Влияние пластической деформации на структуру и свойства металлов и сплавов

Анализ осуществления пластической деформации в кристалле. Особенности деформирования монокристаллов и поликристаллов. Изменения свойств сплавов с помощью правила Курнакова. Сущность конструкторской и технологической подготовки серийного производства.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 26.02.2017
Размер файла 442,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Пластическая деформация моно- и поликристаллов (условия и механизмы, зависимость от дефектности структуры и др.)

Ее влияние на структуру и свойства металлов и сплавов

Деформацией называется изменение размеров и формы тела под действием внешних усилий. Деформации подразделяют на упругие и пластические. Упругие деформации исчезают, а пластические остаются после окончания действия приложенных сил. В основе упругих деформаций лежат обратимые смещения атомов металлов от положений равновесия; в основе пластических -- необратимые перемещения атомов на значительные расстояния от исходных положений равновесия.

Способность металлов пластически деформироваться называется пластичностью. При пластическом деформировании металла одновременно с изменением формы меняется ряд свойств, в частности, при холодном деформировании повышается прочность. Пластичность обеспечивает конструкционную прочность деталей под нагрузкой и нейтрализует влияние концентраторов напряжений.

Пластическая деформация в кристалле осуществляется путем сдвига одной его части относительно другой. Сдвиг вызывают касательные напряжения, когда их значение превышает критическое ф.

Имеется две разновидности сдвига: скольжение и двойниковаиие. При скольжении одна часть кристалла смещается параллельно другой части вдоль плоскости, называемой плоскостью скольжения или сдвига. Двойникование представляет собой перестройку части кристалла в новое положение, зеркально симметричное к его не деформированной части. Плоскость зеркальной симметрии называют плоскостью двойникования. При двойниковании атомные плоскости кристалла сдвигаются параллельно плоскости двоиникования на разные расстояния. Часть кристалла, в которой в результате двоиникования произошла переориентация кристаллической решетки, называют двойником деформации. По сравнению со скольжением двойникование имеет второстепенное значение. Роль двоиникования возрастает, когда скольжение затруднено. В металлах с ОЦК и ГЦК решетками двойникование наблюдается лишь при низких температурах или высоких скоростях деформирования. При нормальных условиях в металлах с ГП решеткой деформация развивается как" двойникованием, так и скольжением.

Особенности деформирования монокристаллов

Если при деформировании монокристалла плоскость скольжения оказалась параллельной направлению касательного напряжения, то монокристалл не упрочняется, а его деформация велика. Начальную стадию деформирования называют стадией легкого скольжения. При этом дислокации перемещаются в монокристалле, практически не встречая препятствий. Деформация монокристаллов с ГП решеткой на стадии легкого скольжения достигает 1000 %, у ГЦК и ОЦК монокристаллов она не превышает 10 - 15%.

С ростом деформации скольжение распространяется на другие системы, и возникает множественное скольжение. На этой второй стадии дислокации перемещаются в пересекающихся плоскостях, возрастает сопротивление их движению, и образуется сложная дислокационная структура.

Наконец, третья стадия характеризуется более замедленным упрочнением по сравнению со второй стадией. Винтовые дислокации переходят в смежные плоскости скольжения, и возникает поперечное скольжение, которое, по своей сути, является процессом разупрочнения. Разупрочнение на третьей стадии развивается по мере деформирования, и его называют динамическим возвратом.

Скольжение дислокаций не связано с диффузией, так как происходит без переноса массы. Этим объясняется сравнительная легкость их передвижения и при отрицательных температурах, когда скорость диффузии мала.

В процессе скольжения возникают новые дислокации, и их плотность повышается от 108 до 1012 см-2 (более высокую плотность получить нельзя из-за появления трещин и разрушения металла). Существует несколько механизмов образования новых дислокаций. Важным из них является источник Франка -- Рида (рис. 1). Под действием касательного напряжения закрепленная дислокация выгибается, пока не примет форму полуокружности. С этого момента изогнутая дислокация распространяется самопроизвольно в виде двух спиралей. При встрече спиралей возникают расширяющаяся дислокационная петля и отрезок дислокации. Отрезок распрямляется, занимает исходное положение, и генератор дислокаций готов к повторению цикла. Один источник Франка -- Рида способен образовать сотни новых дислокаций.

В основе упрочнения металла при деформировании лежит прежде всего повышение плотности дислокаций.

Движению дислокации мешают различные препятствия -- границы зерен, дефекты упаковки, межфазные поверхности, дислокации, пересекающие плоскость скольжения. Через некоторые препятствия дислокации проходят, но при более высоких напряжениях. Такими препятствиями являются, например, пересекающиеся с плоскостью скольжения дислокации.

Каждое скопление дислокаций создает поле напряжений, отталкивающее приближающуюся дислокацию. Чем больше дислокаций в скоплении, тем сильнее отталкивание и тем труднее деформируется металл. Когда плотность дислокаций в скоплении достигает определенного значения, в этом месте зарождается трещина.

При нагреве выше 0,3Тплав начинает действовать другой механизм перемещения дислокаций -- переползание. Оно представляет собой диффузионное смещение дислокации в соседние плоскости решетки в результате присоединения вакансий (рис. 2). Вакансии присоединяются последовательно к краю избыточной полуплоскости, что равносильно перемещению края на один атомный ряд вверх, и «атакуют» дислокацию в разных местах, в результате чего на дислокации появляются ступеньки. По мере присоединения вакансий дислокация на значительном участке своей длины смещается на десятки межатомных расстояний. Из-за переползания ослабляется тормозящий эффект частиц второй фазы. Переместившиеся дислокации далее сдвигаются путем скольжения под действием напряжения (см. рис. 2, б). При нагреве выше 0,3Тплав вакансии весьма подвижны, а необходимое число вакансий создается пластической деформацией.

Деформирование поликристаллов

При деформировании поликристаллов отсутствует стадия легкого скольжения, деформация зерен начинается сразу по нескольким системам скольжения и сопровождается изгибами и поворотами плоскостей скольжения. Пока общая деформация мала (порядка 1 %) зерна деформируются неоднородно в силу их разной ориентации по отношению к приложенным нагрузкам.

Изменения микроструктуры при деформировании сводятся к следующему (рис. 3).

С ростом степени деформации зерна постепенно вытягиваются в направлении пластического течения (см. рис. 3, б). Внутри зерен повышается плотность дефектов. При значительных деформациях образуется волокнистая структура, где границы зерен различаются с трудом (см. рис. 3, г).

При значительной деформации в металле появляется кристаллографическая ориентация зерен, которая называется текстурой деформации. Текстура деформации -- это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования (рис. 4), кристаллической структуры металла, наличия примесей и условий деформирования.

При волочении возникают так называемые аксиальные текстуры, когда определенное кристаллографическое направление оказывается параллельным оси проволоки для большинства зерен (см. рис. 4, б).

При прокатке получается более сложная текстура: параллельно плоскости прокатки располагаются плоскость и направление решетки. Между направлением прокатки и направлением кристаллической решетки устанавливается угол б (см. рис. 4, а). Текстура деформации делает металл анизотропным.

2. По диаграмме состояния Cu-Ni опишите взаимодействие компонентов в твердом состоянии, укажите структурные составляющие во всех ее областях, объясните характер изменения свойств сплавов с помощью правила Курнакова

Диаграмма состояния сплава Cu - Ni представлена на рисунке 5 [2].

Сплавляемые компоненты полностью растворяются друг в друге, как в жидком, так и в твердом состоянии.

Компоненты: Cu - медь - левая ордината;

Ni - никель - правая ордината;

Фазы: Ж - жидкий раствор (это область выше линии A1B);

б - неограниченный твердый раствор Ni в Cu (это область ниже линии A2B).

Линия A1B - линия ликвидус. Линия A2B - линия солидус. Между линиями ликвидус и солидус сплав находится в двухфазовом состоянии - Ж+ б.

Рисунок Диаграмма состояния сплава медь-никель Cu-Ni

Диаграмма состояния Cu--Ni характеризуется образованием в процессе кристаллизации непрерывного ряда твердых растворов (Cu, Ni) с гранецентрированной кубической структурой.

По правилу Курнакова, в области двухфазных механических смесей (б+в) свойства сплавов аддитивны к концентрации компонентов, т.е. изменяются линейно между значениями свойств сплавов, ограничивающих двухфазную область.

Рисунок

3. Техническая (конструкторская и технологическая) подготовка производства. Состав работ основных стадий КПП и ТПП

Техническая подготовка производства включает в себя конструкторскую, технологическую, организационную подготовку производства, а также освоение серийного выпуска новых изделий. На этом этапе новое изделие проходит различные стадии его освоения от опытного образца, полученного в результате НИОКР, через опытную и установочную партии до серийного производства на конкретном действующем предприятии. Основная цель технической подготовки - не просто освоение серийного производства нового изделия, а решение этой задачи с максимальным учетом специфики предприятия-изготовителя и с минимальными затратами на это освоение.

Конструкторская подготовка серийного производства

Цель конструкторской подготовки серийного производства (КПП) - адаптировать конструкторскую документацию ОКР к условиям конкретного серийного производства предприятия-изготовителя. Как правило, конструкторская документация ОКР уже учитывает производственные и технологические возможности предприятий-изготовителей, но условия опытного и серийного производств имеют существенные различия, что приводит к необходимости частичной или даже полной переработки конструкторской документации ОКР.

КПП производится службой главного инженера предприятия, как правило, отделом главного конструктора серийного завода (ОГК) или серийным отделом НИЧ, СКБ, ОКБ и т.д. в соответствии с правилами Единой системы конструкторской документации (ЕСКД).

В процессе КПП разработчики в максимально допустимых пределах должны учитывать конкретные производственные условия предприятия-изготовителя:

- унифицированные и стандартные детали и сборочные единицы, изготовляемые предприятием или предприятиями-смежниками;

- имеющиеся средства технологического оснащения и контроля;

- имеющееся технологическое и нестандартное оборудование, транспортные средства и т.п.

Состав работ на этапе конструкторской подготовки производства предприятия-изготовителя:

1. Получение конструкторской документации от разработчика.

2. Проверка документации на комплектность.

3. Внесение изменений в соответствии с особенностями предприятия-изготовителя.

4. Внесение изменений по результатам отработки конструкции на технологичность.

5. Внесение изменений по результатам технологической подготовки производства. пластический деформация монокристалл сплав

6. Техническое сопровождение изготовления опытной партии изделий.

7. Внесение изменений в конструкторскую документацию по результатам изготовления опытной партии.

8. Оформление и утверждение документации для изготовления установочной серии.

9. Техническое сопровождение изготовления установочной серии.

10. Оформление и утверждение документации для серийного производства.

11. Выпуск ремонтной, экспортной и иной документации.

12. Техническое сопровождение серийного производства.

В настоящее время все большее место в работах КПП приобретают методы автоматизированного проектирования и создания конструкторских документов (САПР).

Технологическая подготовка производства (ТПП)

Задача ТПП - это обеспечение полной технологической готовности фирмы к производству новых изделий с заданными технико-экономическими показателями (высоким техническим уровнем, качеством изготовления, а также с минимальными трудовыми и материальными издержками - себестоимостью при конкретном техническом уровне предприятия и планируемых объемах производства).

Исходными данными для проведения ТПП являются:

1) полный комплект конструкторской документации на новое изделие;

2) максимальный годовой объем ее выпуска при полном освоении с учетом изготовления запасных частей и поставок по кооперации;

3) предполагаемый срок выпуска изделий и объем выпуска по годам с учетом сезонности;

4) планируемый режим работы предприятия (количество смен, продолжительность рабочей недели);

5) планируемый коэффициент загрузки оборудования основного производства и ремонтная стратегия предприятия;

6) планируемые кооперированные поставки предприятию деталей, узлов полуфабрикатов и предприятия-поставщики;

7) предполагаемые рыночные цены новых товаров с учетом ценовой стратегии предприятия и его целей;

8) принятая стратегия по отношению к риску (с точки зрения наличия дублирующего оборудования);

9) политика социологии труда предприятия.

Технологическая подготовка производства регламентируется стандартами "Единой системы технологической подготовки производства" (ЕСТПП).

Этапы ТПП, содержание работ и исполнители приведены в табл.6.5.

Отработка изделий на технологичность. Технологичность - это экономичность изготовления изделия в конкретных организационно-технологических и производственных условиях при заданных масштабах выпуска.

Таблица 1

Этапы ТПП

Содержание работ ТПП

Исполнители

Планирование ТПП

Прогнозирование, планирование и моделирование ТПП.

Служба планирования подготовки производства (ОППП)

Технологическое проектирование

Распределение номенклатуры между цехами и подразделениями предприятия.

ОППП

Разработка технологических маршрутов движения объектов производства.

ОППП

Разработка техпроцессов изготовления и контроля деталей, сборки и испытаний и всей прочей технологической документации.

Отделы главных специалистов (ОГТ, ОГС, ОГМет и др.)

Типизация технологических процессов, разработка базовых и групповых процессов.

-"-

Технико-экономическое обоснование технологических процессов

Отделы главных специалистов, экономический отдел

Выбор оборудования

Выбор и обоснование универсального, специального, агрегатного и нестандартного оборудования.

Выдача заданий на проектирование этого оборудования, а также на проектирование гибких автоматических, автоматизированных, роботизированных линий и комплексов, конвейеров, транспортных средств и т.п.

Отделы главных специалистов

Выбор и технологическое конструирование оснастки

Выбор необходимого специального, универсального и унифицированного оснащения.

Проектирование (технологическое конструирование) оснастки.

Технико-экономические обоснования выбора и применения оснастки

Технологические и конструкторские отделы главных специалистов.

Экономический отдел

Нормирование

Установление пооперационных технических норм времени всех технологических процессов.

Расчеты норм расходов материалов (подетальные и сводные)

Отдел труда и зарплаты.'

тделы главных специалистов.

ОГТ

Отработка изделий на технологичность (технологический контроль) производится на всех этапах создания конструкторской документации:

- на стадии эскизного проекта производится анализ конкретных конструкторских решений, в том числе целесообразности выбранных материалов, рациональности и технологичности членения конструкции на сборочные единицы, блоки, агрегаты, обеспечение простоты сборки, разборки и т.п.;

- на стадиях технического и рабочего проектов принимаются окончательные решения о технологичности изделия и точности изготовления его элементов;

- на стадии изготовления опытного образца и опытной партии завершается отработка конструкции на технологичность (конкретизируются условия обеспечения технологичности, в том числе возможность использования типовых технических процессов, унифицированной переналаживаемой оснастки и имеющегося или производимого оборудования.

Показатели технологичности конструкции:

- технологическая рациональность конструктивных решений;

- преемственность конструкции.

Технологическую рациональность характеризуют:

- трудоемкость изготовления;

- удельная материалоемкость;

- коэффициент использования материалов;

- технологическая себестоимость;

- удельная энергоемкость изготовления изделия;

- удельная трудоемкость подготовки изделия к функционированию;

- коэффициент применяемости материалов;

- коэффициент применения групповых и типовых технологических процессов и др.

Преемственность конструкции характеризуют:

1) коэффициент применяемости

Кпр = (m - mор)/m ,

где m - общее количество типоразмеров (наименований) деталей (элементов, микросхем и т.п.);

mор - количество оригинальных деталей;

2) коэффициент повторяемости

,

где mоб - общее количество деталей;

3) коэффициент унификации

,

где mу - число унифицированных стандартных и заимствованных деталей, выпускаемых предприятиями отрасли;

4) коэффициент стандартизации

,

где mст - число стандартных деталей.

Коэффициенты Кпр, Кп, Ку, Кст правильней рассчитать по отношению к трудоемкости элементов.

Выбор оптимального варианта технологического процесса. В различных вариантах технологических процессов изготовления новых изделий могут применяться различные заготовки, оборудование, технологическая оснастка и т.д., что приводит к различной трудоемкости, производительности и использованию рабочих различной квалификации.

Основными критериями для выбора оптимального технологического процесса являются себестоимость и производительность. Для упрощения расчетов используют технологическую себестоимость, которая является частью полной себестоимости и учитывает затраты, зависящие от варианта технологического процесса. Графически варианты 1 и 2 могут быть представлены прямыми линиями (рис.6.2).

Рис. 5. График сравнительной оценки двух вариантов технологического процесса

Точка пересечения этих линий А определяет критическое количество деталей Qкр, при котором оба варианта будут равноценными, то есть,

,

.

где З - общие затраты на техпроцесс;

Упос и Упер - соответственно условно-постоянные и условно-переменные затраты.

В нашем примере при объеме выпуска изделий меньше критического более экономичным будет вариант 1, а при количестве изделий больше критического - вариант 2.

Выбор наиболее экономичного варианта реализации технологического процесса из множества возможных способов изготовления продукции следует в общем случае осуществлять по минимуму приведенных затрат, которые принимаются в качестве критерия оптимальности. Однако для сопоставления вариантов технологических процессов во многих случаях достаточно ограничиться расчетом технологической себестоимости выпуска. В последнюю входят, как было сказано ранее, лишь затраты, меняющиеся только при изменении вариантов.

Поэтому в дальнейшем в качестве ценовой функции используются не полные приведенные затраты, а минимум суммы

,

где ЗТi - технологическая себестоимость годового выпуска по варианту изготовления;

Ен - нормативный коэффициент эффективности;

Кi - капитальные вложения, изменяющиеся при смене варианта технологического процесса.

4. Требуется провести поверхностное упрочнение изделия из стали

Какие виды обработки можно для этого применить? Опишите одну из технологий и превращения, которые происходят при этом в материале.

Сталь 20 является низкоуглеродистой качественной сталью. Для поверхностного упрочнений изделий из данной стали применяют цементацию, с последующей закалкой в воде в сочетании с низким отпуском.

Наружная часть цементованного слоя, содержащая больше 0,8% С, имеет структуру заэвтектоидных сталей - перлит и вторичный цементит, который при медленном охлаждении выделяется на границах аустенитных зерен в виде оболочек (на шлифе сетка). Средняя часть слоя, имеющая эвтектоидную концентрацию, состоит из перлита. Далее по направлению к сердцевине концентрация углерода уменьшается, структура соответствует доэвтектоидной стали, причем количество перлита уменьшается при приближении к сердцевине.

Принято различать полную и эффективную толщину цементованного слоя.

За эффективную толщину принимают сумму заэвтектоидной, эвтектоидной и половины доэвтектоидной зоны слоя. Эффективная толщина цементованного слоя обычно составляет 0,5-1,8 мм и в исключительных случаях достигает 6 мм при больших контактных нагрузках на цементованную поверхность.

Структура после цементации получается крупнозернистой в связи с длительной выдержкой деталей при температуре науглероживания. Длительность изотермической выдержки при цементации зависит от заданной толщины слоя и марки цементируемой стали.

Для получения заданного комплекса механических свойств после цементации необходима дополнительная термическая обработка деталей.

В зависимости от условий работы, а также от выбранной для изготовления детали стали режим упрочняющей термической обработки может быть различен. Для тяжелонагруженных трущихся деталей машин, испытывающих в условиях работы динамическое нагружение, в результате термической обработки нужно получить не только высокую поверхностную твердость, но и высокую прочность (например, для зубчатых колес - высокую прочность на изгиб) и высокую ударную вязкость. Для обеспечения указанных свойств требуется получить мелкое зерно как на поверхности детали, так и в сердцевине. В таких ответственных случаях цементованные детали подвергают сложной термической обработке, состоящей из двух последовательно проводимых закалок и низкого отпуска.

При первой закалке деталь нагревают до температуры на 30-50°С выше температуры Ас3 цементируемой стали. При таком нагреве во всем объеме детали установится аустенитное состояние (см. рис 6). Нагрев до температур, лишь немного превышающих Ас3, вызывает перекристаллизацию сердцевины детали с образованием мелкого аустенитного зерна, что обеспечит мелкозернистость продуктов распада. При температуре tЗI как видно на рис. 6, весь диффузионный слой переходит в аустенитное состояние, поэтому, чтобы предотвратить выделение цементита, проводят закалку.

При второй закалке деталь нагревают до температуры tЗII с превышением на 30-50°С температуры Ас1 (см. рис 6). В процессе нагрева мартенсит, полученный в результате первой закалки, отпускается, что сопровождается образованием глобулярных карбидов, которые в определенном количестве сохраняются после неполной закалки в поверхностной заэвтектоидной части слоя, увеличивая его твердость. Вторая закалка обеспечивает также мелкое зерно в науглероженном слое.

Окончательной операцией термической обработки является низкий отпуск при 160-200°С, уменьшающий остаточные напряжения и не снижающий твердость стали.

После двойной закалки и низкого отпуска поверхностный слой приобретает структуру отпущенного мартенсита с включениями глобулярных карбидов. Структура сердцевины детали зависит от легированности стали. Если для цементации выбрана углеродистая сталь, то из-за малой прокаливаемости в сердцевине получится сорбитная структура; если же цементировалась легированная сталь, то в зависимости от количества легирующих элементов сердцевина может приобрести структуру бейнита или низкоуглеродистого мартенсита. Во всех случаях из-за низкого содержания углерода будет обеспечена достаточно высокая ударная вязкость.

Литература

1. Материаловедение: Учебник для вузов. Б. Н. Арзамасов, И. И. Сидорин и др.; Под общ. ред. Б. Н. Арзамасова. - 2-е изд., испр. и доп. - М.:Машиностроение, 1986. - 384 с., ил.

2. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т.2 / Под общ. ред. Н.П. Лякишева. - М.: Машиностроение, 1997. - 1024 с.: ил.

3. Данилевский В.В. Технология машиностроения: Учебник для техникумов. - 5-е изд. перераб. и доп. - М.: Высш. шк., 1984. - 416 с.: ил

Размещено на Allbest.ru

...

Подобные документы

  • Разновидности методов получения деталей. Прокатка как один из способов обработки металлов и металлических сплавов методами пластической деформации. Определение, описание процесса волочения, прессования, ковки, штамповки. Достоинства, недостатки методов.

    контрольная работа [1,7 M], добавлен 11.11.2009

  • Общее понятие пластической деформации, явления, сопровождающие пластическую деформацию. Сущность и специфика дислокации. Блокировка дислокаций по Судзуки. Условия пластической деформации при низких температурах. Механизмы деформационного упрочнения.

    курс лекций [2,0 M], добавлен 25.04.2012

  • Определение причин и описание механизма необратимости пластичной деформации металлов. Изучение структурных составляющих сплавов железа с углеродом, построение кривой охлаждения сплава. Описание процессов закаливаний углеродистых сталей, их структура.

    контрольная работа [596,1 K], добавлен 18.01.2015

  • Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

    презентация [4,7 M], добавлен 25.09.2013

  • Сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации. Определение легированных сталей, их состав. Литейные сплавы на основе алюминия: их маркировка и свойства.

    контрольная работа [38,4 K], добавлен 19.11.2010

  • Краткая характеристика способов и оборудования для обработки деталей пластическим деформированием. Схемы восстановления и особенности ремонта деталей с пластической деформацией. Анализ влияния пластических деформаций на структуру и свойства металла.

    реферат [3,4 M], добавлен 04.12.2009

  • Металлофизическая характеристика и поведение обрабатываемых сплавов при пластической деформации. Технико-экономическое обоснование технологии и оборудования цеха. Расчет термомеханических и энергосиловых параметров горячей обработки усилия прессования.

    курсовая работа [610,3 K], добавлен 08.06.2014

  • Пластическая деформация и механические свойства сплавов. Временные и внутренние остаточные напряжения. Два механизма пластической деформации, структурные изменения. Общее понятие о наклепе. Схема смещения атомов при скольжении. Отдых и полигонизация.

    лекция [2,9 M], добавлен 29.09.2013

  • В работе рассмотрена магнитоимпульсная обработка металлов – способ пластической деформации металлов и их сплавов, осуществляемый при прямом преобразовании электрической энергии в механическую непосредственно в самом обрабатываемом изделии. Виды обработки.

    реферат [1,9 M], добавлен 18.01.2009

  • Характеристика и основные принципы, положенные в основу восстановления деталей с помощью пластических деформаций. Способы обработки деталей пластическим деформированием, составление их технологии и схемы, влияние на структуру и свойства металла.

    реферат [2,0 M], добавлен 29.04.2010

  • Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.

    курсовая работа [534,9 K], добавлен 28.12.2003

  • Сущность и признаки упругой и пластической деформации металлов - изменения формы и размеров тела, которое может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. Виды разрушения металла.

    контрольная работа [23,5 K], добавлен 12.02.2012

  • Определение эксплуатационных свойств белых чугунов количеством, размерами, морфологией и микротвердостью карбидов. Влияние температуры отжига на механические свойства промышленного чугуна. Технологические схемы изготовления изделий повышенной стойкости.

    доклад [50,8 K], добавлен 30.09.2011

  • Перемещение дислокаций при любых температурах и скоростях деформирования в основе пластического деформирования металлов. Свойства пластически деформированных металлов, повышение прочности, рекристаллизация. Структура холоднодеформированных металлов.

    контрольная работа [1,2 M], добавлен 12.08.2009

  • Метод акустической эмиссии и ее проявления в процессе деформации металлов и сплавов. Влияние концентрации легирующего элемента и скорости деформации на спектральную плотность сигналов. Расчет затрат на электроэнергию и амортизационных отчислений.

    дипломная работа [3,5 M], добавлен 04.01.2013

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Проблемы долговечности коленчатого вала. Анализ недостатков существующего оборудования для финишной обработки коленвала. Сущность холодной пластической деформации металлов. Оптимальная шероховатость трущихся поверхностей. Расчет привода вращения.

    дипломная работа [1,2 M], добавлен 14.10.2010

  • Основные правила выполнения изображений на чертежах. Последовательность составления эскиза детали. Правила проставления на сборочном чертеже габаритных, монтажных, установочных и эксплуатационных размеров. Способы защиты от коррозии металлов и сплавов.

    контрольная работа [2,7 M], добавлен 03.07.2015

  • Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа [871,7 K], добавлен 03.07.2015

  • Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат [218,2 K], добавлен 30.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.