Акустические противонакипные устройства

Физические принципы ультразвуковой защиты от накипи. Метод создания ультразвуковых колебаний в теплообменном оборудовании. Действие излучателя ультразвука на пластичном теплообменнике. Экономический эффект резкого снижения скорости образования накипи.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 602,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АКУСТИЧЕСКИЕ ПРОТИВОНАКИПНЫЕ УСТРОЙСТВА

Андреев А.Г. и Панфиль П.А.

ООО «Кольцо-энерго», г. Москва

В большинстве регионов России вода жёсткая, и потери от отложений солей в теплообменниках ГВС не поддаются никакому исчислению. Если бы теплообменники ГВС оснащались акустическими противонакипными устройствами чистить их приходилось бы очень редко, или, если жёсткость нагреваемой воды не превышает 4 ед., необходимость в чистке отпала бы вообще.

Физические принципы ультразвуковой защиты от накипи

Существует несколько физических методов, уменьшающих скорость образования накипи. Все они способствуют кристаллизации солей жесткости в толще воды и препятствуют достижению кристаллами размеров, необходимых для образования осадка. Ультразвуковая технология выделяется в этом ряду тем, что воздействует на образование и оседание накипи несколькими различными способами одновременно.

Во-первых, при озвучивании воды ультразвуком достаточной интенсивности, происходит разрушение, раскалывание образующихся в нагреваемой воде кристаллов солей жесткости. При контакте твердого тела с жидкостью накипь образуется на твердом теле. Это может быть или теплообменная поверхность или взвешенные в воде частицы, являющиеся центрами кристаллизации растворенных в воде солей. В обычных условиях общая площадь поверхности взвешенных в воде частиц меньше площади теплообменной поверхности оборудования и именно на ней и происходит образование накипи. Но под воздействием ультразвука происходит раскалывание кристаллов карбоната кальция, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности. Под действием ультразвука в воде резко (примерно в 1000 раз) возрастает количество центров кристаллизации. Это приводит к переносу процесса образования накипи с теплообменной поверхности в жидкость, в толщу воды, к кристаллизации солей непосредственно в водной массе, что связано с появлением под действием ультразвука большого количества зародышей кристаллов, к постоянному возникновению, росту и раскалыванию кристаллов солей.

Во-вторых, ультразвук возбуждает высокочастотные колебания в металлической теплообменной поверхности. Распространяясь по поверхности, ультразвуковые колебания препятствуют формированию на ней накипных отложений, замедляя осаждение образующихся кристаллов солей. За счет различной механической жесткости металла и слоя накипных отложений изгибные колебания теплообменной поверхности разрушают формирующийся слой накипи. А если на теплообменной поверхности уже был слой накипи, то ультразвук разрушает его, что сопровождается отслоением и откалыванием кусочков накипи. Размеры этих кусочков зависят от толщины слоя накипи и увеличиваются с ее ростом. При значительной толщине слоя образованной ранее накипи, существует опасность засорения и закупорки каналов. Поэтому одним из основных требований успешного применения ультразвуковой технологии является предварительная очистка, насколько это возможно, от старого слоя накипных отложений.

Следует иметь в виду, что некоторых тяжёлых случаях применение противонакипных устройств не избавляет от накипи навсегда, но скорость оседания накипи уменьшается в несколько раз. При воде с карбонатной жесткостью более чем 10 мг-экв/литр, срок службы нагревателя между чисткой или заменой трубного пучка увеличивается не менее, чем в четыре раза. При жёсткости воды менее 8 мг-экв/литр, срок службы между чистками увеличивается в 4..5 раз. А для котлов и теплообменников, в которых за год образуется не более 2 мм отложений, о проблемах с накипью можно забыть.

Метод создания ультразвуковых колебаний в теплообменном оборудовании

Как известно, ультразвук быстро затухает в воздухе, но беспрепятственно распространяется в металле и воде. «Закачка» ультразвука в котлы и теплообменнике происходит следующим образом. К агрегату привариваются ультразвуковые преобразователи - излучатели ультразвука. Внутри излучателя находится сердечник из магнитострикционного материала - это специальный сплав, обладающий способностью менять свои размеры под действием электрического тока, проходящего по обмотке сердечника, пермендюр, состоящий из сплава кобальта с железом, с добавлением ванадия.

Акустическое противонакипное устройство «Акустик-Т4» во взрывозащищённом (слева) и обычном исполнении

Излучатели соединены кабелем с ультразвуковым генератором и непрерывно получают от генератора электрические импульсы специальной формы с несущей ультразвуковой частотой от 18 до 25 кГц. Этот электрический сигнал преобразуется магнитострикционным сердечником в механические колебания той же частоты. А поскольку излучатель приварен к защищаемому агрегату и представляет с ним единое целое, ультразвуковые колебания возбуждаются во всей конструкции теплообменника или котла и распространяются как во всей теплообменной поверхности, так и переизлучаются в воду от поверхности. Таким образом, мы создали в металле и воде непрерывные микроколебания с амплитудой в несколько микрон, которые безопасны для сварки и вальцовки, но разрушительны для карбоната кальция и других твёрдых отложений.

Излучатели ультразвука, приваренные к подогревателю ГВС и к коллектору парового котла. Слева от излучателя ультразвуковой генератор

А как быть с пластинчатыми теплообменниками? Как подать ультразвук в каждую пластину, если они отделены друг от друга резиновыми прокладками? Эта проблема решается следующим образом - в пластинчатых теплообменниках ультразвук подаётся непосредственно в воду. Для этого излучатель ультразвука снабжается специальным наконечником для излучения в воду и врезается в патрубки нагреваемой воды. А ультразвуковое поле, возбуждённое в воде возбуждает колебания и в пластинах и не позволяет накипи оседать на них.

Излучатель ультразвука на пластинчатом теплообменнике. Ультразвук подаётся в воду

Для кожухотрубных теплообменников, излучатели навариваются на ободок трубной доски, в результате чего ультразвуковые колебания распространяются по трубной доске, передаваясь на трубный пучок. При монтаже на паровые или водогрейные котлы, излучатели навариваются на барабаны и коллектора боковых и заднего экранов.

Монтаж УЗ преобразователей на пластинчатом (слева) и пароводяном теплообменниках

накипь ультразвуковой колебание теплообменный

Экономический эффект резкого снижения скорости образования накипи достигается не только за счет уменьшения затрат на чистку. Покажем, что применение АПУ даёт экономический эффект и в процессе эксплуатации теплообменника за счет поддержания его паспортных параметров на исходном уровне. А в ряде случаев, и за счет уменьшения потерь тепла в окружающую среду.

На рисунке ниже показано изменение удельных расходов теплоносителя для трех кожухотрубных теплообменников, первые два из которых оснащены акустическими противонакипными устройствами, а третий (красная гистограмма) - нет. Аналогичные расчеты проведены и для других теплообменников, и представленные результаты являются характерными. Присоединенные нагрузки и площади теплообменных поверхностей этих теплообменников различны, отличаются поэтому и значения удельных расходов теплоносителя, однако динамика их изменения имеет ярко выраженный характер. Значения удельных расходов теплоносителя для теплообменников, оснащенных АПУ, изменяются незначительно, колебания происходят около некого среднего значения и имеют тенденцию к снижению. Значения удельного расхода для неоснащенного АПУ теплообменника уверенно увеличиваются от года к году. За время наблюдения рост удельного расхода теплоносителя составил более 20%. Пропорционально увеличился и расход электроэнергии, потребляемой насосами для перекачки повышенных объемов теплоносителя.

Изменение средних за летний период удельных расходов теплоносителя в кожухотрубных теплообменниках, два из которых оснащены АПУ, третий (красная гистограмма) - не оснащён

Ниже приведены значения удельных расходов теплоносителя в трех тепловых пунктах, один из которых оснащен акустическим противонакипным устройством. Во всех нагревателях ГВС с применением АПУ удельный расход теплоносителя на 10 - 30% ниже, чем в контрольных, не оборудованных противонакипными устройствами.

Таким образом, экспериментально было показано, что в не оборудованных противонакипными устройствами тепловых пунктах, на каждую произведенную в системе ГВС Гкал количества тепла перерасход теплоносителя составляет от 2,5 до 8 тонн. Тепловые потери и потери электроэнергии пропорциональны этому перерасходу.

Параметры работы оснащенных АПУ теплообменников свидетельствуют не только о существенном снижении расхода теплоносителя, но и об увеличении разницы температур греющей воды на входе/выходе ЦТП на 4-7С Специалистами ОАО «Теплопрогресс-М» г.Москва, было проведено определение эффективности работы пластинчатых теплообменников, которое показало, что коэффициент теплопередачи теплообменников, оснащенных противонакипными устройствами серии «Акустик-Т» производства ООО «Кольцо-энерго», на 10 - 27% выше коэффициентов теплопередачи наиболее близких по паспортным данным и присоединенным нагрузкам контрольных теплообменников.

Размещено на Allbest.ru

...

Подобные документы

  • Виды акустических волн. Ультразвуковой контроль для бетонных блоков строительных конструкций, сварных швов магистральных трубопроводов. Акустические характеристики материалов. Типы ультразвуковых волн, взаимодействие с границей раздела двух сред.

    реферат [130,4 K], добавлен 21.04.2014

  • Диапазоны частот упругих колебаний. Преломление, отражение, дифракция, рефракция акустических волн. Прием и излучение ультразвука. Ультразвук в различных средах. Отражение и рассеяние ультразвука. Применение акустических методов в неразрушающем контроле.

    контрольная работа [815,0 K], добавлен 09.11.2010

  • Ультразвуковые методы контроля позволяют получить информацию о дефектах, расположенных на значительной глубине в различных материалах, изделиях и сварных соединениях. Физические основы ультразвуковой дефектоскопии. Классификация методов контроля.

    реферат [4,7 M], добавлен 10.01.2009

  • Получение ультразвуковых волн. Общая характеристика ультразвуковых методов, используемых для контроля сварных соединений, их принципы и условия применения. Преимущества и недостатки ультразвукового контроля на примере стыкового сварного соединения.

    реферат [1,3 M], добавлен 12.11.2013

  • Основные методы непрерывного измерения: гидростатический, с использованием погруженных зондов, кондуктивный, емкостной и ультразвуковой. Природа получения ультразвука, типы и скорость ультразвуковых волн. Разработка алгоритма программного обеспечения.

    дипломная работа [1,1 M], добавлен 26.08.2010

  • Основы ультразвукового контроля, акустические колебания и волны. Прохождение и отражение ультразвуковых волн. Параметры контроля. Условные размеры дефекта. Приборы УЗК. Типы дефектоскопов. Организация ультразвукового контроля, оформление результатов.

    курсовая работа [2,3 M], добавлен 21.02.2016

  • Оценка технического состояния газотрубопровода. Использование ультразвукового внутритрубного дефектоскопа для прямого высокоточного измерения толщины стенки трубы и обнаружения трещин на ранней стадии. Способы получения и ввода ультразвуковых колебаний.

    курсовая работа [2,9 M], добавлен 02.01.2015

  • Пятна. Типы пятен. Общие правила при выведении пятен любого происхождения. Типы волокон. Состав порошков. ПАВ. Отбеливатели. Средства защиты от накипи. Подкрахмаливание. Пенообразование и pH. Эффективность отстирывания различных типов тканей.

    дипломная работа [1,3 M], добавлен 21.08.2007

  • Классификация внутритрубных дефектоскопов. Ультразвуковые внутритрубные дефектоскопы для прямого высокоточного измерения толщины стенки трубы и для обнаружения трещин на ранней стадии. Принцип действия ультразвуковых дефектоскопов и их применение.

    курсовая работа [2,9 M], добавлен 21.03.2013

  • Ультразвуковая обработка поверхностей как одно из направлений существенного повышения производительности и качества механической обработки материалов. Изучение практического опыта применения ультразвука в процессах абразивной обработки и их шлифования.

    контрольная работа [25,6 K], добавлен 30.01.2011

  • Сущность ультразвуковой сварки. Характеристика механической колебательной системы. Прочность точечных и шовных сварных соединений. Влияние на сварку формы и материала сварочного наконечника. Физико-химический механизм разрушения обрабатываемого материала.

    контрольная работа [1,4 M], добавлен 03.07.2013

  • Регистрация изменения скорости распространения ультразвуковых волн под влиянием механических напряжений. Определение напряжений в материалах с собственной анизотропией. Измерение углов отражения и преломления ультразвуковых волн на границе двух сред.

    курсовая работа [1,7 M], добавлен 03.03.2011

  • Применение формул при определении таких показателей как: коэффициент теплопередачи для плоской стенки без накипи, плотность теплового потока от газов к воде, температура стенки со стороны газов, температура стенки со стороны воды и между накипью и сталью.

    задача [104,7 K], добавлен 04.01.2009

  • Тепловой и гидравлический расчет утилизационной вакуумной опреснительной установки с обогревом греющей водой. Исследование и расчет влияния температуры забортной воды и накипи на производительность спроектированной вакуумной опреснительной установки.

    курсовая работа [226,7 K], добавлен 04.12.2013

  • Характеристика трассы Уфа-Самара. Свойства перекачиваемых нефтепродуктов. Расчет параметров последовательной перекачки. Контроль смеси по величине диэлектрической постоянной, по скорости распространения ультразвука, по оптической плотности и вязкости.

    курсовая работа [2,6 M], добавлен 16.04.2015

  • Понятие, классификация и сущность неразрушающего контроля, его использование, физические принципы и технические средства. Основные элементы автоматических устройств. Принципы и методы ультразвуковой дефектоскопии, безопасность и экологичность проекта.

    дипломная работа [885,1 K], добавлен 25.07.2011

  • Характеристика процесса ультразвуковой стерилизации молока. Действие тепловой стерилизации на питательную ценность молока. Оборудование для стерилизации молока в таре и в потоке. Производственный расчет стерилизаторов П8-ОСО-5, СОУ-10 и ПМР-02-ВТ.

    дипломная работа [1,7 M], добавлен 14.06.2014

  • Обоснование необходимости создания автоматизированной системы охраны от несанкционированного проникновения физических лиц - системы физической защиты. Принципы контроля и управления доступом персонала, охранной сигнализации и телевизионного наблюдения.

    реферат [193,2 K], добавлен 12.02.2011

  • Описание принципа работы и характеристик ультразвуковых дефектоскопов, используемых предприятиями для обнаружения в деталях и узлах подвижного состава и механизмах усталостных трещин, угрожающих безопасности движения. Автоматизация при дефектоскопии.

    курсовая работа [96,0 K], добавлен 26.02.2011

  • Метод ультразвуковой и рентгенодефектоскопии. Типы газовых разрядов. Принципиальная электрическая схема источника питания установки. Задающий генератор сигналов Г3-36. Плазменная визуализация различных типов дефектов для проводов и промышленных кабелей.

    дипломная работа [1,7 M], добавлен 06.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.