Закаливание зубила
Описание видов термической обработки металлов. Закаливание и отпуск металла. Технология процесса закаливания и отпуска строительного зубила. Влияние температуры на механические свойства и структуру деформированного металла. Выбор охлаждающей среды.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 04.12.2016 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Теория термообработки металлов
2. Закаливание металла
3. Выбор охлаждающей среды
4. Отпуск металла
Список источников и литературы
Введение
Издревле русские кузнецы (с VI-VIII веков н.э.) владели всеми приемами свободной ковки, кузнечной сварки, горновой пайки меди, умели производить термическую обработку изделий. При том уровне техники от мастера требовалось много умения, навыка, опыта в обращении с металлом. Различить, например, сорта стали можно было только по цвету и характеру искры или излому, а степень нагрева при ковке, закалке и сварке - по цвету раскаленного металла (каленого) на глаз; о температуре отпуска стали мастер судил по цветам побежалости и т. д. Приемы свободной ковки, известные с древних времен, сохранились и до наших дней, постепенно проходя долгий путь от экспериментальных способов изучения алхимиками до детального просмотра химико- физического процесса под электронным микроскопом в лабораториях литейного производства. Благодаря этим долгим исследованиям человечество изучило и научилось полностью контролировать термическую обработку металла. Термической обработкой называется совокупность операций нагрева, выдержки и охлаждения твердых металлических сплавов с целью получения заданных свойств за счет изменения внутреннего строения и структуры. Термическая обработка используется либо в качестве промежуточной операции для улучшения обрабатываемости давлением, резанием, либо как окончательная операция технологического процесса, обеспечивающая заданный уровень свойств детали. На сегодняшний день различают несколько видов термической обработки металлов:
Отжиг - вид термической обработки металлов, сплавов, заключающийся в нагреве до определённой температуры, выдержке в течение определенного времени при этой температуре и последующем, обычно медленном, охлаждении до комнатной температуры. При отжиге осуществляются процессы возврата (отдыха металлов), рекристаллизации и гомогенизации. Цели отжига -- снижение твёрдости для облегчения механической обработки, улучшение микроструктуры и достижение большей однородности металла, снятие внутренних напряжений
Закалка - проводят с повышенной скоростью охлаждения с целью получения неравновесных структур. Критическая скорость охлаждения, необходимая для закалки, зависит от химического состава сплава. Закалка может сопровождаться полиморфным превращением, при этом из исходной высокотемпературной фазы образуется новая неравновесная фаза (например, превращение аустенита в мартенсит при закалке стали)
Отпуск - необходим для снятия внутренних напряжений, а также для придания материалу требуемого комплекса механических и эксплуатационных свойств. В большинстве случаев материал становится более пластичным при некотором уменьшении прочности.
Нормализация - изделие нагревают до аустенитного состояния (на 30…50 градусов выше АС3) и охлаждают на спокойном воздухе
Дисперсионное твердение - после проведения закалки (без полиморфного превращения) проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.
Криогенная обработка - это упрочняющая термическая обработка металлопродукции при криогенных, сверхнизких температурах (ниже минус 153°С).
В данной контрольной работе мы рассмотрим на практике процесс закаливания и отпуска строительного зубила с целью улучшения его механических характеристик. Для исследования был взят образец обыкновенного зубила и произведена попытка перерубить гвоздь, несколькими ударами, с помощью молотка (рис. 1).В результате испытания, гвоздь остался целым, а осмотр режущей кромки зубила показал сколы (рис. 2)
Рис 1
Рис 2
Как видно из эксперимента - зубило абсолютно не пригодно для нормальной работы. Рекомендуется подвергнуть данный инструмент термообработке.
металл термический закаливание зубило
1. Теория термообработки металлов
Термическая обработка стали разделяется на закаливание, отпуск и отжиг. Закаливание стали применяется для повышения ее твердости. Мягкие малоуглеродистые стали не закаливаются, углеродистые и инструментальные стали увеличивают свою твердость при закалке в три-четыре раза. Процесс закаливания состоит в нагревании стали примерно до температуры 820° С и быстром охлаждении в масле или воде.
Термическая (тепловая) обработка состоит в изменении структуры металлов и сплавов путем нагревания их и последующего охлаждения с той или иной скоростью; при этом достигаются существенные изменения свойств при том же химическом составе сплава. Изменения структуры при разных скоростях охлаждения аустенита. Данный процесс и его описание наглядней прослеживать по диаграмме «железо- углерод» (рис 3)
Рис 3
При медленном охлаждении эвтектоидной стали по линии РК, произойдет полное распадение аустенита с образованием перлита. Распадение состоит из следующих этапов:
1) превращение (-железа в (-железо, т.е. перегруппировка атомов из решетки гранецентрированного куба (-железа в решетку центрированного куба (-железа с одновременным смещением атомов углерода, находящихся в твердом растворе (-железа;
2) выделение из твердого раствора (аустенита) мельчайших частиц цементита (Fe3C);
3) укрупнение частиц цементита в пластинки, размеры которых измеряются от малых долей микрона до нескольких микронов, и более или менее полное распадение аустенита.
При ускорении охлаждения до 50 град/сек распадение аустенита не успевает закончиться, размеры пластинок цементита достигают лишь десятых долей микрона и различимы только при очень больших увеличениях. Такая структура называется сорбитом (в честь Г.В. Сорби - английского естествоиспытателя).
При ускорении охлаждения до 100 град/сек полностью успевает завершиться лишь второй этап распадения аустенита, а третий этап останавливается в самом начале. В результате размеры пластинок цементита измеряются стотысячными и миллионными долями миллиметра. Такая структура носит название троостита (по имени Л. Трооста - французского химика). Наличие тончайших пластинок цементита можно обнаружить с помощью электронного микроскопа.
При скорости охлаждения 150-200 град/сек успевает завершиться лишь перегруппировка атомов железа, поэтому углерод остается в виде твердого раствора в железе. Эта структура называется мартенситом (в честь А. Мартенса - немецкого металловеда).
Подводя итог сказанному, заметим, что перлит, сорбит и троостит по структуре представляют собой двухфазную смесь (феррита и цементита) и отличаются друг от друга дисперсностью цементита; мартенсит же однофазен, это твердый раствор углерода в железе.
Структура перлита, получающаяся при медленном охлаждении сплавов, называется равновесной, как и другие структуры. В отличие от равновесной, структуры сорбита, троостита и мартенсита, получающиеся при ускоренных охлаждениях, называются неравновесными.
Сдвиг критических точек при охлаждении.
Увеличение скорости охлаждения вызывает понижение критических точек. Сдвиг температур увеличивается с ускорением охлаждения, что видно на диаграмме. Кривая показывает, что переохлаждение аустенита растет при ускорении охлаждения.
При медленном охлаждении переохлаждение невелико и структура стали остается перлитной. Пластинки цементита в перлите тем меньше, чем больше скорость охлаждения, и при дальнейшем ускорении охлаждения структура все больше приближается к сорбиту. При скорости охлаждения, необходимой для получения структуры сорбита ("50 град/сек), аустенит переохлаждается более чем на 100 (и фазовое превращение его в сорбит произойдет при температуре около 600 ((точка C )Превращение в троостит произойдет при переохлаждении аустенита на "180( (точка Т).
Скорость охлаждения V1 (150 град/сек) соответствует началу появления мартенсита в структуре стали. Часть линии характеризующая превращение "аустенит - мартенсит", - прямая. Это указывает на постоянство температуры при превращении (около 240( для эвтектоидной стали) независимо от дальнейшего увеличения скорости охлаждения.
Таким образом, кривая характеризует распадение аустенита на две фазы: феррит и цементит, а отрезок A - переход аустенита в мартенсит. При скоростях охлаждения V1 до V2 охлажденная сталь содержит троостит и мартенсит При скоростях охлаждения, превышающих V2, наряду с мартенситом будет немного остаточного (не распавшегося) аустенита.
Изотермическое распадение аустенита.
Наблюдениями установлено, что и скорость, и характер распадения аустенита зависят от степени его переохлаждения. Рассмотрев диаграмму, отметим в итоге следующее: верхняя часть диаграммы характеризует изотермическое распадение аустенита в смесь феррита и цементита.
Нижняя часть диаграммы показывает, что для перевода всего остаточного аустенита в мартенсит необходимо понижать температуру стали до линии Mк (конец мартенситного превращения). Кривые изотермического распадения аустенита имеют форму буквы С и называют С-образными кривыми. Форма этих кривых установлена профессором С.С. Штейнбергом и другими советскими учеными. Тростит и сорбит - промежуточные структуры между перлитом и мартенситом, поэтому их свойства будут средними между свойствами перлита и мартенсита.
2. Закаливание
Закалка - вид термической обработки материалов (металлы, их сплавы стекло), заключающийся в их нагреве выше критической температуры (температуры изменения типа кристаллической решетки, т. е. полиморфного превращения, либо температуры, при которой в матрице растворяются фазы, существующие при низкой температуре), с последующим быстрым охлаждением. Чаще всего охлаждение осуществляется в воде или масле, но существуют и другие способы охлаждения: в псевдокипящем слое твёрдого теплоносителя, струёй сжатого воздуха, водяным туманом, в жидкую полимерную закалочную среду. На данном этапе предлагается рассмотреть только нагрев металла и физико-химические процессы связанные с этим. Нагревать изделия, особенно крупные, нужно постепенно, чтобы избежать местных напряжений и трещин, а время выдержки нагретого изделия должно быть достаточным, чтобы переход перлита в аустенит полностью завершился. Продолжительность выдержки обычно равна четверти общей продолжительности нагревания. В результате нагрева изделий по всему объему и быстрого охлаждения при закалке получаются большие деформации, особенно у изделий сложной конфигурации. При нагреве металла происходит его рекристаллизация. Рекристаллизация является диффузионным процессом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллизации металл состоит из новыхравноосных зерен. Более высокий нагрев приводит к развитию собирательной рекристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше температура нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создаются условия для образования крупнозернистого металла. Собирательная рекристаллизация также протекает неравномерно и практически начинается значительно раньше, чем закончится рекристаллизация обработки.
Рис 4 Схема влияния на величину рекристаллизованного зерна
Размер рекристаллизованного зерна оказывает большое влияние на свойства металла. Наилучшее сочетание прочности и пластичности наблюдается в мелкозернистых сталях. На величину рекристаллизованного зерна оказывает влияние температура рекристаллизационного отжига (рис4, а), продолжительность процесса (рис4, б), степень предварительной деформации и химический состав металла. Чем выше температура отжига и длительнее процесс, тем больше размер рекристаллизованного зерна.
Рис 5 Схема влияния температуры на механические свойства и структуру деформированного металла
При нагреве по достижении температуры начала рекристаллизации (tнр) предел прочности и особенно предел текучести резко снижаются, а пластичность увеличивается. В процессе собирательной рекристаллизации механические свойства практически не изменяются. Более высокий нагрев сопровождается дальнейшим ростом зерна и уменьшением пластичности вследствие перегрева.
Перейдем к практике, для наших бытовых условий, для разогрева зубила использовалась бензиновая горелка, пламя которой достигает температуры 1100-1300 градусов С. С двух сторон использовались металлические экраны для удержания температуры в области проведения эксперимента (рис 6)
Рис 6
Критерием разделения областей термообработки металла является температура.
В нашем конкретном случае, использовался бытовой инфракрасный пирометр, а так же таблица цвета каления стали (рис 7) (рис8)
Рис 7
Рис 8
Зубило изготовляют из инструментальной стали Ст7, Ст8. Рабочую часть зубила на длине 15-30 мм нагревают под закалку в до температуры 760-780° С. При этом следят за тем, чтобы не было резкого перехода между раскаленной и темной частями зубила, так как в противном случае могут возникнуть трещины. Для закалки нагретый конец зубила опускают вертикально в воду на 15-20 мм, затем зубило перемещают вверх и вниз, чтобы не образовалось резкой границы между закаленной и незакаленной частями. Когда нагретая часть зубила потемнеет, его вынимают, зачищают закаленную часть и наблюдают за изменением цвета. По цвету можно приблизительно определить температуру. Подходя, в нашем опыте к процессу охлаждения, хотелось бы остановиться на нем более подробно и выбрать более подходящий способ для нашего случая.
3.Выбор среды охлаждения
Наиболее часто в качестве охлаждающей жидкости при закалке используются вода и масло. Строго говоря, ни то ни другое полностью не соответствуют необходимым требованиям, к которым относятся:
1) быстрое охлаждение в интервале температур минимальной устойчивости аустенита -- 650--550°С (см. с. 19);
2) охлаждение с умеренной скоростью в интервале температур мартенситного превращения -- 300--200°С. Последнее обусловлено тем, что мартенситное превращение происходит не одновременно по всему объему детали: раньше оно начинается у поверхности, в результате чего появляются внутренние напряжения и возможны трещины. При меньшей скорости охлаждения такие напряжения также будут меньшими.
В первый период, в интервале температур 800--400°С, вода охлаждает со скоростью примерно 200°С/с. Этого вполне достаточно, чтобы предотвратить распад аустенита в углеродистой стали и обеспечить закалку. Во второй период, в интервале температур 400--100°С, скорость охлаждения в воде резко возрастает (до 400-- 800°С/с). А надо было бы как раз наоборот, чтобы в этот период скорость уменьшилась, с тем чтобы снизить напряжения при образовании твердой, но хрупкой мартенситной структуры. Существует неправильное представление о том, будто бы нагрев воды существенно уменьшает опасность образования трещин. При нагреве воды до 40--50°С скорость охлаждения в первый период снижается до 100°С/с и ниже, в то время как во второй период она, хотя также снижается, но остается все же сравнительно высокой -- 350--550°С/с. При закалке в масле скорость охлаждения получается значительно меньшая, чем в воде. В первый период, при температуре 650--550°С, масло охлаждает со скоростью примерно в 6 раз меньшей, чем циркулирующая вода. Этого уже недостаточно для закалки углеродистых сталей, но вполне подходит для легированных. Зато во второй период, при температуре 200°С, скорость охлаждения в масле в 28 раз ниже, чем в воде. Это значительно уменьшает закалочные напряжения и опасность образования трещин. Такое преимущество масла позволяет закаливать в нем крупные детали сложной формы, не опасаясь возникновения трещин.Закаливающая способность масел мало зависит от температуры. Так, при нагреве до 120--150°С скорость охлаждения в масле изменяется всего на 50°С/с. Практически это не влияет на результаты закалки. Не следует, однако, с учетом противопожарной безопасности допускать, чтобы температура закалочного масла была более 80--90°С. Перегретое масло слегка дымит. Это опасный признак. В случае вспышки масла бак следует немедленно закрыть крышкой или листами железа. Закаливающая способность различных масел при одной и той же температуре зависит от их вязкости. В процессе работы вязкость масла постепенно повышается, и, следовательно, закаливающая способность его падает. Это происходит в основном по двум причинам: во-первых, вследствие насыщения масла продуктами его термического разложения и, во-вторых, благодаря попаданию в масло механических примесей (окалины и пр.).
Исходя из этого было принято решение, что оптимальным для нашего случая будет быстрое охлаждение в воде в течении приблизительно 3 секунд, после медленное охлаждение в масле (использовалась полусинтетическое автомобильное масло W10-40. Вязкость мене 40 использовать для закалки не рекомендуется) (рис 9)(рис10)
Рис 9
Рис 10
Следует отметить, что для закалки нагретый конец зубила опускают вертикально в воду на 15-20 мм, затем зубило перемещают вверх и вниз, чтобы не образовалось резкой границы между закаленной и незакаленной частями.
4. Отпуск металла
Отпуск смягчает негативные явления при закалке, повышает вязкость и уменьшает хрупкость изделия. Еще отпуск устраняет большую часть внутренних напряжений, возникающих при закалке. Для определения температуры при отпуске изделия пользуются таблицей цветов побежалости. Тонкая пленка окислов железа, придающая металлу различные быстро меняющиеся цвета - от светло-желтого до серого. Такая пленка появляется, если очищенное от окалины стальное изделие нагреть до 220°С; при увеличении времени нагрева или повышении температуры окисная пленка утолщается и цвет ее изменяется.
Цвета побежалости одинаково проявляются как на сырой, так и на закаленной стали.
Т.к. температуры отпуска метала в нашем случае не велики, то для измерений использовался инфракрасный пирометр. Температура отпуска была взята из таблицы отпуска металлов (рис 11)
Рис 11
Отпуск производится путем нагрева деталей, закаленных на мартенсит до температуры ниже критической. При этом в зависимости от температуры нагрева могут быть получены состояния мартенсита, троостита или сорбита отпуска. Эти состояния несколько отличаются от соответственных состояний закалки по структуре и свойствам: при закалке цементит (в троостите и сорбите) получается в форме удлиненных пластинок, как в пластинчатом перлите. А при отпуске он получается зернистым, или точечным, как в зернистом перлите.
Преимуществом точечной структуры является более благоприятное сочетание прочности и пластичности. При одинаковом химическом составе и одинаковой твердости сталь с точечной структурой имеет значительно более высокое относительное сужение и ударную вязкость ан, повышенное удлинение и предел текучести по сравнению со сталью с пластинчатой структурой.
Мартенсит закалки имеет неустойчивую тетрагональную решетку, а мартенсит отпуска - устойчивую центрированную кубическую решетку железа.
Отпуск разделяют на низкий, средний и высокий в зависимости от температуры нагрева.
При низком отпуске (нагрев до температуры 200-300() в структуре стали в основном остается мартенсит, который, однако, изменяется решетку. Кроме того, начинается выделение карбидов железа из твердого раствора углерода в железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение пластических и вязких свойств стали, а также уменьшение внутренних напряжений в деталях. Для низкого отпуска детали выдерживают в течение определенного времени обычно в масляных или соляных ваннах. Если для низкого отпуска детали нагревают на воздухе, то для контроля температуры часто пользуются цветами побежалости, появляющимися на поверхности детали. Появление этих цветов связано с интерференцией белого света в пленках окисла железа, возникающих на поверхности детали при ее нагреве. В интервале температур от 220 до 330 в зависимости от толщины пленки цвет изменяется от светло-желтого до серого (табл.). Низкий отпуск применяется для режущего, измерительного инструмента и зубчатых колес.
При среднем (нагрев в пределах (300-500) и высоком (500-700)) отпуске сталь из состояния мартенсита переходит соответственно в состояние троостита или сорбита. Чем выше отпуск, тем меньше твердость отпущенной стали и тем больше ее пластичность и вязкость. Происходящее при этом изменение свойств стали можно проследить по кривым диаграммы. При высоком отпуске сталь получает наилучшее сочетание механических свойств, повышение прочность, пластичность и вязкость, поэтому высокий отпуск стали после закалки ее на мартенсит называют кузнечных штампов, пружин, рессор, а высокий - для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).
Для некоторых марок стали отпуск производят после нормализации. Этот относится к мелкозернистой легированной доэвтектоидной стали (особенно никелевой), имеющий высокую вязкость и поэтому плохую обрабатываемость режущим инструментом. Для улучшения обрабатываемости производят нормализацию стали при повышенной температуре (до 950-970(), в результате чего она приобретает крупную структуру (определяющую лучшую обрабатываемость) и одновременно повышенную твердость (ввиду малой критической скорости закалки никелевой стали). С целью уменьшения твердости производят высокий отпуск этой стали.
В нашем случае отпуск закаливаемого зубила производился с не точной выдержкой температурного режима, но максимально приближенного к табличным значениям (рис 12)
Рис 12
В результате проведенного эксперимента мы получили зубило, режущая кромка которого, способна без видимых значительных деформаций, перерубить гвоздь без особых прилагаемых усилий (рис 13).Эксперимент завершен, желаемый результат достигнут (рис 13).
Рис 13
Список источников и литературы
1. Технология металлов и конструирование материалы. В.М. Никифоров, Москва, 1968, Изд. "Высшая школа".
2. Материаловедение. А.Е. Лейкин, Б.И. Родин, Москва, 1971, Изд. "Высшая школа".
3. https://ru.wikipedia.org
4. http://delta-grup.ru/bibliot/
5. http://www.journed.net/files/
6. http://www.conatem.ru/tehnologiya_metallov/
Размещено на Allbest.ru
...Подобные документы
Физико-механические основы обработки давлением. Факторы, влияющие на пластичность металла. Влияние обработки давлением на его структуру и свойства. Изготовление машиностроительных профилей: прокатка, волочение, прессование, штамповка, ковка, гибка.
контрольная работа [38,0 K], добавлен 03.07.2015Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.
контрольная работа [1,3 M], добавлен 28.08.2011Описание условий работы вала и требования к нему. Выбор и обоснование марки стали. Процесс выбора вида и разработка технологии термической обработки вала. Подбор охлаждающей среды для закалки, температур и времени выдержки при нагревах под отпуск.
контрольная работа [496,5 K], добавлен 02.09.2015Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.
контрольная работа [79,3 K], добавлен 12.12.2011Трубы (газо- и нефтепроводы) и основные требования к ним. Влияние параметров контролируемой прокатки на структуру и свойства низкоуглеродистой низколегированной стали 10Г2ФБ. Влияние исходной структуры стали после дополнительной термической обработки.
курсовая работа [1,5 M], добавлен 02.07.2012Конструктивно-технологическая характеристика изделия. Описание сплава АМг6. Течение металла при горячей прокатке. Выбор прокатного стана, размеров слитка и режимов обжатий. Технология производства листов. Режимы их окончательной термической обработки.
курсовая работа [1,6 M], добавлен 07.10.2013Изучение химико-термической обработки металлов и сплавов. Характеристика возможностей методов отделочно-упрочняющей обработки для повышения износостойкости поверхностей. Описание фосфорирования, наплавки легированного металла и алмазного выглаживания.
курсовая работа [2,5 M], добавлен 01.12.2013Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.
курсовая работа [534,9 K], добавлен 28.12.2003Описание работы зубчатого колеса и предъявляемые к нему требования. Химический состав, механические свойства и температуры критических точек стали 18ХГТ. Технология химико-термической обработки зубчатого колеса из стали 18ХГТ, контроль качества.
контрольная работа [3,1 M], добавлен 29.11.2014Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.
контрольная работа [370,2 K], добавлен 12.06.2012Группы изделий, требующие для их успешной эксплуатации "своих" специфических комплексов вязкостно-прочностных свойств. Способы отпуска закаленной стали. Влияние отпуска на прочность и пластичность стали. Основные сравнительные свойства для стали 45.
статья [63,0 K], добавлен 24.06.2012Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.
дипломная работа [492,5 K], добавлен 19.02.2011Составление проекта технологической линии по производству мороженого. Характеристика ассортимента продукта, показателей качества и применяемого сырья. Исследование процесса приготовления, обработки, охлаждения смеси, фасовки и закаливания мороженого.
курсовая работа [2,6 M], добавлен 11.05.2011Классификация и применение процессов объемного деформирования материалов. Металлургические и машиностроительные процессы обработки металлов давлением. Методы нагрева металла при выполнении операций ОМД. Технология холодной штамповки металлов и сплавов.
контрольная работа [1,2 M], добавлен 20.08.2015Условие работы плашка, резьбонарезного инструмента для нарезания наружной резьбы вручную или на металлорежущем станке. Характеристика стали, ее химические, механические и других свойства. Методы контроля режимов термической обработки и качества изделия.
курсовая работа [761,4 K], добавлен 12.03.2011Характеристика металла конструкции из стали 09Г2С: химический состав и механические свойства. Выбор сварочных материалов и оборудования. Методика расчета режимов механизированной сварки. Подготовка металла под сварку. Дефекты и контроль качества швов.
курсовая работа [161,4 K], добавлен 14.05.2013Исследование основных видов термической обработки стали: отжига, нормализации, закалки, отпуска. Изучение физической сущности процесса сварки. Технологический процесс электродуговой и электрошлаковой сварки. Пайка и состав оловянно-свинцовых припоев.
реферат [193,4 K], добавлен 22.03.2013Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.
реферат [25,4 K], добавлен 25.10.2014Наиболее значимые для человека свойства металлов. Место металла в культурном развитии человечества. Использование различных свойств металла современным человеком. Значение металлопроката в отраслях промышленности. Круг отрезной для резки металла.
презентация [8,7 M], добавлен 22.01.2014Назначение и устройство сварной конструкции. Описание технологического процесса сварки. Характеристика свариваемого металла: химический состав, механические свойства. Описание заготовительных и сборочно-сварочных операций. Выбор и расчет режимов сварки.
контрольная работа [84,5 K], добавлен 19.01.2014