Устройство гидропривода

Принцип работы, структурная схема и назначение объемных гидроприводов, их преимущества и недостатки. Классификация преобразователей механической энергии в энергию потока рабочей жидкости. Устройства управления потоком. Регуляторы давления и расхода воды.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 06.04.2017
Размер файла 665,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Структурная схема гидропривода

Гидроприводом называется совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости, находящейся под давлением, с одновременным выполнением функций регулирования и реверсирования скорости движения выходного звена гидродвигателя.

Гидроприводы могут быть двух типов: гидродинамические и объемные. В гидродинамических приводах используется в основном кинетическая энергия потока жидкости. В объемных гидроприводах используется потенциальная энергия давления рабочей жидкости.

Объемный гидропривод состоит из гидропередачи, устройств управления, вспомогательных устройств и гидролиний (рис.1.1).

Рис.1.1. Схема объемного гидропривода

Объемная гидропередача, являющаяся силовой частью гидропривода, состоит из объемного насоса (преобразователя механической энергии приводящего двигателя в энергию потока рабочей жидкости) и объемного гидродвигателя (преобразователя энергии потока рабочей жидкости в механическую энергию выходного звена).

В состав некоторых объемных гидропередач входит гидроаккумулятор (гидроемкости, предназначенные для аккумулирования энергии рабочей жидкости, находящейся под давлением, с целью последующего ее использования для приведения в работу гидродвигателя). Кроме того, в состав гидропередач могут входить также гидропреобразователи - объемные гидромашины для преобразования энергии потока рабочей жидкости с одними значениями давления P и расхода Q в энергию другого потока с другими значениями P и Q.

Устройства управления предназначены для управления потоком или другими устройствами гидропривода. При этом под управлением потоком понимается изменение или поддержание на определенном уровне давления и расхода в гидросистеме, а также изменение направления движения потока рабочей жидкости. К устройствам управления относятся:

· гидрораспределители, служащие для изменения направления движения потока рабочей жидкости, обеспечения требуемой последовательности включения в работу гидродвигателей, реверсирования движения их выходных звеньев и т.д.;

· регуляторы давления (предохранительный, редукционный, переливной и другие клапаны), предназначенные для регулирования давления рабочей жидкости в гидросистеме;

· регуляторы расхода (делители и сумматоры потоков, дроссели и регуляторы потока, направляющие клапаны), с помощью которых управляют потоком рабочей жидкости;

· гидравлические усилители, необходимые для управления работой насосов, гидродвигателей или других устройств управления посредством рабочей жидкости с одновременным усилением мощности сигнала управления.

Вспомогательные устройства обеспечивают надежную работу всех элементов гидропривода. К ним относятся: кондиционеры рабочей жидкости (фильтры, теплообменные аппараты и др.); уплотнители, обеспечивающие герметизацию гидросистемы; гидравлические реле давления; гидроемкости (гидробаки и гидроаккумуляторы рабочей жидкости) и др.

Состав вспомогательных устройств устанавливают исходя из назначения гидропривода и условий, в которых он эксплуатируется.

Гидролинии (трубы, рукава высокого давления, каналы и соединения) предназначены для прохождения рабочей жидкости по ним в процессе работы объемного гидропривода. В зависимости от своего назначения гидролинии, входящие в общую гидросистему, подразделяются на всасывающие, напорные, сливные, дренажные и гидролинии управления.

Классификация и принцип работы гидроприводов

В зависимости от конструкции и типа входящих в состав гидропередачи элементов объемные гидроприводы можно классифицировать по нескольким признакам.

Гидроприводы могут быть двух типов: гидродинамические и объёмные. гидропривод поток жидкость даление

В гидродинамических приводах используется в основном кинетическая энергия потока жидкости (и соответственно скорости движения жидкостей в гидродинамических приводах велики в сравнении со скоростями движения в объёмном гидроприводе).

В объёмных гидроприводах используется потенциальная энергия давления рабочей жидкости (в объёмных гидроприводах скорости движения жидкостей невелики -- порядка 0,5-6 м/с).

Объёмный гидропривод -- это гидропривод, в котором используются объёмные гидромашины (насосы и гидродвигатели). Объёмной называется гидромашина, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. К объёмным машинам относят, например, поршневые насосы, аксиально-поршневые, радиально-поршневые, шестерённые гидромашины и др.

Одна из особенностей, отличающая объёмный гидропривод от гидродинамического, -- большие давления в гидросистемах. Так, номинальные давления в гидросистемах экскаваторов могут достигать 32 МПа, а в некоторых случаях рабочее давление может быть более 300 МПа, в то время как гидродинамические машины работают обычно при давлениях, не превышающих 1,5--2 МПа.

Объёмный гидропривод намного более компактен и меньше по массе, чем гидродинамический, и поэтому он получил наибольшее распространение.

В зависимости от конструкции и типа входящих в состав гидропередачи элементов объёмные гидроприводы можно классифицировать по нескольким признакам.

1. По характеру движения выходного звена гидродвигателя:

· гидропривод вращательного движения (рис.1.2, а), когда в качестве гидродвигателя применяется гидромотор, у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;

· гидропривод поступательного движения (рис.1.2, б, в), у которого в качестве гидродвигателя применяется гидроцилиндр - двигатель с возвратно-поступательным движением ведомого звена (штока поршня, плунжера или корпуса);

· гидропривод поворотного движения (рис.1.2, г), когда в качестве гидродвигателя применен поворотный гидроцилиндр, у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 360 .

2. По возможности регулирования:

· регулируемый гидропривод, в котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть дроссельным (рис.1.2, б, г), объемным (рис.1.2, а), объемно-дроссельным или изменением скорости двигателя, приводящего в работу насос. Регулирование может быть ручным или автоматическим. В зависимости от задач регулирования гидропривод может быть стабилизированным, программным или следящим. Регулированию гидропривода будет посвящена отдельная лекция;

· нерегулируемый гидропривод, у которого нельзя изменять скорость движения выходного звена гидропередачи в процессе эксплуатации.

3. По схеме циркуляции рабочей жидкости:

· гидропривод с замкнутой схемой циркуляции (рис.1.2, а), в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса. Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации, поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;

· гидропривод с разомкнутой системой циркуляции (рис.1.2, б, в, г), в котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой. Достоинства такой схемы - хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе.

4. По источнику подачи рабочей жидкости:

· насосные гидроприводы, в которых рабочая жидкость подается в гидродвигатели насосами, входящих в состав этих гидроприводов; Насосный гидропривод.

В насосном гидроприводе, получившем наибольшее распространение в технике, механическая энергия преобразуется насосом в гидравлическую, носитель энергии -- рабочая жидкость, нагнетается через напорную магистраль к гидродвигателю, где энергия потока жидкости преобразуется в механическую. Рабочая жидкость, отдав свою энергию гидродвигателю, возвращается либо обратно к насосу (замкнутая схема гидропривода), либо в бак (разомкнутая или открытая схема гидропривода). В общем случае в состав насосного гидропривода входят гидропередача, гидроаппараты, кондиционеры рабочей жидкости, гидроёмкости и гидролинии.

Наибольшее применение в гидроприводе получили аксиально-поршневые, радиально-поршневые, пластинчатые и шестерённые насосы.

· аккумуляторные гидроприводы, в которых рабочая жидкость подается в гидродвигатели из гидроаккумуляторов, предварительно заряженных от внешних источников, не входящих в состав данных гидроприводов;

Аккумуляторный гидропривод. В аккумуляторном гидроприводе жидкость подаётся в гидролинию от заранее заряженного гидроаккумулятора. Этот тип гидропривода используется в основном в машинах и механизмах с кратковременными режимами работы.

· магистральные гидроприводы, в которых рабочая жидкость подается к гидродвигателям от специальной магистрали, не входящей в состав этих приводов.

В магистральном гидроприводе рабочая жидкость нагнетается насосными станциями в напорную магистраль, к которой подключаются потребители гидравлической энергии.

В отличие от насосного гидропривода, в котором, как правило, имеется один (реже 2-3) генератора гидравлической энергии (насоса), в магистральном гидроприводе таких генераторов может быть большое количество, и потребителей гидравлической энергии также может быть достаточно много.

5. По типу приводящего двигателя гидроприводы могут быть с электроприводом, приводом от ДВС, турбин и т.д.

Принцип работы объемного гидропривода основан на законе Паскаля, по которому всякое изменение давления в какой-либо точке покоящейся жидкости, не нарушающее ее равновесия, передается в остальные ее точки без изменения (рис.1.2).

Насосом 1 рабочая жидкость подается в напорную гидролинию 3 и далее через распределитель 5 к гидродвигателю 2. При одном положении гидрораспределителя совершается рабочий ход гидродвигателя, а при другом положении - холостой.

Из гидродвигателя жидкость через распределитель поступает в сливную гидролинию и далее или в гидробак 9, или во всасывающую гидролинию насоса (в гидроприводах с замкнутой схемой циркуляции рабочей жидкости, см. рис.1.2, а).

В резервуаре жидкость охлаждается и снова поступает в гидросистему. Надежная работа гидропривода возможна только при соответствующей очистке рабочей жидкости фильтрами 8. Регулирование скорости движения выходного звена гидродвигателя может быть дроссельным или объемным.

При дроссельном регулировании в гидросистеме устанавливаются нерегулируемые насосы, а изменение скорости движения выходного звена достигается изменением расхода рабочей жидкости через дроссель 6.

При объемном регулировании скорость движения выходного звена гидродвигателя изменяется подачей регулируемого насоса либо за счет применения регулируемого гидромотора.

Защита гидросистемы от чрезмерного повышения давления обеспечивается предохранительным 4а или переливным 4б клапанами, которые настраиваются на максимально допустимое давление.

Если нагрузка на гидродвигатель возрастает сверх установленной, то весь поток рабочей жидкости будет идти через предохранительный или переливной клапаны, минуя гидродвигатель.

Контроль за давлением на отдельных участках гидросистемы осуществляется по манометрам 11. Работа гидроагрегатов сопровождается утечками рабочей жидкости. В гидросистемах с замкнутой циркуляцией утечки компенсируются специальным подпитывающим насосом 1а (рис.1.2, а).

Ри.1.2. Варианты принципиальных схем гидроприводов: а - с объемным регулированием; б - с дроссельным регулированием; в - нерегулируемый; г - с дроссельным регулированием рабочего и холостого ходов

Схема гидропривода тормозов: 1 - тормозные цилиндры передних колес; 2 - трубопровод передних тормозов; 3 - трубопровод задних тормозов; 4 - тормозные цилиндры задних колес; 5 - бачок главного тормозного цилиндра; 6 - главный тормозной цилиндр; 7 - поршень главного тормозного цилиндра; 8 - шток; 9 - педаль тормоза

Когда водитель нажимает на педаль тормоза, его усилие передается через шток на поршень главного тормозного цилиндра. Поршень давит на жидкость, которая находится в главном цилиндре и трубопроводах. Давление жидкости от главного цилиндра передается по трубкам ко всем колесным тормозным цилиндрам, заставляя выдвигаться их поршни.

Поршни, в свою очередь, передают усилие на тормозные колодки передних и задних колес, которые, прижимаясь к тормозным дискам и барабанам, останавливают автомобиль.

Современный гидропривод тормозов состоит из двух независимых контуров, связывающих между собой пару колес. При отказе одного из контуров срабатывает второй, что обеспечивает, хотя и менее эффективное, но все-таки торможение автомобиля.

К примеру, на заднеприводных автомобилях ВАЗ один контур объединяет тормозные механизмы передних колес, а другой - задних. На переднеприводных ВАЗах между собой связаны: переднее левое колесо с задним правым и переднее правое с задним левым.

Для уменьшения усилия при нажатии на педаль тормоза и более эффективной работы системы применяется вакуумный усилитель. Усилитель заметно облегчает работу водителя, так как использование педали тормоза при движении в городском цикле носит постоянный характер и довольно быстро утомляет.

Преимущества и недостатки гидропривода

Широкое распространение гидропривода объясняется тем, что этот привод обладает рядом преимуществ перед другими видами приводов машин. Вот основные из них.

1. Бесступенчатое регулирование скорости движения выходного звена гидропередачи и обеспечение малых устойчивых скоростей. Минимальная угловая скорость вращения вала гидромотора может составлять 2…3 об/мин.

2. Небольшие габариты и масса. Время разгона, благодаря меньшему моменту инерции вращающихся частей не превышает долей секунды в отличие от электродвигателей, у которых время разгона может составлять несколько секунд.

3. Частое реверсирование движения выходного звена гидропередачи. Например, частота реверсирования вала гидромотора может быть доведена до 500, а штока поршня гидроцилиндра даже до 1000 реверсов в минуту. В этом отношении гидропривод уступает лишь пневматическим инструментам, у которых число реверсов может достигать 1500 в минуту.

4. Большое быстродействие и наибольшая механическая и скоростная жесткость. Механическая жесткость - величина относительного позиционного изменения положения выходного звена под воздействием изменяющейся внешней нагрузки. Скоростная жесткость - относительное изменение скорости выходного звена при изменении приложенной к нему нагрузки.

5. Автоматическая защита гидросистем от вредного воздействия перегрузок благодаря наличию предохранительных клапанов.

6. Хорошие условия смазки трущихся деталей и элементов гидроаппаратов, что обеспечивает их надежность и долговечность. Так, например, при правильной эксплуатации насосов и гидромоторов срок их службы доведен в настоящее время до 5…10 тыс. ч работы под нагрузкой. Гидроаппаратура может не ремонтироваться в течение долгого времени (до 10…15 лет).

7. Простота преобразования вращательного движения в возвратно-поступательное и возвратно-поворотные без применения каких-либо механических передач, подверженных износу.

Говоря о преимуществах гидропривода, следует отметить простоту автоматизации работы гидрофицированных механизмов, возможность автоматического изменения их режимов работы по заданной программе.

Гидроприводу присущи и недостатки, которые ограничивают его применение.

Основные из них следующие.

1. Изменение вязкости применяемых жидкостей от температуры, что приводит к изменению рабочих характеристик гидропривода и создает дополнительные трудности при эксплуатации гидроприводов (особенно при отрицательных температурах).

2. Утечки жидкости из гидросистем, которые снижают КПД привода, вызывают неравномерность движения выходногозвена гидропередачи, затрудняют достижение устойчивой скорости движения рабочего органа при малых скоростях.

3. Необходимость изготовления многих элементов гидропривода по высокому классу точности для достижения малых зазоров между подвижными и неподвижными деталями, что усложняет конструкцию и повышает стоимость их изготовления.

4. Взрыво- и огнеопасность применяемых минеральных рабочих жидкостей.

5. Невозможность передачи энергии на большие расстояния из-за больших потерь на преодоление гидравлических сопротивлений и резкое снижение при этом КПД гидросистемы.

Со многими из этих недостатков можно бороться. Например, стабильность вязкости при изменении температуры достигается применением синтетических рабочих жидкостей. Окончательный выбор типа привода устанавливается при проектировании машин по результатам технико-экономических расчетов с учетом условий работы этих машин. Гидропривод, тем не менее, имеет преимущества по сравнению с другими типами приводов там, где требуется создание значительной мощности, быстродействие, позиционная точность исполнительных механизмов, компактность, малая масса, высокая надежность работы и разветвленность привода.

Структура гидропривода

Обязательными элементами гидропривода являются насос и гидродвигатель. Насос является источником гидравлической энергии, а гидродвигатель -- её потребителем, то есть преобразует гидравлическую энергию в механическую. Управление движением выходных звеньев гидродвигателей осуществляется либо с помощью регулирующей аппаратуры -- дросселей, гидрораспределителей и др., либо путём изменения параметров самого гидродвигателя и/или насоса.

Принцип действия золотникового гидрораспределителя, управляющего движением штока гидроцилиндра

Обязательными составными частями гидропривода являются гидролинии, по которым жидкость перемещается в гидросистеме.

Критически важной для гидропривода (в первую очередь объёмного) является очистка рабочей жидкости от содержащихся в ней (и постоянно образующихся в процессе работы) абразивных частиц. Поэтому системы гидропривода обязательно содержат фильтрующие устройства (например, масляные фильтры), хотя принципиально гидропривод некоторое время может работать и без них.

Поскольку рабочие параметры гидропривода существенно зависят от температуры рабочей жидкости, то в гидросистемах в некоторых случаях, но не всегда, устанавливают системы регулирования температуры (подогревающие и/или охладительные устройства).

Количество степеней свободы гидросистем

Количество степеней свободы гидравлической системы может быть определено простым подсчётом количества независимо управляемых гидродвигателей.

Область применения

Объёмный гидропривод применяется в горных и строительно-дорожных машинах. В настоящее время более 50% общего парка мобильных строительно-дорожных машин (бульдозеров, экскаваторов, автогрейдеров и др.) является гидрофицированной. Это существенно отличается от ситуации 30-х - 40-х годов 20-го века, когда в этой области применялись в основном механические передачи.

В станкостроении гидропривод также широко применяется, однако в этой области он испытывает высокую конкуренцию со стороны других видов привода[1].

Широкое распространение получил гидропривод в авиации. Насыщенность современных самолётов системами гидропривода такова, что общая длина трубопроводов современного пассажирского авиалайнера может достигать нескольких километров.

В автомобильной промышленности самое широкое применение нашли гидроусилители руля, существенно повышающие удобство управления автомобилем. Эти устройства являются разновидностью следящих гидроприводов. Гидроусилители применяют и во многих других областях техники (авиации, тракторостроении, промышленном оборудовании и др.).

В некоторых танках, например, в японском танке Тип 10, применяется гидростатическая трансмиссия, представляющая собой, по сути, систему объёмного гидропривода движителей. Такого же типа трансмиссия устанавливается и в некоторых современных бульдозерах.

В целом, границы области применения гидропривода определяются его преимуществами и недостатками.

Функции гидропривода

Основная функция гидропривода, как и механической передачи, -- преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Другая функция гидропривода -- это передача мощности от приводного двигателя к рабочим органам машины (например, в одноковшовом экскаваторе -- передача мощности от двигателя внутреннего сгорания к ковшу или к гидродвигателям привода стрелы, к гидродвигателям поворота башни и т.д.).

В общих чертах, передача мощности в гидроприводе происходит следующим образом:

Приводной двигатель передаёт вращающий момент на вал насоса, который сообщает энергию рабочей жидкости.

Рабочая жидкость по гидролиниям через регулирующую аппаратуру поступает в гидродвигатель, где гидравлическая энергия преобразуется в механическую.

После этого рабочая жидкость по гидролиниям возвращается либо в бак, либо непосредственно к насосу.

Перспективы развития

Перспективы развития гидропривода во многом связаны с развитием электроники. Так, совершенствование электронных систем позволяет упростить управление движением выходных звеньев гидропривода. В частности, в последние 10-15 лет стали появляться бульдозеры, управление которыми устроено по принципу джойстика.

С развитием электроники и вычислительных средств связан прогресс в области диагностирования гидропривода. Процесс диагностирования некоторых современных машин простыми словами может быть описан следующим образом. Специалист подключает переносной компьютер к специальному разъёму на машине.

Через этот разъём в компьютер поступает информация о значениях диагностических параметров от множества датчиков, встроенных в гидросистему. Программа или специалист анализирует полученные данные и выдаёт заключение о техническом состоянии машины, наличии или отсутствии неисправностей и их локализации.

По такой схеме осуществляется диагностирование, например, некоторых современных ковшовых погрузчиков. Развитие вычислительных средств позволит усовершенствовать процесс диагностирования гидропривода и машин в целом.

Важную роль в развитии гидропривода может сыграть создание и внедрение новых конструкционных материалов.

В частности, развитие нанотехнологий позволит повысить прочность материалов, что позволит уменьшить массу гидрооборудования и его геометрические размеры, повысить его надёжность.

С другой стороны, создание прочных и одновременно эластичных материалов позволит, например, уменьшить недостатки многих гидравлических машин, в частности, увеличить развиваемое диафрагменными насосами давление.

В последние годы наблюдается существенный прогресс в производстве уплотнительных устройств. Новые материалы обеспечивают полную герметичность при давлениях до 80 МПа, низкие коэффициенты трения и высокую надёжность[1].

Размещено на Allbest.ru

...

Подобные документы

  • Разработка гидросхемы согласно заданным параметрам. Принцип работы и гидравлическая схема устройства. Расчет параметров исполнительных механизмов гидропривода. Определение длины хода штоков, давления и диаметров цилиндров. Выбор рабочей жидкости.

    курсовая работа [142,0 K], добавлен 16.02.2011

  • Уравнение Бернулли для струйки идеальной жидкости. Внутреннее трение в жидкости. Изменение и приращение кинетической энергии. Типы объемных гидроприводов по виду движения и их определение. Принципиальные и полуконструктивные схемы гидроаппаратов.

    контрольная работа [264,8 K], добавлен 30.11.2010

  • Классификация, устройство и принцип работы направляющей аппаратуры гидроприводов: логических клапанов, выдержки времени. Назначение и элементы уплотнительных устройств гидроприводов. Закон Архимеда. Расчет аксиально-поршневого насоса с наклонным блоком.

    контрольная работа [932,3 K], добавлен 17.03.2016

  • Расчёт рабочих, геометрических параметров и выбор насоса, типоразмеров элементов гидропривода. Определение расхода рабочей жидкости проходящей через гидромотор. Характеристика перепада и потерь давления, фактического давления насоса и КПД гидропривода.

    курсовая работа [1,5 M], добавлен 17.06.2011

  • Принцип действия и схема привода автокрана. Определение мощности гидропривода, насоса, внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчет гидромоторов, потерь давления в гидролиниях.

    курсовая работа [479,5 K], добавлен 19.10.2009

  • Схемы циклических гидроприводов станочного оборудования. Методы динамического анализа и синтеза гидроприводов с детерминированным управлением. Устройство и принцип действия гидропривода, управляемого гидроустройством с автоматическим регулятором.

    дипломная работа [1,7 M], добавлен 12.08.2017

  • Обзор автоматизированных гидроприводов буровой техники. Выбор рабочей жидкости гидропривода. Определение расхода жидкости и расчет гидравлической сети. Расчет объема масляного бака. Требования безопасности при работе с гидравлическим оборудованием.

    курсовая работа [1,1 M], добавлен 22.09.2011

  • Устройство и принцип работы гидропривода станка. Расчет расходов в магистралях с учетом утечек жидкости. Выбор гидроаппаратуры и гидролиний. Определение производительности насоса, потерь давления на участках гидросистемы, толщины стенок трубопровода.

    курсовая работа [819,5 K], добавлен 19.10.2014

  • Выбор номинального давления, расчет и выбор гидроцилиндров и гидромоторов. Определение расхода жидкости, потребляемого гидродвигателями, подбор гидронасоса. Выбор рабочей жидкости, расчет диаметров труб и рукавов. Расчет потерь давления в гидросистеме.

    курсовая работа [171,8 K], добавлен 17.12.2013

  • Назначение величины рабочего давления в гидросистеме, учет потерь. Определение расчетных выходных параметров гидропривода, диаметров трубопроводов. Расчет гидроцилиндров и времени рабочего цикла. Внутренние утечки рабочей жидкости; к.п.д. гидропривода.

    курсовая работа [869,4 K], добавлен 22.02.2012

  • Вычисление параметров гидродвигателя, насоса, гидроаппаратов, кондиционеров и трубопроводов. Выбор рабочей жидкости, определение ее расхода. Расчет потерь давления. Анализ скорости рабочих органов, мощности и теплового режима объемного гидропривода.

    курсовая работа [988,0 K], добавлен 16.12.2013

  • Принцип действия и схема объемного гидропривода бульдозера. Определение мощности привода, насоса, внутреннего диаметра гидролиний, скоростей движения жидкости. Выбор гидроаппаратуры, кондиционеров рабочей жидкости. Расчет гидромоторов и гидроцилиндров.

    курсовая работа [473,2 K], добавлен 19.10.2009

  • Описание работы гидропривода и назначение его элементов. Выбор рабочей жидкости, скорости движения при рабочем и холостом ходе. Определение расчетного диаметра гидроцилиндра, выбор его типа и размеров. Вычисление подачи насоса, давления на выходе.

    курсовая работа [232,2 K], добавлен 20.01.2015

  • Расчёт нерегулируемого объёмного гидропривода возвратно-поступательного движения. Определение расчётного давления в гидросистеме, расхода рабочей жидкости в гидроцилиндре, потребной подачи насоса. Выбор гидроаппаратуры. Тепловой расчёт гидросистемы.

    курсовая работа [166,7 K], добавлен 06.02.2011

  • Анализ работы гидропривода при выполнении элементов цикла. Расчет гидравлического цилиндра, расхода жидкости при перемещениях рабочих органов. Расчет подачи насоса, трубопроводов и их выбор. Принципиальная схема гидропривода. Проектирование гидроцилиндра.

    курсовая работа [229,5 K], добавлен 08.10.2012

  • Анализ режимов работы гидропривода. Выбор гидромашин, гидроаппаратов и кондиционеров рабочей жидкости. Разработка принципиальной схемы. Выбор трубопроводов. Разработка математического и программного обеспечения. Анализ теплового режима гидропривода.

    курсовая работа [108,6 K], добавлен 17.02.2016

  • Обоснование использования гидропривода. Определение технологической нагрузки, параметров гидропривода. Потери давления в местных гидравлических сопротивлениях в трубопроводах. Расчет гидробака для рабочей жидкости. Технология изготовления плунжера.

    дипломная работа [5,9 M], добавлен 10.01.2016

  • Особенности и принципы работы гидравлических реле давления и времени. Характеристика основных способов разгрузки насосов от давления. Суть дроссельного регулирования. Гидравлические линии. Эксплуатация объемных гидроприводов в условиях низких температур.

    контрольная работа [190,2 K], добавлен 10.02.2015

  • Выбор рабочей жидкости для гидропривода. Расчет производительности насоса. Расчет и выбор трубопроводов. Особенность избрания золотниковых распределителей. Определение потерь давления в гидросистеме. Вычисление энергетических показателей гидропривода.

    курсовая работа [1,1 M], добавлен 16.01.2022

  • Конструкция и принцип действия поршневых эксцентриковых насосов, их применение для преобразования механической энергии двигателя в механическую энергию перекачиваемой жидкости. Применение гидромеханической трансмиссии на сельскохозяйственном тракторе.

    контрольная работа [3,7 M], добавлен 08.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.