Особенности тепловой работы ферросплавных печей

Описание углевосстановительного, силикотермического и алюминотермического способов получения ферросплавов. Описание конструкции восстановительных и рафинировочных ферросплавных печей, а также их классификация. Анализ принципов работы ферросплавных печей.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 24.12.2016
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности тепловой работы ферросплавных печей

Содержание

Введение

1. Описание технологических процессов

1.1 Способы получения ферросплавов

2. Виды и характеристика ферросплавных печей

2.1 Конструкция ферросплавных печей

2.2 Типы ферросплавных печей

3. Принцип работы ферросплавной печи

Заключение

Список литературы

Введение

Ферросплавы - это сплавы железа с кремнием, марганцем, хромом, вольфрамом и другими элементами, применяемые в производстве стали для улучшения ее свойств и легирования. Вводить в сталь нужный элемент не в виде чистого металла, а в виде его сплава с железом удобнее вследствие более низкой температуры его плавления и выгоднее, так как стоимость ведущего элемента в сплаве с железом ниже по сравнению со стоимостью технически чистого металла.

Исходным сырьем для получения ферросплавов служат руды или концентраты. Для производства основных сплавов - ферросилиция, ферромарганца; силикомарганца и феррохрома - пользуются рудами, так как в них высоко содержание окислов элемента, подлежащего восстановлению. При производстве ферровольфрама, ферромолибдена, феррованадия, ферро-титана и других сплавов руду вследствие малой концентрации в ней полезного элемента обогащают, получая концентрат с достаточно высоким содержанием окислов основного элемента.

Ферросплавы получают восстановлением окислов соответствующих металлов. Для получения любого сплава необходимо выбрать подходящий восстановитель и создать условия, обеспечивающие высокое извлечение ценного (ведущего) элемента из перерабатываемого сырья.

Восстановителем может служить элемент, обладающий более высоким химическим сродством к кислороду, чем элемент, который необходимо восстановить из оксида. Иначе говоря, восстановителем может быть элемент, образующий более химически прочный оксид, чем восстанавливаемый элемент. Восстановительные процессы облегчаются, если они проходят в присутствии железа или его оксидов. Растворяя восстановленный элемент или образуя с ним химическое соединение, железо уменьшает его активность, выводит его из зоны реакции, препятствует обратной реакции - окислению.

1. Описание технологических процессов

1.1 Способы получения ферросплавов

В зависимости от вида применяемого восстановителя различают три основных способа получения ферросплавов: углевосстановительный, силикотермический и алюминотермический. Наиболее дешевым является углерод, поэтому его используют при производстве углеродистых ферромарганца и феррохрома, а также всех сплавов с кремнием (кремний препятствует переходу углерода в сплав). Реакции восстановления металлов из их оксидов углеродом эндотермичные, поэтому углевосстановительный процесс требует подвода тепла - обычно это тепло, выделяемое электрическими дугами ферросплавной печи. Выплавку ферросплавов углевосстановительным процессом осуществляют в так называемых восстановительных (рудовосстановительных) ферросплавных печах с трансформаторами мощностью 10-115 MB*А, работающих непрерывным процессом, т.е. с непрерывной загрузкой шихты печь и периодическим выпуском продуктов плавки.

Силикотермическим и алюминотермическим способами получают ферросплавы с пониженным или очень низким содержанием углерода: среднеуглеродистые и малоуглеродистые ферромарганец и феррохром, безуглеродистый феррохром, металлические хром и марганец, ферросплавы и лигатуры с титаном, ванадием, вольфрамом, молибденом, цирконием, бором и другими металлами. Эти сплавы выплавляют в рафинировочных ферросплавных печах, оборудованных трансформаторами мощностью 2,5-7 MB*А и работающих периодическим процессом с выпуском из печи металла и шлака по окончании плавки. Когда выделяющегося при экзотермических реакциях тепла достаточно для получения металла и шлака в жидком виде, плавку проводят в футерованных шахтах (горнах).

2. Виды и характеристика ферросплавных печей

2.1 Конструкция ферросплавных печей

Восстановительные ферросплавные печи работают непрерывно. В работающей печи электроды погружены в твердую шихту и дуга горит под слоем шихты. Шихту пополняют по мере ее проплавления; сплав и шлак выпускают периодически. Печи этого типа оснащены мощными трансформаторами: 10-115 МВ*А. Печи трехфазные, стационарные или вращающиеся вокруг вертикальной оси; ранее печи изготавливали открытыми, а новые печи делают закрытыми, т.е. с рабочим пространством, закрытым сверху водоохлаждаемым сводом.

В поперечном сечении большая часть ферросплавных печей круглые, а ряд новых мощных печей имеют прямоугольную форму. Большая часть печей оборудована тремя электродами, а печи большой мощности иногда имеют шесть электродов. В круглых печах электроды расположены по вершинам равностороннего треугольника, а в прямоугольных печах - в линию. Для выпуска продуктов плавки печь имеет одну-две, а иногда три летки. Если технологический процесс связан с раздельным выпуском металла и шлака, имеются две летки (металлическая и шлаковая), расположенные на различных уровнях.

Кожух печей выполняют из листовой стали толщиной - 30 мм и усиливают снаружи вертикальными ребрами и гори зонтальными поясами жесткости, днише кожуха выполни плоским. К верху кожуха закрытых печей приварен кольцевой желоб песочного затвора.

Материалы, применяемые для футеровки печи, выбирают в зависимости от выплавляемого сплава. Так, для выплавки кремнистых сплавов и углеродистого ферромарганца рабочее пространство печи выкладывают из угольных блоков, для выплавки углеродистого феррохрома - из магнезитового кирпича. Верх стен выкладывают шамотным кирпичом.

Рисунок 1 - Закрытая рудовосстановительная печь: 1 - механизм вращения ванны; 2 железобетонная плита; 3 - футеровка; 4 - кожух; 5 - кольцевой желоб песочного затвора; б - свод; 7 - загрузочная воронка; 8 - трансформатор; 9 (9а, 96, 9е> - короткая сеть; 10 - несущий цилиндр; 11 - механизм перемещения электрода; 12 - механизм перепускания электрода; 13 - контактные щеки; 14 - газоход; 15 - летка; 16 - зубчатый венец

Для ферросплавных печей характерна подина большой толщины. Общая толщина футеровки подины достигает 2,5 м. При такой толщине подины обеспечивается большая тепловая инерция и облегчаются условия сохранения устойчивой температуры в плавильной зоне печи при кратковременных простоях.

В большинстве ферросплавных печей рабочим слоем футеровки служит так называемый гарнисаж, т.е. настыль, образованная из проплавляемой руды, шлака и сплава.

Свод печи. У строившихся ранее открытых печей через колошник выделяется много тепла и отходящих газов, что вызывает нагрев оборудования и затрудняет работу персонала; кроме того, на колошнике окисляется часть восстановителя, а над печью бесполезно сгорает содержащийся в отходящих газах оксид СО (отходящие газы содержат ~ 85% СО). Эти недостатки устраняются, если печь накрыта сводом. На современных ферросплавных печах широко распространены водоохлаждаемые своды, и, в частности, десяти-секционные своды. Свод состоит из девяти периферийных и десятой центральной секций, каждая из которых выполнена в виде плоской полой коробки (кессона), в которой циркулирует охлаждающая вода. Секции монтируют в сводово кольце, они подвешены к металлоконструкциям цеха.

Рисунок 2 - Схема водоохлаждаемого плоского свода ферросплавной печи: I - взрывной клапан; 2 - сводовое кольцо; 3 - газозаборный короб; 4- периферийная секция свода; 5- центральная секция

Снизу свод футерован огнеупорным бетоном, имеются три отверстия для электродов и при необходимости отверстия для загрузочных воронок. В своде имеются два отверстия для отвода печных газов к газоочистке. Имеется также несколько отверстий, оборудованных взрывными клапанами, которые необходимы, поскольку газ в печи, содержащий много СО, при попадании воздуха может взрываться.

Применяются также своды, выполненные в виде стального водоохлажлаемого каркаса с футеровкой из огнеупорного кирпича или блоков из огнеупорного бетона. В закрытых печах предусматривают уплотнение между сводом и ванной в виде песочного затвора.

Механизм вращения ванны предусмотрен на многих ферросплавных печах. Вращение ванны позволяет предотвратить зависание шихты и образование настылей. В таких печах ванна крепится на железобетонной плите, опирающейся на ходовые колеса, которые катятся по кольцевому рельсу, заложенному в фундаменте, Вращение осуществляют от электродвигателя с двумя редукторами, выходные шестерни которых входят в зацепление с зубчатым венцом 16, прикрепленным к плите 2. Вращение ванны происходит со скоростью один оборот за 35-130 ч. Вращение печи реверсивное r секторе 130°. При повороте печи свод остается неподвижным.

В восстановительных ферросплавных печах применяют самоспекающиеся непрерывные электроды, причем формирование электрода (обжиг и спекание электродной массы) происходит в процессе работы ферросплавной печи. Эти электроды в три раза дешевле графитированных электродов, применяемых в дуговых сталеплавильных печах.

Самоспекающийся электрод представляет собой заполненный электродной массой кожух из стального листа толщиной 1-3 мм с продольными ребрами внутри. Кожух изготавливают отдельными секциями длиной 1,4-1,8 м, которые впоследствии сваривают друг с другом. В основном применяют круглые электроды диаметром 900-2000 мм, а на прямоугольных печах - плоские электроды размером до 3200x800 мм. Кожух, служащий пресс-формой для электродной массы предохраняет электрод от окисления воздухом, облегчает прохождение тока от электрододержателя к обожженной части электрода.

Рисунок 3 - Самоспекающийся электрод и электродедержатель:

1 - кожух электрода; 2 - электродная масса; 3 - нажимное устройство; 4 - контактная шека; 5 - несущий цилиндр; б - ребра; 7 - трубка подвода тока и воды; S - нажимное кольцо; 9 - свод печи; 10 - шихта

Электродную массу изготавливают из термоантрацита, кокса, каменноугольной смолы и пека. Электродную массу забрасывают в кожух сверху в холодном состоянии. Под действием тепла печи масса размягчается и плотно заполняет кожух. В процессе работы печи по мере сгорания и опускания электрода необожженная его часть постепенно приближается ко все более нагретым зонам печи; масса постепенно теряет летучие. Под контактные щеки (рис.234, 4) масса поступает еще пластичной, при дальнейшем нагреве на участке щек электродная масса спекается (коксуется); сопротивление электрода снижается. Из-под контактных щек электрод выходит с нормальными свойствами угольного электрода. По мере сгорания электрод опускается, а сверху с дозировочной площадки к железному кожуху приваривают, не выключая тока, новую секцию, которую наполняют электродной массой.

Допустимая плотность тока в самоспекающихся электродах составляет 5-8,5 А/мм2 (меньшее значение относится к малым электродам).

Электрододержатель предназначен для подвода тока к электроду, удержания электрода и его перемещения по вертикали. Электрододержатель состоит из несущего цилиндра 5, контактных щек 4 и нажимного кольца 8. Контактные щеки (их число четыре-десять) служат для подвода рабочего тока к электроду, их делают из высокотеплопроводной меди или ее сплавов и для обеспечения водяного охлаждения - полыми или с залитыми внутри трубками; с помощью медной трубки к щеке подводят ток и воду.

Несущий цилиндр выполнен из стального листа толщиной 10-16 мм и охватывает электрод по высоте до механизма перемещения электрода, причем верх цилиндра закреплен в этом механизме. Диаметр цилиндра превышает диаметр электрода на 150-200мм, и в зазор между ними сверху подают вентилятором воздух. К низу несущего цилиндра подвешены нажимное кольцо и контактные щеки (кольцо с помошью четырех водоохлаждаемых труб, а каждая щека на стальной тяге). Прижатие контактных щек к электроду осуществляют с помощью нажимных устройств 3 кольца 8, в которых размещены пружины или гидравлические зажимы.

Механизм перемещения, т.е. подъема и опускания электродов (на современных печах гидравлический и управляемый автоматизированной системой) обеспечивает по ходу плавки движение электрода вниз с тем, чтобы поддерживать длину дуги и электрический режим в заданных пределах и при необходимости перемещает электроды вверх. Механизм закреплен на междуэтажном перекрытии цеха, он движет несущий цилиндр и через него электрод.

По мере сгорания нижнего конца электрода возникает необходимость перепускания электрода, что осуществляют с помощью механизма перепускания, в котором зажат верх электрода. Механизм обеспечивает периодическое опускание электрода относительно несущего цилиндра или подъем цилиндра относительно электрода на 50-200 мм, что увеличивает длину рабочего конца электрода (располагаемого ниже контактных щек).

Электрическое оборудование ферросплавных печей схоже с аналогичным оборудованием дуговых сталеплавильных печей. Трехэлектродные ферросплавные печи оборудованы трехфазным понижающим печным трансформатором и иногда тремя однофазными трансформаторами, от которых ток при помогли короткой сети подается на каждый электрод; шестиэлектродные печи имеют три однофазных трансформатора, к которым электроды подсоединены попарно. Мощность трансформаторов разных печей находится в пределах 10-115 MB * А, вторичное напряжение - в пределах 130-250 В; сила тока на мощных печах достигает 100-110 кА. ферросплав восстановительный рафинировочный печь

Короткая сеть состоит из трех участков: шинный пакет идущий от трансформатора до гибкого участка, гибкий участок, токоподвод к контактным щекам. Шинный пакет выполняют из медных водоохлаждаемых труб или медных пластин, гибкую часть из гибких медных кабелей, токоподвод к щекам - в виде водоохлаждаемых медных труб.

Необходимо, чтобы длина короткой сети была минимальной; прокладку токоведущих шин или труб следует выполнять бифилярно, т.е. чтобы шины, обтекаемые токами различных направлений, были расположены возможно ближе друг к другу.

Вторичное напряжение, подаваемое на электроды в зависимости от конструкции переключающего устройства переключают как при отключенной печи, так и под нагрузкой. Оптимальный электрический режим на каждой ступени напряжения поддерживают с помощью автоматических регуляторов.

Рафинировочные ферросплавные печи имеют мощность 3,5 - 7 MB-А и служат для выплавки ферросплавов с низким содержанием углерода; они работают с выпуском сплава и шлака после окончания плавки. Они имеют круглую открытую ванну, а в остальном по своему устройству они ближе к дуговым сталеплавильным печам, на базе которых их конструируют.

Печи делают наклоняющимися, в связи с чем ванну крепят на люльке с механизмом ее наклона; ванна оборудована механизмом вращения, обеспечивающим ее круговое или возвратно-поступательное вращение в процессе плавки. Механизмы перемещения электродов и электрододержатели такие же, как в дуговых сталеплавильных печах; эти механизмы опираются не на люльку, а на пол цеха и при наклоне ванны электроды не наклоняются. Электроды применяют как самоспекающиеся, так и графитированные. Загрузка шихты такая же, как в восстановительных ферросплавных печах.

Шихту в ферросплавные печи загружают сверху из специальных печных карманов (бункеров) 1, расположенных на некоторой высоте над печью и оборудованных затворами. После открывания затвора материал по труботечке 2 ссыпается в печь.

В закрытые печи материалы подают двумя способами. Один из них предусматривает поступление материала из течки в воронку 3, расположенную концентрически вокруг электрода и далее в печь через кольцевой зазор между отверстием в своде и электродом. Во втором случае материал из труботечки попадает в печь через отверстие в своде.

В первом случае шихта располагается в печи конусом вокруг электродов, во втором - в стороне от электродов под загрузочными течками.

Рисунок 4 - Способы загрузки шихты в ферросплавные печи с помощью воронки (а) и через отверстие в своде (б)

В открытые печи шихта из печных карманов также подается по труботечкам (лоткам), но их можно направить в определенное место ванны. Применяют также бросковые машины, передвигающиеся по рельсам вокруг печи; рабочий орган машины - лоток (лопата), вмещающий ~25кг шихты, совершает бросковые движения.

Доставку материалов в печные карманы из шихтового отделения ферросплавного цеха осуществляют несколькими способами. В шихтовых отделениях сырые материалы проходят специальную переработку и подготовку: их дробят, сортируют на фракции нужной крупности, некоторые материалы промывают и сушат.д.алее во многих цехах материалы наклонным ленточным конвейером или скиповым подъемником доставляют в плавильный корпус цеха в бункеры, расположенные вблизи печей, а из них порциями с помощью дозировочной саморазгружающейся рельсовой тележки загружают в печные карманы. В ряде цехов материалы из дозировочных бункеров шихтового отделения доставляют системой конвейеров непосредственно в печные карманы.

2.2 Типы ферросплавных печей

Ферросплавные печи классифицируют по следующим признакам:

· по назначению -- восстановительными или рафинировочными;

· по конструкции -- открытыми, полузакрытыми и герметизированными, которые часто объединяют общим названием -- закрытые печи с дожиганием газа под сводом;

· по виду ванны -- со стационарными и с вращающимися ваннами;

· по форме ванны печи -- круглые, прямоугольные, треугольные и овальные;

· по способу выдачи из печи сплава и шлака -- неподвижные, наклоняющиеся (быстро и удобно выпускать сплав) и печи с выкатными ваннами.

Печи для рафинировочных процессов, предназначенные для выплавки рудоизвесткового расплава, рафинированных ферромарганца и феррохрома, ферровольфрама, а также других ферросплавов. По конструкции, печи для рафинировочных процессов, близки к электросталеплавильным дуговым печам, поэтому рассмотрим устройство рудовосстановительных печей для производства ферросплавов. В промышленности используются ферросплавные печи:

· по виду питающей сети -- однофазные и трехфазные; ведутся работы по использованию печей, работающих на токе пониженной частоты и на постоянном. Однофазные печи в настоящее время имеют ограниченное применение;

· по расположению электродов (трехфазные печи) -- в одну линию (прямоугольные печи) или в большинстве случаев с расположением электродов по вершинам треугольника (круглые или треугольные печи);

· по количеству электродов -- 1 (однофазные печи) и 3 (трехфазные). Печи большой мощности изготавливают и с шестью электродами.

Ферросплавы выплавляют преимущественно в мощных электрических печах специальной конструкции, получивших название ферросплавных печей. Эти печи пригодны для ряда электротермических производств: получения ферросплавов, электроплавки чугуна, производства карбида кальция, фосфора и др., и их часто объединяют под более общим названием рудовосстановительных или руднотермических печей. Ферросплавную печь характеризуют следующие параметры: номинальная мощность (мощность трансформатора) Р, кВА; производительность G, т/сут; интервал вторичных напряжений, В; максимальная сила тока в электроде, кА; удельный расход электроэнергии w, МДж (кВт ч/т); коэффициент мощности cos ф; электрический к.п.д.; диаметр электрода d3, мм (для прямоугольных электродов сечение b * l мм, где b и l -- соответственно ширина и длина поперечного сечения электрода, мм); диаметр распада электродов dp, мм (для прямоугольных печей расстояние между осями электродов одной фазы, мм); внутренний диаметр ванны dB, мм (для печей прямоугольной формы ширина В и длина L ванны, мм); глубина ванны h, мм; диаметр кожуха dKt мм (для прямоугольной печи ширина Вк и длина LK кожуха, мм); высота кожуха H, мм. По своему назначению Ферросплавные печи могут быть восстановительными или рафинировочными, а по конструкции -- открытыми и закрытыми, как со стационарными, так и с вращающимися ваннами. В зависимости от формы ванны печи бывают круглыми, прямоугольными и овальными. По тому, как выдаются из печи сплав и шлак, агрегаты могут быть неподвижными или наклоняющимися. Имеются также электропечи с выкатывающимися ваннами. Ферросплавные печи для рафинировочных процессов, предназначенные для выплавки рафинированных феррохрома и ферромарганца, ферровольфрама и других сплавов, по своему устройству стоят ближе к электросталеплавильным дуговым печам, на базе которых их конструируют. Основные элементы конструкций и оборудования таких печей были рассмотрены в разделе электропечи. Здесь же рассматривается устройство восстановительных печей для производства ферросплавов. В промышленности используют однофазные и трехфазные ферросплавные печи; ведутся работы по их использованию, работающих на постоянном токе. Однофазные ферросплавные печи в настоящее время строят только для специальных целей и они имеют очень ограниченное применение. Ванну однофазных агрегатов изготовляют цилиндрической формы с угольной подиной, в которую закладывают медные токоподводящие шины. Токоподвод подводят от трансформатора к шинам пода и к электроду. При производстве кристаллического кремния некоторое распространение получили однофазные печи с двумя электродами и ванной овальной формы. Трехфазные ферросплавные печи строят или с расположением электродов в одну линию (прямоугольные) или в большинстве случаев с расположением электродов по вершинам треугольника (круглые). Печи большой мощности изготовляют и с шестью электродами. Наиболее широко распространены в ферросплавной промышленности круглые трехфазные печи. В круглом агрегате, электроды которой расположены по треугольнику, тепло концентрируется достаточно хорошо для того, чтобы образующиеся под каждым электродом плавильные тигли соединились между собой. Это позволяет работать с одним выпускным отверстием. У таких ферросплавных печей минимальна по величине теплоотдающая поверхность и в них лучше используется тепло. При рациональной конструкции короткой сети и наличии установок искусственной компенсации реактивной мощности такие печи могут работать с высоким коэффициентом мощности, достигающим 0,95 (даже у агрегатов мощностью 40--60 MB А), и минимально выраженным явлением «мертвой» и «дикой» фаз.

Прямоугольные трехэлектродные ферросплавные печи характеризуются сравнительно низким cos ф печной установки и у них резко выражается явление «дикой» и «мертвой» фаз. К этому следует добавить, что образование под каждым электродом самостоятельного реакционного тигля вызывает необходимость работы на трех летках. В связи с этим в настоящее время такие печи для производства ферросплавов не строятся.

Рисунок 5. Прямоугольная закрытая шестиэлектродная ферросплавная печь 1-- механизм перепуска электродов, 2 -- механизм перемещения электродов, 3 -- короткая сеть, 4 -- кольцо зажима электродов, 5 -- электрод, 6 -- загрузочная воронка, 7 -- свод, 8 -- футеровка ванны , 9 ~ кожух , 10 -- фундамент.

Прямоугольные шестиэлектродные ферросплавные агрегаты с тремя однофазными трансформаторами , представляющие собой практически три однофазных печи с общей ванной, в значительной степени свободны от указанных выше недостатков прямоугольных печей и отличаются рядом достоинств, в частности при их использовании облегчается загрузка шихты, легче регулируется расстояние между электродами в зависимости от электрического сопротивления применяемой шихты, шихтовые материалы, особенно при производстве кремнистых сплавов, попадая в зону высоких температур, начинают оплавляться и спекаться, что резко ухудшает газопроницаемость шихты. Для восстановления нормального положения приходится прокалывать шихту жердями, металлическими прутьями или другими приспособлениями. Кроме того, в результате тех или иных технологических нарушений часто происходит сужение реакционного тигля и для его расширения приходится затрачивать очень много труда. Для устранения этих недостатков были предложены конструкции ферросплавных печей с вращающейся ванной, отличающиеся следующими преимуществами: улучшается ход технологического процесса, так как обеспечивается хорошая газопроницаемость шихты; Футеровка печи служит дольше; успешно разрушаются карборунд и шлаковый «козел» по всей площади ванны, что обеспечивает удлинение кампании агрегата, особенно при производстве кристаллического кремния и силикокальция; обеспечиваются ровный ход ферросплавной печи и разрушение настылей на колошнике и перегородок в подсводовом пространстве, что способствует устойчивой работе закрытой печи для восстановительных процессов.

Рисунок 6. Круглая закрытая ферросплавная печь с вращающейся ванной мощностью 16,5 мВА. 1 -- короткая сеть, 2 -- ванна, 3 -- опорная плита, 4 -- механизм вращения ванны, 5 -- аппарат для прожига летки, 6 -- свод, 7 -- токоподвод, 8 -- гидроподъемник, 9 -- устройство для перепуска электродов

В рафинировочных ферросплавных печах также в ряде случаев целесообразно применять вращающиеся ванны, поскольку при этом, например, обеспечивается равномерное вычерпывание сплава при производстве ферровольфрама, а при производстве рафинированного феррохрома повышается стойкость футеровки печи. Отечественный опыт показывает, что вращение ванны позволяет повысить ее производительность на 3--6% и снизить удельный расход электроэнергии на 4--5% при одновременной значительной экономии сырых материалов. В целях улучшения показателей процесса, защиты воздушного бассейна, утилизации газов, теплота сгорания которых составляет около 10,9 Мдж/м3 (2600 ккал/м3), и улучшения условий труда и службы оборудования в последнее время в производстве ферросплавов стали широко применять закрытые ферросплавные печи. Эти агрегаты (рис. 1) в основных деталях аналогичны открытым печам, но у них дополнительно имеется свод. Длина рабочего конца электродов у закрытых печей несколько больше, чем у открытых, что сказывается на увеличении потерь электроэнергии. Но в то же время в закрытых ферросплавных печах резко снижается индуктивное сопротивление короткой сети, так как шихтованный пакет шин доводится почти до центра свода печи.

3. Принцип работы ферросплавной печи

Чтобы шихта в печи плавилась равномерно и во избежание образования спеков, некоторые печи оборудуются механизмом вращения, для чего в конструкции предусматриваются ходовые колеса и кольцевые рельсы. Вращение происходит только в пределах определенного сектора (обычно не более 130°) и является реверсивным.

Свод печи разделен на 6 секций с циркулирующей в них водой. Снизу он покрыт слоем жаростойкого бетона. В отличие от самой печи, свод установлен неподвижно. В нем имеется ряд отверстий для противовзрывных люков, загрузочных воронок и газоотводных трубок. Плавильный процесс в печи проходит постоянно. Чтобы электроды все время находились погруженными в шихту, через загрузочные воронки материал (агломерат, флюсы, окатыши, топливо) подается порциями (колошами). На колошниках (верхней части агрегата) постоянно должна лежать шихта в виде конуса вокруг каждого электрода.

Электрическая дуга, проходя между электродами, создает под слоем шихты зону реакции, имеющую форму стакана. Его стенки оплавлены при температуре около 2000°С. Внутри «стакана» происходит реакция восстановления при температуре 2100-2200°С. Здесь содержимое находится в жидкой и газообразной форме. Тепловая энергия поступает благодаря электрической дуге. При этом она расходуется не только на плавление продуктов реакции, но и на прогревание шихты выше реакционной зоны. Часть тепла отводится вместе с газообразными продуктами, в том числе с парами оксидов и металлов.

Благодаря тому, что над зоной реакции находится примерно метровый слой шихты, теплоту газов удается эффективно использовать на ее нагревание. Газы, которые отводятся из рабочего пространства печи, после их очистки от пыли называют ферросплавными. Неочищенные газы называются колошниковыми. Когда шихта поступает непосредственно в зону реакции, она уже достаточно хорошо прогрета газообразными продуктами и из нее удалены все летучие компоненты. Когда готового металла и шлака набирается определенное количество, они выгружаются из печи с помощью сливного желоба.

Конструкция ферросплавных печей такова, что непосредственно подсчитать, какое количество металла выплавлено, невозможно. Потому расчеты ведут приблизительно исходя из мощности агрегата и количества энергии, требуемой для выплавки тонны ферросплава. Например, мощность печи составляет 1,5 МВт. На изготовление 1 тонны продукта необходимо 3 МВт*час электроэнергии. Нужно определить, сколько металла будет получено за 8 часов работы. Для этого производятся простые расчеты: на выплавку 1 тонны металла нужно 3/1,5=2 часа. За 8 часов будет выплавлено 8/2=4 т ферросплава. Температура плавления различных ферросплавных материалов отличается. Например, для ферромарганца она составляет 1220-1260°С. Разливается он на ленточных машинах при температуре 1340-1380°С. Печной выпуск имеет температуру 1500-1600°С. Когда в ферросплавной печи восстанавливаются окислы, происходит выделение значительного количества окиси углерода:

MnO+C=Mn+CO-288,288 кДж/моль

На сегодня актуальным остается вопрос эффективного использования колошникового газа. Иногда он идет на обжиг известняка или же как топливо для котельных. Но часто он просто сжигается в свечах над цехом. Ферромарганцевый колошниковый газ имеет приблизительно такой состав (в объемных долях):

СО -- 80…90%; СО2 -- 2…10%; Н2 -- 2…6%; СН4 -- 0…5%; N2 -- 0…3%; О2 -- 0,04…0,08%. Такой газ обладает достаточно высокой теплотой сгорания (9-10 МДж/м3).

Заключение

Ферросплавные печи. Ферросплавы получают, в основном, в специальных дуговых печах, которые могут быть круглыми или прямоугольными открытого, закрытого или герметичного типа.

Открытая ферросплавная печь (без свода) представляет собой емкость с тремя электродами, сваренную из толстого листового железа, футерованную изнутри огнеупорными материалами. При выплавке кремнистых сплавов и углеродистого ферромарганца футеровку выкладывают из угольных блоков, а для выплавки феррохрома применяют магнезитовую футеровку. Фактически футеровкой открытых печей является гарнисаж, образующийся из застывших руды и сплава.

Основными недостатками открытых ферросплавных печей являются потери больших количеств теплоты через открытый колошник и загрязнение цеха отходящими газами, что затрудняет работу оборудования и обслуживающего персонала. Эти недостатки устраняются при работе закрытых печей, которые снабжены сводом из жаропрочного железобетона или из шамотного фасонного кирпича в каркасе из водоохлаждаемых труб. Печи закрытого типа имеют уплотнение в виде песочного затвора между сводом и ванной.

Открытые и закрытые круглые ферросплавные печи могут иметь вращающую ванну для предотвращения зависания шихты и образования настылей. Вращение ванны реверсивное, в секторе 130є происходит со скоростью один оборот за 35-100 ч. При повороте ванны свод остается неподвижным.

Ферросплавные печи работают в непрерывном режиме. Сплав из них выпускают по мере надобности отдельными порциями через специальные летки.

Шихту загружают в открытые печи сверху через колошник отдельными порциями, а в закрытые - через специальные загрузочные устройства в своде. Применяются три варианта загрузки шихты в закрытые печи: в кольцевое пространство вокруг электродов, при этом создается уплотнение электрода в своде; в воронки, расположенные в своде симметрично электродам, при этом воронки доверху заполняются шихтой; через трубы - течки наглухо заделанные в своде.

Ферросплавные печи трехфазные с тремя (круглые печи) или шестью ( прямоугольные печи) сомоспекающимися электродами. Трехэлектродные печи имеют по одному трансформатору, от которого через короткую сеть ток подается на каждую фазу, а у шестиэлектродных печей по три трансформатора - по одному на два электрода.

Рассмотрим технологию получения ферросплавов на примере ферросилиция, углеродистого ферромарганца и ферротитана, получаемого металлотермическим способом.

Список литературы

1. Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия - М.: Академкнига, 2002

2. Поволоцкий Д.Я., Рощин В.Е., Мальков Н.В. Электрометаллургия стали и ферросплавов. М.: Металлургия, 1995

3. Севрюков Н. Н, Кузьмин Б.А., Челищев Е.В. Общая металлургия. - М.: Металлургия, 1976

4. Тарасов А.В., Уткин Н.И. Общая металлургия. Учебник для вузов. - М.: Металлургия, 1997

Размещено на Allbest.ru

...

Подобные документы

  • Описание работы плавильного цеха Аксуского завода ферросплавов. Выбор типа и мощности электрических печей. Процесс оплавления шихтовых материалов на производстве кремнистых сплавов. Расчет полезной мощности проектируемой печи и количества мостовых кранов.

    курсовая работа [36,7 K], добавлен 11.05.2012

  • Виды печей для автогенной плавки. Принцип работы печей для плавки на штейн. Тепловой и температурный режимы работы печей для плавки на штейн. Принцип работы печей для плавки на черновую медь. Деление металлургических печей по технологическому назначению.

    курсовая работа [93,9 K], добавлен 04.12.2008

  • Основные характеристики и конструкция трубчатых вращающихся печей. Тепловой и температурный режимы работы вращающихся печей. Основы расчета ТВП. Сущность печей для окислительного обжига сульфидов. Печи глиноземного производства (спекание и кальцинация).

    курсовая работа [693,6 K], добавлен 04.12.2008

  • Принцип работы и назначение электроплавильных печей, их разновидности и применение для выплавки конструкционных сталей ответственного назначения. Спецификация и отличительные особенности печей сопротивления, дуговых и индукционных, плазменных печей.

    реферат [426,9 K], добавлен 04.06.2009

  • Характеристика печей с электрическим нагревом для расплавления металлов и сплавов. Тепловой баланс плавильных агрегатов. Классификация тепловой работы печей. Физико-химические и эксплуатационные свойства огнеупорных и теплоизоляционных материалов.

    реферат [16,6 K], добавлен 01.08.2012

  • Схема производства электрической меди. Конструктивные особенности ванных плавильных печей. Материальный и тепловой баланс рабочего пространства печи. Обоснование использования энергии акустического поля для интенсификации тепломассообменных процессов.

    курсовая работа [148,6 K], добавлен 29.05.2014

  • Назначение, принцип действия и классификация трубчатых печей: классификация, технологические и конструктивные признаки; механизм передачи тепла, фактор эффективности процесса. Характеристики и показатели работы трубчатых печей, их конструкции и эскизы.

    реферат [7,4 M], добавлен 01.12.2010

  • Конструкция методических печей, их классификация. Преимущества камерных печей, особенности работы горелок. Общие принципы выбора рациональных методов сжигания топлива в печах. Работа устройств для сжигания газа (горелок) и жидкого топлива (форсунок).

    курсовая работа [60,1 K], добавлен 05.10.2012

  • Общая характеристика нагревательных печей. Печи для нагрева слитков (нагревательные колодцы). Тепловой и температурный режимы. Режимы термической обработки. Определение размеров печей. Печи для термической обработки сортового проката. Конструкция печей.

    курсовая работа [44,3 K], добавлен 29.10.2008

  • Особенности работы газовых мартеновских и двухванных и регенеративной системы подовых печей. Характеристика дымоотводящих и воздухоподающих трактов. Основные способы и режимы отопления. Совершенствование регенеративной системы мартеновских печей.

    реферат [1,8 M], добавлен 24.10.2012

  • Общая характеристика установок плазменного нагрева. Принцип работы плазматрона косвенного и прямого действия. Характеристики плазмообразующих газов. Характеристика плазменно-дуговых печей с кристаллизатором конструкции института электросварки им. Патона.

    курсовая работа [250,7 K], добавлен 04.12.2008

  • Выбор конструкции методических печей в зависимости от типа стана и вида топлива. Определение производительности печей, толщины применяемой заготовки, температуры нагрева металла, его сортамент. Расчет топливосжигающих устройств, применение рекуператоров.

    курсовая работа [1,6 M], добавлен 21.08.2012

  • Классификация металлургических печей по принципу теплогенерации, технологическому назначению и по режиму работы. Тепловая работа барабанно-вращающих печей. Виды, состав твердого топлива и их особенности. Характеристика различных условий процесса горения.

    курсовая работа [711,4 K], добавлен 12.04.2015

  • Конструкция и принцип действия трубчатых печей. Изменение механических свойств металла печных труб в процессе эксплуатации. Оптимизация конструкции цилиндрического змеевика. Модель напряжено-деформированного состояния с учетом термосилового нагружения.

    дипломная работа [809,5 K], добавлен 16.09.2017

  • Ферромарганец как сплав марганца и железа, применение в металлургии. Главное предназначение электродной массы. Щебень и песок из шлаков марганцевых ферросплавов. Материал абразивный из ферросплавных шлаков. Флюсы для электрошлакового переплава сталей.

    презентация [692,7 K], добавлен 08.06.2011

  • Функции и классификация индукционных промышленных печей по принципу тепловыделения. Установка электро-лучевого нагрева. Применение электрического нагрева и его особенности. Расчет эквивалентного сопротивления и коэффициента полезного действия индуктора.

    курсовая работа [774,1 K], добавлен 01.09.2014

  • Продукт доменной плавки. Выплавка чугуна из железных руд. Доменная печь. Качественный уровень работы. Профиль рабочего пространства печи. Футеровка колошника. Теплообмен и показатели работы доменных печей. Технико-экономическая оценка доменных печей.

    курсовая работа [30,1 K], добавлен 04.12.2008

  • Анализ современного оборудования хлебопекарных печей. Описание конструкции тупиковой конвейерной люлечно-подиковой печи средней мощности с электрообогревом. Принцип действия и режим работы. Определение габаритных размеров и установленной мощности.

    курсовая работа [4,1 M], добавлен 16.02.2011

  • Технологическое оснащение процесса: конструкции, особенности печей; оборудование для коксовой батареи. Состав оборудования анкеража. Схема армирования кладки коксовых печей. Характеристика химических, физико-химических и физико-механических свойств кокса.

    реферат [1,7 M], добавлен 15.06.2010

  • Тепловая работа шахтных печей цветной металлургии. Плавка кусковой руды, брикетов, агломерата и различных промежуточных продуктов металлургического производства. Шахтные печи с режимом работы на базе топочного процесса. Особенности теплообмена в слое.

    курсовая работа [38,8 K], добавлен 04.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.