Технология производства керамических материалов
Использование глинистых горных пород для изготовления керамических материалов. Характеристика видов пластичности глины. Физико-механические свойства и типы сырья. Развитие производства строительной керамики. Исследование плит для фасадной отделки.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.11.2016 |
Размер файла | 117,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Вступление
1. Сырье для производства
2. Технология производства
3. Виды облицовочных керамических материалов
Литература
Вступление
Керамику в роли отделочного материала применяют издавна и очень широко. Это объясняется как декоративностью керамики, так и ее стойкостью и долговечностью.
Облицовка керамикой не только придает декоративность, но и защищает конструкцию от внешних воздействий.
Различают отделочную керамику для наружной и внутренней облицовки, а также для покрытия полов. Для каждой области применения используют керамику с различным строением черепка (плотным или пористым) и соответственно с разными свойствами.
Материалы для наружной облицовки зданий и сооружений включают в себя лицевой кирпич, крупноразмерные облицовочные плиты и архитектурные детали (терракоту) и плитки различных размеров.
Лицевой кирпич отличается от обычного тем, что у него ложок и тычок (или оба тычка) имеют повышенное качество поверхности: гладкая без дефектов поверхность, ровная окраска, возможна рельефная обработка поверхности или ее офактуривание (глазурование, ангоби-рование). Лицевой кирпич изготовляют как из беложгущихся, так и из красножгущихся глин. Придание требуемого цвета возможно окрашивающими добавками (оксиды железа, марганца и т. п.). Сырьевая масса для лицевого кирпича готовится более тщательно: недопустимо присутствие крупных каменистых включений, особенно известняковых.
Марки по прочности у лицевого кирпича такие же, как и у обычного; морозостойкость несколько выше: не ниже F25. Как правило, лицевой кирпич -- пустотелый.
Лицевым поверхностям кирпича можно придавать рельеф обработкой влажных сырцовых заготовок гребенками или рельефными валками.
Декорируют лицевой кирпич ангобированием и двухслойным формованием. Эти методы позволяют экономить дефицитные бело-жгущиеся глины и пигменты.
Особенно декоративен глазурованный кирпич. Глазурь позволяет получать любые цветовые оттенки и сохранять их яркость в течение Длительного времени; она почти не загрязняется и легко моется. Долговечность такой отделки -- десятки и сотни лет.
1. Сырье для производства
Сырьем для изготовления керамических материалов служат различные глинистые горные породы. Для улучшения технологических свойств глин, а также придания изделиям определенных и более высоких физико-механических свойств к глинам добавляют кварцевый песок, шамот (дробленая обожженная при температуре 1000...1400°С огнеупорная или тугоплавкая глина), шлак, древесные опилки, угольную пыль.
Глиняные материалы образовались в результате выветривания изверженных полевошпатовых горных пород. Процесс выветривания горной породы заключается в механическом разрушении и химическом разложении. Механическое разрушение происходит в результате воздействия переменной температуры и воды. Химическое разложение происходит, например, при воздействии на полевой шпат воды и углекислоты, в результате чего образуется минерал каолинит.
Глиной называют землистые минеральные массы или обломочные горные породы, способные с водой образовывать пластичное тесто, по высыхании сохраняющее приданную ему форму, а после обжига приобретающее твердость камня. Наиболее чистые глины состоят преимущественно из каолинита и называются каолинами. В состав глин входят различные оксиды (Аl2O3, SiO2, Fe2O3, CaO, Na2O, MgO), свободная и химически связанная вода и органические примеси.
Большое влияние на свойства глины оказывают примеси. Так, при повышенном содержании SiO2, не связанного с Аl2O3, в глинистых минералах уменьшается связующая способность глин, повышается пористость обожженных изделий и снижается их прочность. Соединения железа, являясь сильными плавнями, понижают огнеупорность глины. Углекислый кальций уменьшает огнеупорность и интервал спекания, увеличивает усадку при обжиге и пористость, что уменьшает прочность и морозостойкость. Оксиды понижают температуру спекания глины.
Глины характеризуются пластичностью, связностью и связующей способностью, отношением к сушке и к действию высоких температур.
Пластичностью глины называют ее свойство образовывать при затворении водой тесто, которое под действием внешних усилий способно принимать заданную форму без образования разрывов и трещин и сохранять эту форму при последующей сушке и обжиге.
По пластичности глины разделяют на высокопластичные, среднепластичные, умереннопластичные, малопластичные и непластичные. Для производства керамических изделий обычно применяют умереннопластичные глины с числом пластичности = 7... 15. Малопластичные глины плохо формуются, а высокопластичные растрескиваются при сушке и требуют отощения.
В производстве обжиговых материалов наряду с глинами используются диатомиты, трепелы, сланцы и др. Так, в производстве легкого кирпича и изделий применяют диатомиты и трепелы, а для получения пористых заполнителей -- вспучивающиеся глины, перлит, вермикулит.
На многих керамических заводах отсутствует сырье, пригодное в естественном виде для изготовления соответствующих изделий. Такое сырье требует введения добавок. Так, добавляя к пластичным глинам отощающие добавки до 6... 10% (песок, шлак, шамот и др.), можно уменьшить усадку глины при сушке и обжиге. Большое влияние на связующую способность глин и их усадку оказывают фракции меньше 0,001 мм.
Чем больше содержание глинистых частиц, тем выше пластичность. Пластичность можно повысить добавлением высокопластичных глин, а также введением поверхностно-активных веществ -- сульфитно-дрожжевой бражки (СДБ) и др. Понизить пластичность можно добавлением непластичных материалов, называемых отощителями, -- кварцевого песка, шамота, шлака, древесных опилок, крошки угля.
Глины, содержащие повышенное количество глинистых фракций, обладают более высокой связностью, и, наоборот, глины с небольшим содержанием глинистых частиц имеют малую связность. С увеличением содержания песчаных и пылевидных фракций понижается связующая способность глины. Это свойство глины имеет большое значение при формовании изделий. Связующая способность глины характеризуется возможностью связывать частицы непластичных материалов (песка, шамота и др.) и образовывать при высыхании достаточно прочное изделие заданной формы.
Усадкой называют уменьшение линейных размеров и объема при сушке образца (воздушная усадка) и обжиге (огневая усадка). Воздушная усадка происходит при испарении воды из сырца в процессе его сушки. Для различных глин линейная воздушная усадка колеблется от 2...3 до 10...12% в зависимости от содержания тонких фракций. Огневая усадка происходит из-за того, что в процессе обжига легкоплавкие составляющие глины расплавляются и частицы глины в местах их контакта сближаются. Огневая усадка в зависимости от состава глин бывает 2...8%. Полная усадка равна алгебраической сумме воздушной и огневой усадок, она колеблется в пределах 5...18%. Это свойство глин учитывают при изготовлении изделий необходимых размеров.
Характерным свойством глин является их способность превращаться при обжиге в камневидную массу. В начальный период повышения температуры начинает испаряться механически примешанная вода, затем выгорают органические примеси, а при нагревании до 550...800°С происходит дегидратация глинистых минералов и глина утрачивает свою пластичность.
При дальнейшем повышении температуры осуществляется обжиг -- начинает расплавляться некоторая легкоплавкая составная часть глины, которая, растекаясь, обволакивает нерасплавившиеся частицы глины, при охлаждении затвердевает и цементирует их. Так происходит процесс превращения глины в камневидное состояние. Частичное плавление глины и действие сил поверхностного натяжения расплавленной массы вызывают сближение ее частиц, происходит сокращение объема -- огневая усадка.
Совокупность процессов усадки, уплотнения и упрочнения глины при обжиге называют спеканием глины. При дальнейшем повышении температуры масса размягчается -- наступает плавление глины.
На цвет обожженных глин оказывает влияние главным образом содержание оксидов железа, которые окрашивают керамические изделия в красный цвет при наличии избытка в печи кислорода или в темно-коричневый и даже черный при недостатке кислорода. Оксиды титана вызывают синеватую окраску черепка. Для получения белого кирпича обжиг ведут в восстановительной среде и при определенных температурах, чтобы оксид железа перевести в закись.
2. Технология производства
Несмотря на обширный ассортимент керамических изделий, разнообразие их форм, физико-механических свойств и видов сырьевого материала, основные этапы производства керамических изделий являются общими и состоят из следующих операций: добычи сырьевых материалов, подготовки сырьевой массы, формования изделий (сырца), сушки сырца, обжига изделий, обработки изделий (обрезки, глазурования и пр.) и упаковки.
Добычу сырья осуществляют на карьерах открытым способом -- экскаваторами. Транспортировку сырья от карьера к заводу производят автосамосвалами, вагонетками или транспортерами при небольшой удаленности карьера от цеха формовки. Заводы по производству керамических материалов, как правило, строят вблизи месторождения глины, и карьер является составной частью завода.
Подготовка сырьевых материалов состоит из разрушения природной структуры глины, удаления или измельчения крупных включений, смешения глины с добавками и увлажнения до получения удобоформуемой глиняной массы.
Формование керамической массы в зависимости от свойств исходного сырья и вида изготовляемой продукции осуществляют полусухим, пластическим и шликерным (мокрым) способами. При полусухом способе производства глину вначале дробят и подсушивают, затем измельчают и с влажностью 8... 12% подают на формование. При пластическом способе формования глину дробят, затем направляют в глиносмеситель, где она перемешивается с отощающими добавками до получения однородной пластичной массы влажностью 20...25%. Формование керамических изделий при пластическом способе осуществляют преимущественно на ленточных прессах. При полусухом способе глиняную массу формуют на гидравлических или механических прессах под давлением до 15 МПа и более. По шликерному способу исходные материалы измельчают и смешивают с большим количеством воды (до 60%) до получения однородной массы -- шликера. В зависимости от способа формования шликер используют как непосредственно для изделий, получаемых способом литья, так и после его сушки в распылительных сушилках.
Современный период развития производства строительной керамики характеризуется интенсификацией технологических процессов, комплексной механизацией, конвейеризацией и автоматизацией производства. В этой связи важную роль отводят разработке новой технологии получения пресс-порошка в распылительных сушилах, сущность которой заключается в совмещении процессов обезвоживания, дробления и сепарации. Сушильная камера представляет собой металлический цилиндр, заканчивающийся внизу конусом, который служит для сбора готового продукта. Отличительными особенностями сушила являются распыление керамической суспензии пучком форсунок при давлении 1,0...1,2 МПа и снижение давления газа внутри сушильной башни. Обезвоживание керамических масс в распылительных сушилах позволило в 3,5 раза повысить производительность труда и в 1,5 раза сократить капитальные затраты.
Обязательной промежуточной операцией технологического процесса производства керамических изделий по пластическому способу является сушка. Если же сырец, имеющий высокую влажность, сразу после формования подвергнуть обжигу, то он растрескивается. При сушке сырца искусственным способом в качестве теплоносителя используют дымовые газы обжигательных печей, а также специальных топок. При изготовлении изделий тонкой керамики применяют горячий воздух, образуемый в калориферах. Искусственную сушку производят в камерных сушилах периодического действия или туннельных сушилах непрерывного действия.
Процесс сушки представляет собой комплекс явлений, связанных с тепло- и массообменом между материалом и окружающей средой. В результате происходит перемещение влаги из внутренней части изделий на поверхность и испарение ее. Одновременно с удалением влаги частицы материала сближаются и происходит усадка. Уменьшение объема глиняных изделий при сушке происходит до определенного предела, несмотря на то, что вода к этому моменту полностью еще не испарилась. Для получения высококачественных керамических изделий процессы сушки и обжига должны осуществляться в строгих режимах. При нагревании изделия в интервале температур 0...150°С из него удаляется гигроскопическая влага. При температуре 70°С давление водяных паров внутри изделия может достигнуть значительной величины, поэтому для предупреждения трещин температуру следует поднимать медленно (50...80°С/ч), чтобы скорость порообразования внутри материала не опережала фильтрации паров через ее толщу.
Обжиг является завершающей стадией технологического процесса. В печь сырец поступает с влажностью 8...12%, и в начальный период происходит его досушивание. В интервале температур 550... 800°С идет дегидратация глинистых минералов и удаление химически связанной конституционной воды. При этом разрушается кристаллическая решетка минерала и глина теряет пластичность, в это время происходит усадка изделий. глинистый керамический пластичность плита
При температуре 200...800°С выделяется летучая часть органических примесей глины и выгорающих примесей глины и выгорающих добавок, введенных в состав шихты при формовании изделий, и, кроме того, окисляются органические примеси в пределах температуры их воспламенения. Этот период характерен весьма высокой скоростью подъема температур -- 300...350° С/ч, а для эффективных изделий -- 400...450°С/ч, что способствует быстрому выгоранию топлива, запрессованного в сырец. Затем изделия выдерживают при этой температуре в окислительной атмосфере до полного выгорания остатков углерода.
Дальнейший подъем температуры от 800°С до максимальной связан с разрушением кристаллической решетки глинистых минералов и значительным структурным изменением черепка, поэтому скорость подъема температуры замедляют до 100...150°С/ч, а для пустотелых изделий -- до 200...220°С/ч. По достижении максимальной температуры обжига изделие выдерживают для выравнивания температуры по всей толще его, после чего температуру снижают на 100...150°С, в результате изделие претерпевает усадку и пластические деформации.
Затем интенсивность охлаждения при температуре ниже 800°С увеличивается до 250...300°С/ч и более. Ограничением спада температуры могут служить лишь условия внешнего теплообмена. При таких условиях обжиг кирпича можно осуществить за 6...8 ч. Однако в обычных туннельных печах скоростные режимы обжига не могут быть реализованы из-за большой неравномерности температурного поля по сечению обжигательного канала. Изделия из легкоплавких глин обжигают при температуре 900...1100°С. В результате обжига изделие приобретает камневидное состояние, высокие водостойкость, прочность, морозостойкость и другие ценные строительные качества.
3. Виды облицовочных керамических материалов
Для зданий с кирпичными стенами отделка лицевым кирпичом -- самый эффективный вид отделки, так как она одновременно является частью стены и выполняет все ее функции.
Керамические плиты и плитки для фасадной отделки выпускают в широком ассортименте размеров, цветов и фактуры поверхности.
Коврове-мозаичная плитка очень облегчает отделку стен: путем простого втапливания ковра в раствор (или бетон) и последующего смывания бумаги после затвердевания раствора. Такая отделка может производиться как на заводе одновременно с формованием стеновых панелей, так и в построечных условиях по свежеуложенной штукатурке.
Плитки керамические фасадные применяют для облицовки наружных стен кирпичных зданий, наружных поверхностей железобетонных стеновых панелей, подземных переходов и других элементов зданий и сооружений. Плитки выпускают различных размеров (от 120 х 65 до 300 х 200 мм), цветов и фактуры поверхности. Плитки изготовляют методом полусухого и пластического прессования. Морозостойкость плиток F35 и F50. Тыльная сторона плиток имеет рифление для обеспечения сцепления с раствором (бетоном).
Рис. 1. Плитка керамическая фасадная
Крупноразмерные керамические плиты размером от 500 х 500 мм до 600 х 1200 мм и толщиной до, 10 мм имеют плотный, полностью спекшийся черепок с очень низким водопоглошением (менее 1%). Такая структура достигается тщательным подбором сырьевых материалов (глин и добавок), прессованием плит из сырьевой массы с малой влажностью (не более 5…6%) при очень большом давлении (до 50 МПа); обжиг плит производится при температуре до 1300 СС.
Полученные таким образом плиты напоминают каменный материал и характеризуются высокой морозо- и износостойкостью.
Плиты могут иметь матовую и полированную поверхность различных цветов, часто со структурой, напоминающей фанит. По этой причине и за высокие физико-механические свойства такие плиты получили название керамогранит.
Крупноразмерные керамические плиты крепят на фасадах с помощью металлических раскладок на некотором относе от стены -- это так называемые вентилируемые фасады. Кроме отделки фасадов, плиты типа керамогранит используют для покрытия полов в общественных зданиях (магазинах, выставочных залах и т. п.), в жилых зданиях в местах общего пользования и прихожих в качестве полноценной замены плит из природного камня. Еще одна область применения подобных плит -- кровельный материал ардогрес -- искусственный сланец.
Терракота (от лат. terra cotta -- жженая земля) -- крупноразмерные облицовочные изделия в виде плит, частей колонн, наличников и других архитектурных деталей.
Терракота возникла в Древней Греции как замена облицовки из натурального камня. Впоследствии в различные исторические периоды терракота многократно входила в моду и широко использовалась в строительстве. Последний период увлечения терракотовой облицовкой в нашей стране пришелся на 40--50-е годы. В этот период терракотовые плиты и архитектурные детали использовались для облицовки зданий Московского университета (МГУ), всех высотных домов в Москве и многих многоэтажных жилых домов того периода в Москве, Киеве и других крупных городах.
Терракота -- очень долговечный и декоративный облицовочный материал, незначительно уступающий природному камню по свойствам, но значительно менее трудоемкий в производстве. Терракотовые изделия формуются из пластичных глиняных масс: плиты на ленточных прессах, а архитектурные детали с помощью форм (гипсовых, деревянных и металлических). Физико-механические показатели терракотовых изделий: марка по прочности -- не ниже 100 кгс/см2, морозостойкость не менее F50.
Плитку для внутренней облицовки выпускают разнообразных типоразмеров. Чаще других используют плитку размером 150 х 150 мм и 200 х 300 мм, кроме плиток, выпускают фасонные элементы: фризы, уголки и т. п. Такую плитку часто называют кафельной. Это название пошло от фаянсовых изделий коробчатой формы с глазурованной поверхностью (от нем. Kachel -- глиняная плошка), использовавшихся в XVII--XIX вв. для облицовки печей в жилых и общественных зданиях; по-русски их называли изразцами (от старослав. образить -- украсить).
Рис. 2. Печной изразец (кафель) (вид с тыльной стороны)
Плитки для внутренней облицовки имеют пористый черепок и с лицевой стороны покрыты глазурью. Глазурь не только придает плиткам декоративный вид, но и делает их водостойкими, химически стойкими и гигиеничными. Такие плитки широко применяют для облицовки стен: санитарно-технических узлов и кухонь в жилых и общественных зданиях, в больницах, на предприятиях пищевой и химической промышленности, вестибюлей и лестничных клеток (рис. 5.9). Нельзя использовать их для настилки полов (глазурь легко царапается) и наружной облицовки (пористый черепок зимой быстро вызовет разрушение плиток).
Плитки для полов должны обладать высокой износостойкостью и минимальным водопоглощением, поэтому их изготовляют из тугоплавких глин методом сухого или полусухого прессования, обжигая их до полного спекания. Такие плитки почти не имеют пор и практически водонепроницаемы. В соответствии со стандартом их водопоглощение не должно быть выше 4 % (как правило, оно не более 1…2%). Такие плитки часто называютметтлахские (от названия немецкого города Mettlach, где было одно из первых производств подобных плиток).
Плитки могут быть окрашены в массе или иметь окрашенным только верхний слой. Поверхность плиток большей частью гладкая, но производят плитки и с фактурной поверхностью (например, имитирующие грубообработанный камень или древесину). Плитки отличаются высокой износостойкостью и прочностью, стойки к действию воды и химических реагентов, декоративны и легко моются. Размеры плиток: от самых мелких (23 х 23 мм) мозаичных до плиток среднего размера (300 х 300 мм). Для полов общественных зданий, торговых центров, выставочных залов и т. п. используют крупноразмерные (до 600 х 600 мм) плиты из керамогранита. В роли материала для полов керамическая плитка отличается высоким теплоусвоением: такое покрытие пола называют холодным.
В странах с теплым климатом (Южная Европа, Египет, Сирия и т. п.) полы из керамической плитки применяют во всех помещениях, включая гостиные и спальные комнаты. В России полы из плиток принято устраивать в помещениях с сырым режимом эксплуатации и повышенными гигиеническими требованиями (санитарно-техни-ческие узлы, лаборатории, больницы, пищеблоки и т. п.).
Рис. 3. Отделка стен и пола керамическими плитками
В настоящее время в связи с появлением подогреваемых полов круг помещений, где целесообразно применять керамические плитки для полов, будет расширяться.
Облицовка керамикой -- один из самых экономически эффективных видов отделки фасадов и интерьеров зданий. Хотя первоначальная стоимость такой облицовки выше многих других видов отделки, но с учетом очень высокой долговечности керамики, т. е. в пересчете на один год эксплуатации, керамическая облицовка оказывается выгоднее большинства видов отделки. К несомненным достоинствам такой облицовки необходимо отнести архитектурную выразительность. Оценка экологичности керамической облицовки также указывает на то, что она и с этой точки зрения оказывается одной из лучших.
Литература
1. Микульский В.Г. и др. Строительные материалы и изделия - М.: Изд-во АСВ, 2007. - 520 с
2. Строительное материаловедение / под ред. П.В.Кривенко. -- К. : Лира-К, 2012. -- 624 с. -- ISBN 978-966-2609-04-2..
3. Акунова Л.Ф. Материаловедение и технологи керамики/ Л.Ф. Акунова, С.З. Приблуда. М., 1986.
Размещено на Allbest.ru
...Подобные документы
Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.
курсовая работа [74,2 K], добавлен 02.03.2011Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.
курсовая работа [2,1 M], добавлен 27.05.2015Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.
курсовая работа [134,7 K], добавлен 06.06.2014Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.
реферат [17,6 K], добавлен 26.04.2011Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.
реферат [21,2 K], добавлен 03.02.2011Исследование химического диспергирования алюминиевого сплава; влияние концентрации щелочи на структуру диспергированных порошков и физико-механические свойства керамических материалов. Разработка технологической схемы спекания; безопасность и экология.
дипломная работа [2,9 M], добавлен 27.01.2013Химический состав сырья для изготовления керамических изделий, характеристика глинистых и добавочных материалов. Выбор технологического оборудования и схемы производства. Сравнение пластического и полусухого методов формования керамического кирпича.
курсовая работа [559,3 K], добавлен 22.03.2012Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.
дипломная работа [1,2 M], добавлен 04.08.2012Исследование физико-химического состава и технологических свойств сырьевых материалов месторождений Казахстана. Характеристика силикатного природного и техногенного сырья. Каолиновое сырье, полевой шпат, кварцевые пески, разжижители глинистых суспензий.
научная работа [2,4 M], добавлен 04.02.2013Процесс изготовления керамических оболочек, выплавления моделей и литья в разъемные формы. Технология получения крупногабаритных деталей литьем по выплавляемым моделям и керамических оболочковых форм. Новая концепция мелкосерийного литейного производства.
курсовая работа [999,5 K], добавлен 26.02.2013История гончарной керамики. Технология производства керамических изделий. Сырьё для керамических масс. Прозрачные керамические материалы, особенности их структуры. Производство каменной керамической посуды в XVI в. Виды современных глиняных изделий.
презентация [3,0 M], добавлен 11.02.2011Характеристика и физико-механические показатели минераловатных акустических плит. Сырьё и полуфабрикаты для их изготовления. Технология производства изделия. Режим работы цеха и производственная программа. Подбор оборудования и тепловых установок.
курсовая работа [482,8 K], добавлен 29.03.2014Исследование особенностей гончарного производства. Анализ состава массы, употребляемой для выделки керамических изделий. Обзор процесса подготовки глины. Характеристика конструкции и принципа работы гончарного круга. Обжиг и сушка керамических изделий.
презентация [8,4 M], добавлен 23.03.2016Анализ существующих технологических процессов алмазно-абразивной обработки напылённых покрытий и технической минералокерамики. Физико-механические свойства керамических материалов. Влияние технологических факторов на процесс обработки напылённой керамики.
дипломная работа [4,0 M], добавлен 28.08.2011Процессы изготовления керамических материалов. Методы получения порошков. Корундовые керамики модифицированные соединениями хрома. Содержание порошка в образцах керамики на основе глинозема, термограмма. Особенности измерения микротвердости образцов.
курсовая работа [818,9 K], добавлен 30.05.2013Технологические расчеты оборудования, сырья и материалов для обработки древесины и производства строительной фанеры. Организация рабочих мест для окорки и раскроя сырья, изготовления и починки шпона. Выбор кромко-фуговальных и ребросклеивающих станков.
курсовая работа [2,5 M], добавлен 07.04.2012Создание и применение металлических слоистых композиционных материалов, их физико-механические и эксплуатационные свойства. Технология производства трехслойной втулки из магниево-алюминиевых композитов АМг6 и АД1. Способы изготовления, оборудование.
курсовая работа [1,5 M], добавлен 25.12.2014Понятие и способы изготовления стеклянных изделий, их классификация и типы, применяемые методы и материалы. История керамики и общее описание изготавливаемого изделия, оборудование. Особенности применения стеклянных и керамических изделий в оформлении.
курсовая работа [299,6 K], добавлен 17.11.2013Производственная технология изготовления гнутых профилей, их механические свойства и применение. Уголок алюминиевый анодированный, нержавеющий и равнополочный. Механические свойства заготовки при профилировании, механический запас пластичности металла.
курсовая работа [1,3 M], добавлен 15.08.2014Технология изготовления материалов и древесных плит. Расчет расхода сырья, смолы и химикатов. Режим работы цеха. Фонд рабочего времени. Коэффициент использования оборудования. Содержание связующего в осмоленных древесных частицах. Сушка стружки.
курсовая работа [176,1 K], добавлен 10.08.2014