Достоинства и недостатки сварных металлических конструкций

Классификационная характеристика сварных конструкций, применяемых в строительстве и машиностроении. Основные марки углеродистых и низколегированных сталей. Использование полимеров и композиционных материалов. Суть работы железа при переменных нагрузках.

Рубрика Производство и технологии
Вид шпаргалка
Язык русский
Дата добавления 11.02.2017
Размер файла 393,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Достоинства и недостатки сварных металлических конструкций

Основными достоинствами металлических конструкций являются: высокая несущая способность -- возможность воспринимать значительные нагрузки при относительно небольших сечениях вследствие значительной прочности металла; высокая надежность, так как конструкции могут быть рассчитаны достаточно точно, легкость и транспортабельность. Металлические конструкции по сравнению с конструкциями из камня, железобетона и дерева наиболее легкие. Они почти в 4 раза легче железобетонных и часто легче деревянных (при использовании на одинаковые нагрузки), а раз металлические конструкции наиболее легкие при значительной плотности металла, то они и более транспортабельные и легко монтируемые; сплошность материала и соединений, позволяющая осуществлять водо- и газонепроницаемые конструкции; индустриальность, достигаемая изготовлением конструкций на специализированных заводах. Металлические конструкции удобны в эксплуатации, так как легко могут быть усилены при увеличении нагрузок. Они наиболее полно используются при реконструкциях и легко ремонтируются. К недостаткам металлических конструкций относится низкая коррозиестойкость и огнестойкость. Эти недостатки иногда требуют применения специальных коррозиестойких сталей и специальных защитных покрытий, предохраняющих их от коррозии и относительно высоких (более 400 °С) температур. Все конструкции, как правило, должны быть доступны для наблюдения, очистки, окраски, а также не должны задерживать влагу. Замкнутые профили должны быть герметизированы.

Стальные строительные конструкции изготовляют по рабочим чертежам КМД в соответствии с требованиями СНиП III-18-75, СНиП II-23-81 и других нормативных документов и стандартов на конструкции. В технической документации на сварные конструкции должны указываться: класс и марка стали; способ сварки; рекомендуемые к использованию сварочные материалы. Для оценки достоинств и недостатков строительных металлических конструкций необходимо учитывать и их экономическую эффективность в зависимости от условий монтажа и эксплуатации возводимых зданий и сооружений.

Стоимость конструкций складывается из стоимости металла для изготовления конструкций (60--70 %), стоимости изготовления металлоконструкций на заводе (15--20 %) и стоимости монтажа (10--15 %). В стоимость металлических конструкций входят также транспортные расходы (3--7 %) и стоимость проектирования (3--5 %). Цена применяемого для конструкций металла пропорциональна его массе. Стоимость изготовления и монтажа конструкций также пропорциональна их массе, поэтому оптимальная, наиболее экономичная конструкция -- это конструкция, масса которой минимальна. Следовательно, самое эффективное средство снижения стоимости металлоконструкций -- это уменьшение расхода металла. Значительного снижения массы металлических конструкций достигают за счет использования сталей повышенной прочности, трубчатых профилей для несущих элементов и профилированного листа для ограждающих конструкций. Основным мероприятием по уменьшению стоимости изготовления металлических конструкций является снижение трудоемкости их изготовления. Наивысшая производительность труда достигается на специализированных предприятиях, оснащенных специальным оборудованием. Стоимость монтажа сокращается с ростом его скорости, а скорость увеличивается при сокращении числа элементов, из которых собирается сооружение, и при упрощении соединений. Основным технико-экономическим показателем для металлических конструкций является приведенная стоимость, учитывающая не только себестоимость, но и эксплуатационные расходы и капитальные вложения и сроки возведения сооружения. По приведенной стоимости сравниваются конструкции из различных материалов с неодинаковой степенью капитальности, резко различные по эксплуатационным расходам и по продолжительности возведения.

Легкие металлические конструкции (ЛМК) наиболее полно отвечают требованиям основных технико-экономических показателей металлических конструкций. Отличительной особенностью этих конструкций по сравнению с обычными является уменьшение расхода металла на каждый квадратный метр закрытой площади на 25-- 30 %. Используются они в зданиях с легкими ограждающими конструкциями, а снижение массы кровли и стен достигается применением легких утеплителей. Легкие металлические конструкции (ЛМК) изготовляют на специализированных заводах из тонкостенных стальных или алюминиевых холодногнутых профилей различной формы, круглых и прямоугольных труб, прокатных профилей. Для их изготовления применяют, как правило, высокопрочные стали. ЛМК состоят из несущих, ограждающих и других элементов здания (связи, фахверки, переплеты, двери, ворота и т. п.).

Они обычно поставляются комплектно и предназначены для монтажа крупными блоками, т. е, самым высокопроизводительным способом. Конструкции комплектной поставки изготовляются для зданий с пролетами 18--24 м, обслуживаемых подвесным крановым оборудованием грузоподъемностью до 5 т или опорными кранами грузоподъемностью до 20 т. В качестве ограждающих конструкций применяют трехслойные стеновые и кровельные панели с эффективными теплоизоляционными наполнителями. Экономическая эффективность ЛМК обусловлена снижением металлоемкости, поточно-автоматизированной технологией изготовления, высокой скоростью монтажа.

Наиболее эффективно их применение в труднодоступных районах, не имеющих развитой базы строительной индустрии. Наиболее эффективными из ЛМК являются покрытия со стропильными фермами из круглых и прямоугольных труб, рамные конструкции со сквозным ригелем и тонкостенными прогонами. В СССР выпускаются ЛМК из круглых и прямоугольных труб, с тонкостенными прогонами, с колоннами постоянного и переменного сечения.

2. Классификационная характеристика сварных конструкций, применяемых в строительстве и машиностроении

Классификация сварных конструкций

Сварные конструкции делят на стержневые, листовые и машиностроительные.

Стержневые конструкции - каркасы строительных зданий, специальные конструкции (мачты, каркаса ЛА).

Листовые конструкции - резервуары, газгольдеры, котлы, корпуса ЛА.

Машиностроительные конструкции - валы рамы, станины и др.

Любая деталь, узел, конструкция, сооружение должны отвечать требованиям работоспостобности и надежности.

Работоспособность. Работоспособностью называют состояние объектов, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Надежность. Под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств. Любая современная машина или прибор, какими бы высокими характеристиками они не обладали, будут обесценены при ненадежной работе. Надежность зависит от всех этапов создания и эксплуатации изделий. Отказы в основном связаны с разрушениями (статическими, малоцикловыми и усталостными), изнашиванием и недостаточной жесткостью. Поэтому задачи обеспечения прочности, жесткости и износостойкости являются основными в проблеме надежности.

Работоспособность и надежность деталей машин оцениваются определенными условиями и показателями -критериями. Важнейшими из них являются:

1) прочность - способность детали сопротивляться разрушению;

2) жесткость - способность деталей сопротивляться изменению формы, является одной из характеристик работоспособности деталей машин;

3) износостойкость, коррозионная стойкость, виброустойчивость и др.

При расчете и проектировании деталей обычно используют один или два критерия, а остальные критерии удовлетворяются заведомо или не имеют практического значения для рассматриваемых объектов.

Расчетная и конструкционная прочность

Конструкционная прочность - прочность, определенная путем испытаний конструкции или ее имитатора с учетом материала вида нагружения, условий эксплуатации и технологии ее изготовления.

Кроме экспериментальных методов на прочность используют методы расчетные.

Расчетная прочность - прочность найденная расчетом, путем использования простейших характеристик материала и аппарата теории связывающего эти характеристики с величиной прочности.

Запас прочности - отношение одноименных величин одна из которых соответствует предельному состоянию, а другая состоянию эксплуатации.

1. Основные марки углеродистых, низколегированных сталей, применяемых для изготовления сварных конструкций в строительстве, машиностроении, приборостроении.

В строительстве в основном применяют углеродистые стали обыкновенного качества, качественные конструкционные углеродистые стали и низколегированные конструкционные стали.

Углеродистые стали обыкновенного качества содержат углерод в количестве 0,06 - 0,62 %, а также примеси кремния и марганца в нормальных концентрациях. При обозначении марок стали могут быть указаны: группы поставки (А - по механическим свойствам, Б - химическому составу, В - механическим свойствам с дополнительными требованиями по химическому составу); метод производства (М - мартеновский, Б - бессемеровский, К - кислородно-конверторный); дополнительные индексы (сп - спокойная сталь, пс - полуспокойная сталь, кп - кипящая сталь). В группе А обозначение способа производства часто опускается, однако имеется в виду сталь мартеновская, а при отсутствии дополнительного индекса подразумевается сталь спокойная.

Углеродистую сталь обыкновенного качества группы А изготавливают марок: Ст 0, Ст 1, Ст 2, Ст 3, Ст 4, Ст 5, Ст 6, Ст 7; сталь группы Б - тех же марок, что и сталь группы А, но перед маркой стали ставят букву Б (например, Б Ст 0, Б Ст 1 кп); сталь группы В - В Ст 2, В Ст 3, В Ст 4 и В Ст 5. По мере увеличения номера повышаются содержание углерода в стали, ее прочность и твердость, но снижаются пластичность и ударная вязкость.

Качественная конструкционная углеродистая сталь поставляется по химическому составу и механическим свойствам и выплавляется в мартенах и кислородных конверторах. Установлены марки этой стали: 05 кп, 08 кп, 08 пс, 10 кп, 10 пс, 15 кп, 15 пс, 15, 20 кп, 20 пс, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60. Две цифры в марках показывают среднее содержание углерода в сотых долях процента. В маркировке легированной стали указывают названия легирующих добавок и их содержание. Приняты буквенные обозначения легирующих элементов: С - кремний (при концентрации выше нормальной), Г - марганец (концентрации выше нормальной), Х - хром, Н - никель, М - молибден, В - вольфрам, Т - титан и др. Первые две цифры марки указывают среднее содержание углерода в сотых долях процента. Одна цифра в начале марки обозначает среднее содержание углерода в десятых долях процента. Если в начале марки нет цифры, то количество углерода составляет 1 % и выше. Цифры, следующие за буквами, показывают среднее содержание данного элемента в процентах; если за буквой отсутствует цифра, то содержание данного элемента около 1 %. Буква А в конце марки обозначает высококачественную сталь, содержащую меньше серы и фосфора. Например, 35 Х Н 3 М А - это легированная сталь, высококачественная, с содержанием углерода 0,35 %, хрома и молибдена - около 1 %, никеля - 3 %; Г 13 - это легированная сталь с содержанием углерода 1 % и выше, марганца - 13 %.

Низкоуглеродистые и низколегированные стали широко применяют для изготовления металлических конструкций мостов, опор, транспортных галерей, элементов каркаса зданий и сооружений, армирования железобетонных конструкций и др. Элементы металлических конструкций получают в горячем или холодном состоянии различными способами: прокатом, ковкой, волочением, штамповкой, прессованием (металлических порошков). После этого часто производят термическую или механическую обработку стали с целью ее упрочнения.

К термической обработке стали относят: а) закалку, б) отпуск, в) отжиг, г) нормализацию, д) обработку холодом, е) химико-термическую обработку (цементацию, азотирование, хромирование). Для низкоуглеродистых сталей термическая обработка повышает предел прочности на 20- 25 %, что снижает расход стали на 13-18 %. Экономическую эффективность металлических конструкций повышают, применяя высокопрочные стали (600-1000 МПа). Для этого их легируют карбидообразующими элементами (например, хромом, молибденом, вольфрамом, ниобием).

3. Цветные сплавы применяемые для изготовления сварных конструкций. Их состав и основные свойства. Применение полимеров и композиционных материалов в сварных конструкциях

Цветные металлы и сплавы

Сплавы цветных металлов применяют для изготовления деталей, работающих в условиях агрессивной среды, подвергающихся трению, требующих большой теплопроводности, электропроводности и уменьшенной массы.

Медь-- металл красноватого цвета, отличающийся высокой теплопроводностью и стойкостью против атмосферной коррозии. Прочность невысокая: ав = 180... ...240 МПа при высокой пластичности б>50%.

Латунь -- сплав меди с цинком (10...40 %), хорошо поддается холодной прокатке, штамповке, вытягиванию <7ь = 25О...4ОО МПа, 6=35..15%. При маркировке латуней (Л96, Л90, ..., Л62) цифры указывают на содержание меди в процентах. Кроме того, выпускают латуни многокомпонентные, т. е. с другими элементами (Мп, Sn, Pb, Al).

Бронза -- сплав меди с оловом (до 10%), алюминием, марганцем, свинцом и другими элементами. Обладает хорошими литейными свойствами (вентили, краны, люстры). При маркировке бронзы Бр.ОЦСЗ-12-5 отдельные индексы обозначают: Бр -- бронза, О -- олово, Ц -- цинк, С --свинец, цифры 3, 12, 5---содержание в процентах олова цинка, свинца. Свойства бронзы зависят от состава: бв=15О...21О МПа, б=4...8%, НВ60 (в среднем).

Алюминий -- легкий серебристый металл, обладающий низкой прочностью при растяжении -- аа = 80... ...100 МПа, твердостью -- НВ20, малой плотностью -- 2700 кг/м3, стоек к атмосферной коррозии. В чистом виде в строительстве применяют редко (краски, газооб-разователи, фольга). Для повышения прочности в него вводят легирующие добавки (Мп, Си, Mg, Si, Fe) и используют некоторые технологические приемы. Алюминиевые сплавы делят на литейные, применяемые для отливки изделий (силумины), и деформируемые (дюралюмины), идущие для прокатки профилей, листов и т.п.

Силумины -- сплавы алюминия с кремнием (до 14%), они обладают высокими литейными качествами, малой усадкой, прочностью ои = 200 МПа, твердостью НВ50...70 при достаточно высокой пластичности 6== =5...10 %. Механические свойства силуминов можно существенно улучшить путем модифицирования. При этом увеличивается степень дисперсности кристаллов, что повышает прочность и пластичность силуминов.

Дюралюмины -- сложные сплавы алюминия с медью (до 5,5 %), кремнием (менее 0,8%). марганцем (до 0,8 %), магнием (до 0,8 %) и др. Их свойства улучшают термической обработкой (закалкой при температуре 500...520°С с последующим старением). Старение осуществляют на воздухе в течение 4...5 сут при нагреве на 170°С в течение 4...5 ч.

Термообработка алюминиевых сплавов основана на дисперсном твердении с выделением твердых дисперсных частиц сложного химического состава. Чем мельче частицы новообразований, тем выше эффект упрочнения сплавов. Предел прочности дюралюминов после закалки и старения составляет 400...480 МПа и может быть повышен до 550...600 МПа в результате наклепа при обработке давлением.

Титан за последнее время начал применяться в разных отраслях техники благодаря ценным свойствам: высокой коррозионной стойкости, меньшей плотности (4500 кг/м3) по сравнению со сталью, высоким прочностным свойствам, повышенной теплостойкости. На основе титана создаются легкие и прочные конструкции с уменьшенными габаритами, способные работать при повышенных температурах.

4. Применяемый сортамент проката для изготовления сварных стальных конструкций и конструкций из алюминиевых сплавов

Сортаментом называют каталоги (ГОСТ) поставляемых металлургическими заводами листов и профилей с указанием их формы, размеров, геометрических характеристик, массы. Сортамент разработан на основе результатов многолетнего развития металлических конструкций и работ по теории сортамента.

Характеристика основных профилей сортамента

Первичным элементом стальных конструкций является прокатная сталь, которая выплавляется на металлургических заводах. Прокатная сталь, применяемая в стальных конструкциях, делится на две группы; сталь листовая -толстая, тонкая и универсальная; сталь профильная -уголки, швеллеры, двутавры, тавры, трубы и т. п. Изготовленные на заводах металлических конструкций различные элементы конструкции (балки, колонны, фермы и т. п.) собираются на строительных площадках в конструктивные комплексы-сооружения. Наличие готовых прокатных элементов и машинная их обработка на заводах обеспечивают индустриальное изготовление конструкций.

Сталь листовая

Листовая сталь широко применяется в строительстве, она классифицируется следующим образом:

сталь толстолистовая (ГОСТ 19903-74 с изм.). Сортамент этой стали включает листы толщиной от 4 до 160 мм, шириной от 600 до 3800 мм. Однако ходовая ширина не превышает 2400 мм. Листовая горячекатаная сталь поставляется в листах длиной 6-12 м и толщиной до 160 мм или в рулонах толщиной от 1,2 до 12 мм и шириной от 500-2200 мм. Листы толщиной от 6 до 26 мм имеют градацию по толщине через 1 мм, далее через 2, 3, 5 и 10 мм. Толстая листовая сталь имеет широкое применение в листовых конструкциях, а также в элементах сплошных систем (балках, колоннах, рамах и т. п.);

сталь тонколистовая толщиной до 4 мм прокатывается холодным и горячим способами. Холоднокатаная сталь (ГОСТ 19904-74, с изм.) значительно дороже горячекатаной (ГОСТ 19903-74, с изм.). Тонкая листовая сталь применяется при изготовлении гнутых и штампованных тонкостенных профилей, для кровельных покрытий и т. п. Из холоднокатаной, оцинкованной, рулонированной стали изготовляются профилированные настилы;

Уголковые профили

Уголковые профили прокатывают в виде равнополочных (ГОСТ 8509-72 с изм.) и неравнополочных (ГОСТ 8510-72 с изм.) уголков Сортамент уголков весьма обширен: от очень малых профилей с площади сечения 1-1,5 см2 до мощных профилей с площадью сечения 140 см2. Полки уголков имеют параллельные грани, что облегчает конструирование. Широкое применение уголки имеют в легких сквозных конструкциях.

Швеллеры

Геометрические характеристики сечения швеллеров определяются его номером, который соответствует высоте стенки швеллера (в сантиметрах). Сортамент (ГОСТ 8240-72 с изм.) включает швеллеры от № 5 до № 40 с уклоном внутренних граней полок. Уклон внутренних граней полок затрудняет конструирование. В ГОСТ входят и швеллеры с параллельными гранями полок, сечение которых имеет лучшие расчетные характеристики относительно осей х и у и более конструктивны, так как упрощают болтовые крепления к полкам. Швеллеры применяются в мощных стержневых конструкциях (мостах, большепролетных фермах и т. п.), а также в колоннах, связях и кровельных прогонах.

Стержни из швеллеров, работающие на осевую силу, компонуются в жесткие относительно осей х и у симметричные сечения.

Двутавры

Двутавры-основной балочный профиль-имеют наибольшее разнообразие по типам , которые соответствуют определенным областям применения.

Балки двутавровые обыкновенные (ГОСТ 8239-72 с изм.) так же, как и швеллеры имеют уклон внутренних граней полок и обозначаются номером, соответствующим их высоте в сантиметрах. В сортамент входят профили от № 10 до № 60. Стенки у крупных двутавров имеют минимальную толщину, по условиям устойчивости достигают 1/55 высоты двутавра. Чем тоньше стенка, тем выгоднее сечение балки при работе ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости. Благодаря сосредоточению материала в полках двутавры имеют большую жесткость относительно оси х, но небольшая ширина полок делает их малоустойчивыми относительно оси у. Двутавры применяются в изгибаемых элементах (балках), а также в ветвях решетчатых колонн и различных опор, где для их устойчивости применяются составные сечения .

Балки двутавровые широкополочные имеют параллельные грани полок. Широкополочные двутавры прокатываются трех типов: нормальные двутавры (Б), широкополочные двутавры (Ш), колонные двутавры (К). Высота балочных профилей (Б) и (Ш) достигает 1000мм при отношениях ширины полок к высоте от b : h = 1 : 1,65 (при малых высотах) до b : h = 1 : 1,25 (при больших высотах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое 1:1, что придает им устойчивость относительно оси у.

Тонкостенные профили

Тонкостенные двутавры (ТУ 14-2-205-76) и швеллеры (ТУ 14-2-204-76) прокатываются на непрерывном стане с особо тонкими стенками и полками, что делает их экономичнее обычных прокатных профилей на 14-20 %. Тонкостенные профили имеют высоту от 120 до 300 мм и полки с параллельными гранями. Применяются тонкостенные профили в балках площадок, фахверках, в легких перекрытиях и покрытиях.

Трубы

Стальные трубы, применяемые в строительстве, бывают круглые-горячекатаные (ГОСТ 8732-78 с изм.) и электросварные (ГОСТ 10704-76 с пзм.), прямоугольного и квадратного сечения-электросварные (ТУ36-2287-80 и ТУ14-2-361-79).

Трубчатые профили особенно экономичны при применении в сжатых элементах благодаря наибольшему значению радиуса инерции при заданной площади сечения.

Горячекатаные бесшовные трубы имеют диаметр от 25 до 550 мм с толщиной стенок от 2,5 до 75 мм. Эти трубы применяются главным образом в конструкциях радио- и телевизионных опор.

Круглые электросварные трубы имеют диаметр от 8 до 1620 мм с толщиной стенок от 1 до 16 мм. Эти трубы применяются в элементах радио- и телевизионных опор и в конструкциях покрытий в особенности в зданиях с агрессивной средой.

Сортамент электросварных труб предусматривает профили квадратного сечения размером от 80 до 180 мм и прямоугольного сечения размером от 60Х100 до 140Х180 мм с. толщиной профилей от 3 до 8 мм. Эти трубы применяются в строительных конструкциях под легкую кровлю, в фахверках стен, переплетах, витражах и т. п.

Холодногнутые профили

Гнутые профили изготовляются из листа лепты или полосы толщиной от 1 до 8 мм. По индивидуальным заказам и техническим условиям металлургических заводов можно получить гнутые профили самой разнообразной формы. Наиболее употребительны равнонолочные и неравнополочные уголки, швеллеры, с-образные, зетовые, замкнутые квадратного и прямоугольного сечения. Основная область применения- в легких конструкциях покрытий зданий, где они, заменяя прокатные профили, могут дать экономию металла до 10 %.

Различные профили и материалы, применяемые в строительстве

В металлических конструкциях в сравнительно меньшем объеме применяются профили других конфигураций и материалы разного назначения (стальные канаты и проволока): профили для оконных и фонарных переплетов (ГОСТ 7511-73); крановые рельсы (ГОСТ 4121-76 с изм.); двутавровые профили для путей подвесного транспорта (ГОСТ 19425-74 с изм.); стальные канаты и высокопрочная проволока для висячих и вантовых конструкций покрытий зданий и сооружений; висячих и вантовых мостов, в антенно-мачтовых сооружениях и в предварительно напряженных покрытиях; оцинкованный профилированный настил (ГОСТ 14918-80 с изм.).

Профили из алюминиевых сплавов

Строительные профили из алюминиевых сплавов получают прокаткой, прессованием или литьем. Листы, ленты и плиты прокатываются в горячем или холодном состоянии. Листы прокатывают толщиной до 10,5 мм, шириной до 2000 мм и длиной до 7 м. Фасонные профили, в том числе и полые (трубчатые), изготовляют горячим прессованием на гидравлических прессах.

Продавливая слитки через матрицы различных типов, можно получить профили разнообразных поперечных сечений. Это существенное преимущество позволяет конструктору использовать наиболее эффективные формы сечений. Возможность получить профили практически любых сечений в некоторой степени компенсирует малую устойчивость стержней из алюминиевых сплавов из-за низкого модуля упругости материала.

Однако габариты поперечного сечения профиля ограничиваются поперечными размерами матрицы и усилием, развиваемым прессом.

Наиболее распространенное на заводах оборудование требует, чтобы профили вписывались в круг диаметром 320 мм (в отдельных случаях 530 мм). На современном прессовом оборудовании можно изготовлять профили площадью сечения от 0,5 до 300 см2 Гнутые профили изготовляют из листов и лент толщиной до 4 мм гнутьем их в холодном состоянии. Из-за низкого модуля упругости алюминиевых сплавов ширина свободного свеса полос и высота стенок профилей по отношению к их толщинам принимаются более ограниченными, чем в стальных профилях. Для большего развития сечения и повышения устойчивости стержня профили изготовляются с бульбами на концах полок , которые позволяют доводить отношение ширины полки к ее толщине от 9,5 до 21. Несмотря на возможности получения разнообразных профилей, основные профили объединены в сортаменты, приведенные в каталогах ВИЛС (Всесоюзный институт легких сплавов), которыми следует пользоваться при проектировании.

Круглые тянутые трубы поставляются с наружным диаметром до 150 мм при толщине стенки 1,5 - 6 мм. Кроме круглых труб поставляют квадратные, прямоугольные и каплевидные.

5. Характеристика нагрузок, действующих на строительные конструкции. Нормативные документы, регламентирующие нагрузки

В зависимости от продолжительности действия нагрузок следует различать постоянные и временные (длительные, кратковременные, особые) нагрузки. Нагрузки, возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные нагрузки. Нагрузки, возникающие на стадии эксплуатации сооружений, следует учитывать в соответствии с пп.1.6-1.9.

К постоянным нагрузкам следует относить:

а) вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;

б) вес и давление грунтов (насыпей, засыпок), горное давление.

Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует учитывать в расчетах как усилия от постоянных нагрузок.

К длительным нагрузкам следует относить:

а) вес временных перегородок, подливок и подбетонок под оборудование;

б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

д) температурные технологические воздействия от стационарного оборудования;

е) вес слоя воды на водонаполненных плоских покрытиях;

ж) вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;

з) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями, приведенными в табл.

к) снеговые нагрузки с пониженным нормативным значением, определяемым умножением полного нормативного значения в соответствии с указаниями п. 5.1 на коэффициент: 0,3 - для III снегового района; 0,5 - для IV района; 0,6 - для V и VI районов;

м) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;

н) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

К кратковременным нагрузкам следует относить:

а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;

в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями, кроме нагрузок.

г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);

д) снеговые нагрузки с полным нормативным значением;

е) температурные климатические воздействия с полным нормативным значением;

ж) ветровые нагрузки;

з) гололедные нагрузки.

К особым нагрузкам следует относить:

а) сейсмические воздействия;

б) взрывные воздействия;

в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

Нормативные документы регламентирующие нагрузки.

Федеральный закон от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании"

Федеральный закон от 30 декабря 2009 г. N 384-ФЗ "Технический регламент о безопасности зданий и сооружений"

ГОСТ Р 54257-2010 Надежность строительных конструкций и оснований. Основные положения и требования

ГОСТ 25546-82* Краны грузоподъемные. Режимы работы

ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования

СН 2.2.4/2.1.8.566-96 Производственная вибрация в помещениях жилых и общественных зданий.

6. Нормативные и расчетные сопротивления стали, как их устанавливают

Основными характеристиками сопротивления материалов силовым воздействиям являются нормативные сопротивления по пределу текучести Ryn и по временному сопротивлению Run.

За нормативные сопротивления стали растяжению, сжатию и изгибу Ryn и Run принимают соответственно наименьшие значения предела текучести и временного сопротивления, гарантированные ГОСТами и установленные с учетом условий контроля и статистической изменчивости свойств стали, выпускаемой промышленностью.

Обеспеченность нормативных сопротивлений для большинства строительных сталей составляет, как правило, не менее 0,95, т.е. металлургический завод должен горантировать, что не менее 95% его продукции имеет нормативное сопротивление, превышающее установленную ГОСТом величину.

Возможные отклонения прочностных и других характеристик материалов в неблагоприятную сторону от их нормативных значений учитываются коэффициентами надежности по материалу гm.

Кроме того, коэффициентом надежности по материалу учитываются факторы, которые могут привести к снижению фактических характеристик прочности и геометрических характеристик сечений по сравнению с гарантированными заводом-изготовителем:

- значение механических свойств металлов проверяется на заводах выборочными испытаниями;

- механические свойства металлов контролируют на малых образцах при кратковременном растяжении, фактически металл работает длительное время в большеразмерных конструкциях при сложном напряженном состоянии;

- в прокатных профилях могут быть минусовые допуски.

Коэффициент надежности по материалу гm устанавливается на основании анализа кривых распределений результатов испытаний стали и ее работы в конструкции. При поставке сталей по ГОСТ 27772-88 для всех сталей (кроме С590 и С590К) гm = 1,025; для сталей С590 и С590К гm = 1,05.

При расчете конструкций с использованием расчетного сопротивления Ru, установленного по временному сопротивлению, учитывают повышенную опасность такого состояния (приближение к напряжению разрыва), вводят дополнительный коэффициент надежности гu = 1,3.

Основной расчетной характеристикой стали является расчетное сопротивление, значение которого получается делением нормативного сопротивления на коэффициент надежности по материалу:

- по пределу текучести Ry = Ryn/гm;

- по временному сопротивлению Ru = Run/гm.

Характеристика групп предельных состояний и методика расчета строительных конструкций по предельным состояниям.

Группа состояний

Предельное состояние

вид

характеристика

Первая

Несущая способность

Пластическое, хрупкое и усталостное разрушения

Потеря устойчивости формы или положения

Переход в изменяемую систему

Полная непригодность к эксплуатации

Текучесть материала

Неупругий сдвиг в соединениях

Качественное изменение конфигурации

Вторая

Пригодность к нормальной эксплуатации

Перемещения (прогиб, поворот или осадка)

Колебания

Изменение положения

Сдвиг в соединениях

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

· первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

· вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

· разрушением любого характера (например, пластическим, хрупким, усталостным);

· потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

· потерей устойчивости положения;

· переходом в изменяемую систему;

· качественным изменением конфигурации;

· другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

· достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

· достижением предельных уровней колебаний конструкций или оснований;

· образованием трещин;

· достижением предельных раскрытий или длин трещин;

· потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

· другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

В зависимости от каких факторов устанавливают допускаемые напряжения? Методика расчета машиностроительных конструкций по допускаемым напряжениям.

Метод расчета по допускаемым напряжениям.

Этот метод остается пока основным при расчете механических узлов и деталей машиностроительных конструкций. Основой метода допускаемых напряжений является предположение,что критерием надежности конструкции будет выполнение следующего условия прочности

где - наибольшее рабочее напряжение, возникающее в одной из точек опасного сечения и определяемое расчетом;- допускаемое (предельное) для данного материала напряжение, получаемое на основании экспериментальных исследований. Допускаемое напряжение определяется по формуле

где - опасное напряжение (предел текучести, временное сопротивление (предел прочности)); n-коэффициент запаса прочности.

Значения допускаемых напряжений или коэффициентов запаса прочности устанавливаются техническими условиями или нормами проектирования (для строительных сталей n=1,4…1,6; для хрупких материалов n=2,5…3,5; для древесины n=3,5…6)

Условие прочности для центрально растянутого (сжатого) элемента будет иметь вид (материал пластичный, материал хрупкий):

где ,- допускаемые напряжения при растяжении и сжатии.

На основании сравнения методов расчета конструкций по предельным состояниям и по допускаемым напряжениям объясните, почему строительные конструкции рассчитывают по предельным состояниям?

Цель расчета строительных конструкций -- обеспечить заданные условия эксплуа-тации и необходимую прочность при минимальном расходе материалов и минимальной затрате труда на изготовление и монтаж. Строительные конструкции рассчитывают на силовые и другие воздействия, определяющие их напряженное состояние и деформации, по предельным состояниям. Предельными считаются состояния, при которых конструкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т. е. теряют способность сопротивляться внешним нагрузкам и воздействиям или получают недопустимые перемещения или местные повреждения. сварной низколегированный сталь полимер

Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных состояний: по несущей способности -- первая группа предельных состояний; по пригодности к нормальной эксплуатации -- вторая группа предельных состояний.

Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить:

хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);

Потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);

Усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвижной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т. п.);

Разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.).

Расчет по предельным состояниям второй группы выполняют, чтобы предотвратить:

Образование чрезмерного или продолжительного рае- крытия трещин (если по условиям эксплуатации образование или продолжительное раскрытие трещин допустимо);

Чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).

Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов или частей производится для всех этапов: изготовления, транспортирования, монтажа и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.

В чем особенности работы стали при переменных нагрузках? Основные понятия (усталость, выносливость, предел выносливости, цикл, характеристики цикла).

Нагрузки, действующие на конструкции, в большинстве случаев переменны по своей величине и прикладываются не однократно, а многократно, т. е. являются повторными нагрузками. Только собственный вес и другие постоянные `нагрузки могут рассматриваться как однократные. Если число изменений или повторений нагрузок невелико, то поведение стали в этом случае не отличается от ее поведения при однократном приложении «агрузки. Если же нагрузка повторяется многократно, то в этих случаях может проявиться усталость металла, представляющая собой накопление микросдвигов в кристаллах металла, особенно в местах концентрации напряжений, что приводит к образованию трещин усталости и к хрупкому разрушению. Таким образом, при многократном `повторении нагрузки снижается прочность металла и меняются его свойства; из пластичного материала он как бы превращается в хрупкий. Величина снижения прочности получается разной в зависимости от того, прикладывается ли нагрузка одного знака или знакопеременная. На показаны диаграммы для разных случаев приложения повторной нагрузки. По оси абсцисс откладывается время, по оси ординат -- напряжения. Эти диаграммы относятся к случаям растяжения, сжатия, изгиба или других видов сопротивления.

7. Усталость и выносливость материалов

Многие детали машин и механизмов, а также конструкции сооружений в процессе эксплуатации подвергаются циклически изменяющимся во времени воздействиям. Если уровень напряжений, вызванный этими воздействиями, превышает определенный предел, то в материале формируются необратимые процессы накопления повреждений, которые в конечном итоге приводят к разрушению системы.

Процесс постепенного накопления повреждений в материале под действием переменных напряжений, приводящих к разрушению, называется усталостью. Свойство материала противостоять усталости называется выносливостью.

Опыт показывает, что при переменных напряжениях после некоторого числа циклов может наступить разрушение детали, в то время как при том же неизменном во времени напряжении разрушения не происходит.

Основные характеристики цикла и предел усталости

Рассмотрим вначале случай одноосного напряженного состояния.

Закон изменения главного напряжения о во времени представлен кривой, показанной на рис.15.5.

Наибольшее и наименьшее напряжения цикла обозначим через и . Их отношение называется коэффициентом цикла .

В случае, когда и цикл называется симметричным. Такой цикл, в частности, имеет место в рассмотренном выше примере вращающейся оси вагона). Если или же , цикл называется пульсационным (рис.15.6). Для пульсационного цикла r = 0 или . Циклы, имеющие одинаковые показатели r, называются подобными.

Любой цикл может быть представлен как результат наложения постоянного напряжения на напряжение, меняющееся по симметричному циклу с амплитудой (рис.15.6). Очевидно, при этом:

Тогда, в общем случае, цикл может быть представлен как сумма и напряжения, меняющегося по симметричному циклу с амплитудой , т.е.

Считается общепризнанным, что усталостная прочность детали не зависит от закона изменения напряжений внутри интервала . Поэтому между циклами, показанными, например, на рис.15.7, различия не делается. Точно также считается несущественным и влияние частоты изменения цикла. В итоге цикл определяется только величинами и или же и .

Теперь перейдем к механическим характеристикам материала. В условиях циклических напряжений они определяются путем специальных испытаний.

Наиболее распространенными являются испытания в условиях симметричного цикла. При этом обычно используется принцип чистого изгиба вращающегося образца (рис.15.8).

Для испытаний в условиях несимметричных циклов используются либо специальные машины, либо же вводятся дополнительные приспособления. Так, например, можно на испытуемом образце установить пружину, создающую постоянное растяжение образца с напряжением . Во время испытания на это напряжение накладывается напряжение от изгиба, меняющееся по симметричному циклу.

Путем многократных испытаний (если имеется достаточное количество образцов) можно определить число циклов, которое выдерживает образец до разрушения, в зависимости от величины цикла. Эта зависимость имеет вид кривой, показанной на рис.15.9 и называется диаграммой усталостного разрушения Велера.

Как производят расчет сварных конструкций на выносливость?

Сварные соединения в стальных конструкциях цехов с тяжелым режимом работы должны проверяться на выносливость. Как указывалось в Явление хрупкости в сталях, всякие отклонения от равномерного потока силовых линий создают плоское или объемное напряженное состояние, способствующее появлению хрупкости. В этих местах концентрируются напряжения и могут образоваться трещины, что особенно опасно при переменных нагрузках.

При расчете сварных соединений на выносливость расчетные сопротивления уменьшаются путем умножения на коэффициент определяемый по формуле

Коэффициенты а и b как для сварных соединений, так и для основного металла в околошовной зоне принимаются по таблице.

Согласно НиТУ для соединенных встык элементов, у которых поверхность шва обработана строжкой заподлицо с основным металлом (и тем самым созданы условия для равномерного потока силовых линий) и которые воспринимают только сжимающие переменные нагрузки, коэффициент принимается равным единице.

Кроме этого, при проверке сварных соединений на выносливость действительны все Общие указания для основного металла

8. Классификация сварных соединений и швов, выполненных дуговой сваркой

Термины и определения для сварных конструкций, узлов, соединений и швов установлены ГОСТ 2601-84

Сварным соединением называют неразъемное соединение двух и более элементов (деталей), выполненное с помощью сварки. В сварное соединение входят сварной шов, прилегающая к нему зона основного металла со структурными и другими изменениями в результате термического действия сварки (зона термического влияния) и примыкающие к ней участки основного металла.

Сварной шов представляет собой участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации.

При сварке плавлением различают следующие типы сварных соединений: стыковое, нахлёсточное, торцовое, угловое и тавровое.

- сварное соединение двух деталей, расположенных в одной плоскости и примыкающих друг к другу торцовыми поверхностями (С1-С48)

Одинаково хорошо работает при статических и динамических нагрузках.

Хорошо работает только при статических нагрузках, при динамических нагрузках возможен эффект среза. Не требует тщательной подготовки кромок под сварку, большой расход электродов и основного металла.

- сварное соединение, в котором боковые поверхности элементов примыкают друг к другу (условных обозначений в стандарте пока нет)

- сварное соединение двух элементов, расположенных под углом друг к другу и сваренных в месте приложения их кромок (У1-У10)

Не выдерживает рабочей нагрузки и используется как связующее звено.

- сварное соединение, в котором к боковой поверхности одного элемента примыкает под углом и приварен торцом другой элемент (Т1-Т8)

Одинаково хорошо работает при статических и динамических нагрузках.

Характеристика сварных соединений, выполненных контактной сваркой (назначение, виды, основные требования).

Соединяемые детали сдавливают между собой, а тепло для сварки получают при прохождении электрического тока через контактную часть деталей. В зависимости от размеров контактной части свариваемых деталей различают точечную, стыковую, шовную и рельефную контактную сварку. Этот вид получил одно из ведущих мест в машиностроении, так как является наиболее экономичным и производительным. Контактная сварка легче всего поддается механизации и автоматизации, где механические роботы заменяют человека со сварочным электрододержателем.

Характеристика сварных соединений, выполненных специальными способами сварки.

Специальные способы сварки

Холодная сварка

Холодная сварка - способ соединения деталей при комнатной (и даже отрицательной) температуре, без нагрева внешними источниками. Сварка осуществляется с помощью специальных устройств, вызывающих одновременную направленную деформацию предварительно очищенных поверхностей и нарастающее напряженное состояние, при котором образуется монолитное высокопрочное соединение. Холодной сваркой можно соединять, например, алюминий, медь, свинец, цинк, никель, серебро, кадмий, железо. Особенно велико преимущество холодной сварки перед другими способами сварки при соединении разнородных металлов, чувствительных к нагреву или образующих интерметаллиды.

Холодная сварка - сложный физико-химический процесс, протекающий только в условиях пластической деформации. Без пластической деформации в обычных атмосферных условиях, даже прилагая любые удельные сжимающие давления к соединяемым заготовкам, практически невозможно получить полноценное монолитное соединение.

Точечная сварка - наиболее простой и распространенный способ холодной сварки. Ее применение рационально для соединения алюминия, алюминия с медью, армирования алюминия медью. Ею можно заменить трудоемкую клепку и контактную точечную сварку.

Диффузионная сварка основана на использовании явления диффузии. Свариваемые детали с тщательно зачищенными свариваемыми поверхностями помещаются в рабочую камеру. В рабочей камере создается разрежение путем откачки атмосферного воздуха до давления 10?5мм рт. ст. Для повышения пластичности и ускорения процесса диффузии на свариваемые детали прикладывается небольшое сдавливающее усилие и они нагреваются до температуры 600 -- 800°С. Продолжительность процесса сварки составляет около 5мин.

Сварка трением

Сварка трением это разновидность сварки давлением, при которой нагрев осуществляется трением, вызванным перемещением (вращением) одной из соединяемых частей свариваемого изделия.

Процесс образования сварного соединения:

Вследствие действия сил трения сдираются оксидные плёнки;

Наступает разогрев кромок свариваемого металла до пластичного состояния, возникает временный контакт, происходит его разрушение и высокопластичный металл (металл шва Прекращение вращения с образованием сварного соединения.

Сварка трением является разновидностью сварки давлением, при которой механическая энергия, подводимая к одной из свариваемых деталей, преобразуется в тепловую; при этом генерирование теплоты происходит непосредственно в месте будущего соединения.

Плазменная сварка

Плазменная дуга характеризуется весьма высокой температурой (до 30000 0С) и широким диапазоном регулирования ее технологических свойств.

По-сравнению с аргонодуговой сваркой в связи с более высокой проплавляющей способностью плазменная сварка имеет следующие преимущества:

повышенную производительность;

меньшую зону термического влияния;

более низкие деформации при сварке;

пониженный расход защитных газов;

более высокую стабильность горения дуги;меньшую чувствительность качества шва от изменения длины дуги (ввиду её неизменной геометрии по длине.

Для получения плазменной дуги служит устройство, называемое плазмотроном. Существует два способа подключения плазмотрона для генерации дуги прямого действия и для генерации дуги косвенного действия, называемой плазменной струёй.

Плазмотроны, подключаемые для генерации дуги называют плазмотронами прямого действия, а для генерации плазменной струи косвенного действия. Чаще плазмотроны косвенного действия конструктивно отличаются от плазмотронов прямого действия системой охлаждения соплового узла плазмотрона, у первых она более эффективна.

В плазмотронах прямого действия плазменная дуга возбуждается между стержневым (как правило, вольфрамовым) электродом, вмонтированным в газовую камеру, и свариваемым изделием. Сопло электрически нейтрально от электродного (катодного) узла и служит для сжатия и стабилизации дуги.

...

Подобные документы

  • Сварка как основной технологический процесс в промышленности. Характеристика материалов сварных конструкций. Виды сварных швов и соединений. Характеристика типовых сварных конструкций. Расчет на прочность и устойчивость при разработке сварных конструкций.

    курсовая работа [1,1 M], добавлен 23.09.2011

  • Достоинства и недостатки металлических конструкций. Классификация нагрузок и воздействий. Области применения и номенклатура металлических конструкций. Физико-механические свойства стали. Расчет металлических конструкций гражданских и промышленных зданий.

    презентация [17,3 M], добавлен 23.02.2015

  • Характеристика основных способов сварки. Недостатки сварных соединений. Использование одностороннего и двустороннего шва при сварке деталей. Расчет сварных соединений при постоянных нагрузках. Особенности клеевых и паяных соединений, их применение.

    презентация [931,7 K], добавлен 24.02.2014

  • Знакомство с основными принципами конструктивно-технологического проектирования сварных конструкций. Общая характеристика комбинированных сварных заготовок, рассмотрение особенностей их проектирования. Сварно-литые заготовки как станины прессов.

    презентация [93,2 K], добавлен 18.10.2013

  • Требования к контролю качества контрольных сварных соединений. Методы испытания сварных соединений металлических изделий на излом, а также на статический изгиб. Механические испытания контрольных сварных стыковых соединений из полимерных материалов.

    реферат [327,5 K], добавлен 12.01.2011

  • Определение геометрических размеров колонны, выбор материала, оценка прочностных характеристик и анализ полученных результатов. Специфика конструкций, изготовленных из металлических деталей, соединенных сваркой. Преимущества сварных конструкций.

    курсовая работа [1,2 M], добавлен 09.05.2023

  • Изготовление сварных конструкций. Определение усилий стержней фермы по линиям влияния. Проектирование количества профилей уголков. Подбор сечения стержней. Расчет сварных соединений. Назначение катетов швов. Конструирование узлов и стыков элементов ферм.

    курсовая работа [2,4 M], добавлен 04.11.2014

  • Общие сведения об электрической сварке плавлением. Механические свойства металла шва и сварного соединения. Типичная форма углового шва при сварке под флюсом стали. Особенности технологии сварки низколегированных низкоуглеродистых сталей, ее режим.

    реферат [482,7 K], добавлен 21.10.2016

  • Краткое описание металлоконструкции крана. Выбор материалов и расчетных сопротивлений. Построение линий влияния. Определение расчетных усилий от заданных нагрузок в элементах моста, подбор его сечений. Расчет концевой балки, сварных швов, прогиба балки.

    курсовая работа [1,3 M], добавлен 12.06.2010

  • Особенности вертикальных и горизонтальных стыковых соединений стенки. Требования к подготовке и сборке конструкций под сварку. Основные типы, конструктивные элементы и размеры сварных соединений. Классификация сварных швов. Правила техники безопасности.

    курсовая работа [2,5 M], добавлен 11.06.2012

  • Классификация углеродистых сталей по назначению и качеству. Направления исследования превращения в сплавах системы железо–цементит и сталей различного состава в равновесном состоянии. Определение содержания углерода в исследуемых сталях и их марки.

    лабораторная работа [1,3 M], добавлен 17.11.2013

  • Характеристика и химический состав низколегированных и углеродистых сталей, применяемых для повышения долговечности рабочих органов машин. Свойства электродных материалов для наплавки. Технология электрошлаковой наплавки зубьев ковшей экскаваторов.

    курсовая работа [509,6 K], добавлен 07.05.2014

  • Повышенная склонность металла труб мартенситных сталей к хрупкому разрушению при закалке - фактор, усложняющий технологию их сварочного соединения. Марки флюсов, применяемых для электрошлаковой сварки низколегированных сталей повышенной прочности.

    презентация [3,3 M], добавлен 12.06.2017

  • Применение различных методов, способов и приемов сборки и сварки конструкций с эксплуатационными свойствами. Техническая подготовка производства сварных конструкций. Организация работы по образованию сварочного поста. Хранение сварочной аппаратуры.

    отчет по практике [1,0 M], добавлен 19.03.2015

  • Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.

    контрольная работа [769,1 K], добавлен 06.04.2015

  • История развития сварки, создатели нового направления в производстве металлических конструкций. Классификация дефектов в сварочных работах, их причины и способы устранения. Выбор сварочного оборудования, приспособления и инструменты, техника безопасности.

    курсовая работа [42,0 K], добавлен 20.01.2011

  • Номенклатура стальных конструкций. Достоинства и недостатки стальных конструкций. Требования, предъявляемые к металлическим конструкциям. Конструкции из металла. Балки и балочные конструкции. Колонны и элементы стержневых конструкций.

    курсовая работа [45,5 K], добавлен 21.04.2003

  • Сущность, виды и назначение оболочковых конструкций. Методика проектирования, сборки и сварки сферического резервуара для хранения дизеля. Общая характеристика различных режимов сварки. Порядок и особенности оценки и контроля качества сварных конструкций.

    курсовая работа [73,6 K], добавлен 08.09.2010

  • Производство металлических пен из расплавов металлов. Свойства пеноалюминия и пеноникеля. Применение металлических пен в машиностроении, космических технологиях, строительстве и медицине. Их использование для уменьшения концентрации нежелательных ионов.

    курсовая работа [586,3 K], добавлен 07.01.2014

  • Способы повышения коррозионностойкости сварных соединения аустенитных сталей. Технология изготовления пробкоуловителя. Выбор и обоснование способов и режимов сварки. Визуальный контроль и измерение сварных швов. Финансово-экономическая оценка проекта.

    дипломная работа [2,9 M], добавлен 09.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.