длинным проводом под напряжением;
- не включать одновременно большое количество приборов;
- не оставлять без необходимости включенными в сеть электрооборудование и приборы.
Используемые экраны могут быть выполнены в виде металлических листов, решеток, камер, кожухов (см., например, рис. 3.8).
Экранирующий металлический решетчатый навес над проходом для защиты от воздействия электромагнитных полей промышленного диапазона частот
Защита от действий ЭМП РЧ. Организационные меры защиты:
- выбор рациональных режимов работы оборудования;
- обеспечение персонала объектов, имеющих источники ЭМИ (в том числе пользователей компьютерной техникой), средствами индивидуальной защиты;
- рациональное размещение оборудования;
- обозначение и ограждение зон с повышенным уровнем ЭМИ РЧ. Наиболее простым и доступным методом защиты является защита расстоянием. Дистанцирование (наибольшее возможное удаление) -- одна из существенных мер защиты от действия на человека ЭМИ, поскольку плотность магнитного потока уменьшается обратно пропорционально квадрату расстояния от излучающей системы. Так, при разработке конструкций магнитных дефектоскопов предусмотрено удаление обслуживающего персонала на значительное расстояние от зоны непосредственного влияния электромагнитного поля (от 5 до 11 м), а размещение антенны сотовых телефонов конструктивно предусматривается на стороне, удаленной от головы. При этом рекомендуется соблюдать возможно больший зазор между ухом и трубкой. Все это также относится к защите расстоянием.
В тех случаях, когда уровни ЭМИ РЧ на рабочих местах внутри экранированного помещения превышают ПДУ, персонал необходимо выводить за пределы камеры. Это также защита расстоянием.
Технические меры защиты:
- усовершенствование конструкций оборудования (например, применение многовитковых катушек в корпусе приборов или сотовых телефонов, создающих защитное поле);
- использование средств, ограничивающих поступление электромагнитной энергии на рабочие места. Это разработка и применение экранов (отражателей), ограждающих источники излучения, поглотителей мощности; экраны могут быть выполнены в виде металлических листов, сеток, сотовых конструкций (рис. 3.9), замкнутых камер, шкафов или кожухов;
- применение источников излучения минимально необходимой мощности;
- применение специальных тканей для спецодежды.
К средствам индивидуальной защиты относятся: защитные очки, щитки, шлемы, специальная защитная одежда (уменьшает воздействие ЭМИ примерно в 10 раз). Если защитная одежда изготовлена из материала, имеющего в своей структуре металлический проводник, то она может использоваться только в условиях, исключающих прикосновение к открытым токоведущим частям установок.
При высоких уровнях энергии это излучение может представлять опасность для глаз и кожи. Световой импульс большой энергии приводит к временному ослеплению или ожогам сетчатки глаз. Пульсации яркого света ухудшают зрение, вызывают сужение полей зрения, снижают работоспособность, оказывают негативное влияние на центральную нервную систему. При остром повреждении кожи световым импульсом большой энергии наблюдаются ожоги открытых участков тела, резкое расширение капилляров, усиление пигментации кожи.
Защита от действий видимого светового излучения. К средствам защиты от действия видимого светового излучения относятся в первую очередь индивидуальные средства: защитные очки, щитки, шлемы, защитная одежда (комбинезоны, халаты и т.д.).
Воздействие ультрафиолетового излучения на работника. УФИ естественного происхождения -- жизненно необходимый фактор, оказывающий благотворное, стимулирующее действие на организм. При длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается «световое голодание» (ослабляются защитные иммунобиологические реакции организма, обостряются хронические заболевания, появляются функциональные расстройства нервной системы).
Наиболее подвержены действию УФИ органы зрения и кожа. Острые поражения глаз проявляются ощущением постороннего тела или песка в глазах, светобоязнью, слезоточением. Роговица и хрусталик глаза, повреждаясь, теряют прозрачность. При повреждении сетчатки происходит необратимое нарушение зрения, так как клетки сетчатки не восстанавливаются.
Защита от УФИ. Мерами защиты от повышенной инсоляции (облучения УФ лучами) являются защитные экраны различных типов.
Они представляют собой разнообразные преграды, загораживающие, рассеивающие или отводящие излучения.
Воздействие ЛИ на организм человека. Лазерное излучение действует избирательно на различные органы. Негативный эффект воздействия ЛИ на ткани организма усиливается при неоднократных воздействиях и при комбинациях с другими негативными производственными факторами.
Результатом локального (местного) воздействия могут быть ожоги разной степени тяжести (от легкого покраснения до поверхностного обугливания), особенно на пигментированных участках (родимые пятна, места с сильным загаром).
ЛИ способно проникать через ткани тела на значительную глубину. При фокусировке луча внутри организма возможно поражение внутренних органов даже на значительном удалении от поверхности тела.
При непрерывном режиме воздействия ЛИ преобладают в основном тепловые эффекты, следствием которых являются свертывания белка, а при больших мощностях -- испарение биоткани.
Наиболее чувствительным к ЛИ органом является глаз. Расстройства могут быть от небольших нарушений до полной потери зрения. Роговица и хрусталик повреждаются и теряют прозрачность. Нагрев хрусталика приводит к образованию катаракты (помутнения). При повреждении сетчатки происходит необратимое нарушение зрения.
Общее воздействие ЛИ может привести к функциональным нарушениям нервной, сердечнососудистой систем, желез внутренней секреции, артериального давления, увеличению утомляемости, снижению работоспособности. Опасность представляет не только прямое, но и отраженное и рассеянное ЛИ.
При работе лазерных установок появляются сопутствующие негативные факторы (высокое напряжение, шум, аэрозоли и химические вещества в зоне действия луча). На фоне постоянного шума от лазерной установки возникают еще и звуковые импульсы с высоким уровнем интенсивности. Например, при обработке поверхности детали они возникают тогда, когда световая энергия переходит в механическую.
Защита от лазерного излучения. В целях исключения облучения работающих с лазерами применяется ограждение зоны действия ЛИ либо экранирование пучка излучения. Лазеры, представляющие повышенную опасность, размещаются в изолированных помещениях и снабжаются дистанционным управлением.
К индивидуальным средствам защиты при работе с лазерами относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до безопасного уровня. Работающие с лазерами подлежат предварительным и периодическим (один раз в год) медицинским осмотрам с участием терапевта, невропатолога, окулиста.
Список использованный литературы
1. Организация и проведение режимных наблюдений за загрязнением поверхностных вод суши на сети Росгидромета: Р 52.24.309-2004: утв. Росгидрометом 28.10.04: введ. в действие с 01.01.06. - М.: МетеоагентствоРосгидромета, 2005. - 137 с.
2. Об утверждении порядка ведения собственниками водных объектов и водопользователями учета объема забора (изъятия) водных ресурсов из водных объектов и объема сброса сточных вод и (или) дренажных вод, их качества: приказ МПР от 8 июля 2009 г. № 205: по состоянию на 19 марта 2013 г. [Электронный ресурс]. - Режим доступа: http://normload.ru, 2015.
3. Методические указания по учету и контролю качества сбросных вод: утв. секцией мелиорации НТС Минсельхоза России 25.04.2014: введ. в действие с 03.04.15. - Новочеркасск, 2015. - 67 с.
4. Активное выявление злокачественных новообразований кожи Денисов Л.Е., Курдина М.И., Потекаев Н.С., Володин В.Д.
5. Нестабильность ДНК и отдаленные последствия воздействия излучений. Автор: Виленчик М.М. Год издания: 1987 Издат. Энергоатомиздат - 192с.
Размещено на Аllbest.ru
...Подобные документы
Определение расчётного расхода воды отдельными категориями потребителей. Расходы воды на коммунальные нужды города, предприятий и хозяйственно-питьевые нужды населения. Трассировка магистральных водопроводных сетей и составление их расчётных схем.
контрольная работа [137,5 K], добавлен 20.12.2010Задачи обработки воды и типология примесей. Методы, технологические процессы и сооружения для очистки воды, классификация основных технологических схем. Основные критерии для выбора технологической схемы и состава сооружений для подготовки питьевой воды.
реферат [1,2 M], добавлен 09.03.2011Особенности воды, её химические и физические свойства, определение жёсткости и методы ее устранения. Неблагоприятное воздействие жесткой воды на техническое и промышленное оборудование, а также на ткань, посуду, продукты питания и кожу человека.
курсовая работа [33,5 K], добавлен 16.05.2009Экономическая деятельность предприятий по производству и реализации бутилированной воды в России на примере ООО "Компания Чистая вода". Принципы выбора технологических решений по подготовке питьевой воды. Системное определение показателей качества воды.
дипломная работа [306,4 K], добавлен 02.09.2010Общие потери давления. Температура нагреваемой (холодной) воды на выходе из подогревателя. Коэффициент трения и плотность воды. Расчётный расход тепла. Определение радиуса и диаметра сечения, средней скорости движения воды и местных сопротивлений.
контрольная работа [500,0 K], добавлен 13.04.2015Анализ состояния вопроса автоматизированного проектирования резервуара обеззараживания воды. Применение ультразвукового и ультрафиолетового излучений. Гидравлические процессы в рабочей емкости резервуара. Прочностные свойства компонентов. Расчет сосудов.
дипломная работа [5,1 M], добавлен 27.10.2017Расчет мембранного аппарата. Определение количества мембранных элементов, составление балансовых схем по движению воды и компонента, подбор насосного оборудования для обеспечения требуемого рабочего давления при подаче воды в мембранный аппарат.
контрольная работа [245,6 K], добавлен 06.05.2014Методы обеззараживания воды в технологии водоподготовки. Электролизные установки для обеззараживания воды. Преимущества и технология метода озонирования воды. Обеззараживание воды бактерицидными лучами и конструктивная схема бактерицидной установки.
реферат [1,4 M], добавлен 09.03.2011Нормативные документы, регламентирующие производство и контроль качества воды. Типы воды, ее загрязнение и схемы очистки. Системы распределения воды очищенной и воды для инъекций. Контроль систем получения, хранения и распределения, валидация системы.
курсовая работа [2,1 M], добавлен 12.03.2010Составление материального баланса и определение расхода воды. Определение диаметра абсорбера, плотности орошения и активной поверхности насадки, высоты абсорбера по числу единиц переноса. Критерий Прандтля для воды. Скорость воздуха в трубопроводе.
курсовая работа [263,9 K], добавлен 01.04.2013Расчет теплового состояния охлаждаемой лопатки. Расчет греющей и охлаждающей температур, коэффициентов теплоотдачи на наружной поверхности лопатки. Создание расчетной сетки. Распределение изотермических полей температур в лопатке, определение ресурса.
курсовая работа [775,6 K], добавлен 08.02.2012Применение ультразвукового и ультрафиолетового излучений для обеззараживания воды. Гидравлические процессы в рабочей емкости резервуара. Условия статической прочности элементов сосудов, работающих под давлением. Характеристика расчета потока жидкости.
дипломная работа [4,3 M], добавлен 12.08.2017Проблемы воды и общий фон развития мембранных технологий. Химический состав воды и золы ячменя. Технологическая сущность фильтрования воды. Описание работы фильтр-пресса и его расчет. Сравнительный анализ основных видов фильтров для очистки воды.
курсовая работа [3,5 M], добавлен 08.05.2010Определение водопотребителей, расчёт потребного расхода воды на хозяйственно-питьевые, производственные и пожарные нужды населенного пункта и промышленного предприятия. Определение высоты водонапорной башни. Расчет резервуаров чистой воды, подбор насосов.
курсовая работа [2,3 M], добавлен 25.03.2013Оценка качества воды в источнике. Обоснование принципиальной технологической схемы процесса очистки воды. Технологические и гидравлические расчеты сооружений проектируемой станции водоподготовки. Пути обеззараживания воды. Зоны санитарной охраны.
курсовая работа [532,4 K], добавлен 02.10.2012Исследование схемы централизованной системы горячего водоснабжения здания. Обзор элементов установки для нагревания холодной воды, особенностей проточных и накопительных водонагревателей. Анализ осуществления циркуляции воды по стоякам и магистралям.
презентация [423,0 K], добавлен 11.04.2012Определение расчетной производительности станции. Выбор технологической схемы очистки воды для целей водоснабжения. Устройства для приготовления раствора коагулянта и его дозирования. Обеззараживание воды и уничтожение в ней запахов и привкусов.
курсовая работа [824,1 K], добавлен 17.03.2022Определение расчетного расхода воды отдельными категориями потребителей. Использование воды на коммунальные нужды города, для промышленных предприятий и на пожаротушение. Трассировка магистральных водопроводных сетей и составление их расчетных схем.
контрольная работа [89,9 K], добавлен 09.06.2010Классификация примесей, содержащихся в воде для заполнения контура паротурбинной установки. Показатели качества воды. Методы удаления механических, коллоидно-дисперсных примесей. Умягчение воды способом катионного обмена. Термическая деаэрация воды.
реферат [690,8 K], добавлен 08.04.2015Исследование и характеристика особенностей объектов теплоснабжения. Расчет и построение температурного графика сетевой воды. Определение и анализ аэродинамического сопротивления котла. Рассмотрение основных вопросов безопасности и экологичности проекта.
дипломная работа [525,9 K], добавлен 22.03.2018