Математическая модель машинно-тракторного агрегата с упругодемпфирующим механизмом в трансмиссии трактора

Анализ математической модели пахотного агрегата на базе трактора с упругодемпфирующим механизмом в трансмиссии показал. Оценка параметров и технологическое обоснование удовлетворительности математической модели исследуемого машинно-тракторного агрегата.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 15.05.2017
Размер файла 255,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Математическая модель машинно-тракторного агрегата с упругодемпфирующим механизмом в трансмиссии трактора

При расчёте параметров и режимов работы сельскохозяйственного машинно-тракторного агрегата (МТА) обычно применяют типовые тяговые характеристики трактора, построенные при статическом тяговом сопротивлении на прицепном устройстве. В действительности же трактор это сложная динамическая система, состоящая из отдельных элементов и подверженная внешним воздействиям, которые носят динамический характер [1, 2 и др.]. Вероятностный характер внешних воздействий на агрегат, проявляющийся в неравномерности нагрузочного режима, существенно отражается на показателях, определяющих уровень машиноиспользования при выполнении технологических операций [3 и др.].

Рациональным способом оптимизации загрузочных режимов двигателя МТА является компенсация колебаний момента сопротивления [4 и др.].

Анализ показал, что существующие различные гасители колебаний и демпферные устройства обладают рядом существенных недостатков: изменяют жёсткость трансмиссии в небольших пределах, имеют линейную характеристику, не обеспечивают бесступенчатого регулирования передаточного числа трансмиссии и т.д.

Упругодемпфирующий механизм (рисунок 1), разработанный на кафедре «Тракторы и автомобили» Азово-Черноморского инженерного института ФГБОУ ВПО «Донской государственный аграрный университет» в г. Зернограде и предназначенный для плавного трогания МТА при разгоне, снижения динамических нагрузок в трансмиссии, от колебаний внешней нагрузки, а также бесступенчатого регулирования передаточного числа трансмиссии, лишён таких недостатков [5, 6].

1 - планетарный редуктор; 2 - коронная шестерня; 3 - солнечная шестерня; 4 - шестерня привода масляного насоса; 5 - масляный насос; 6 - подвижные грузы для изменения момента инерции; 7 - сателлиты; 8 - регулятор положения грузов; 9 - всасывающий канал; 10 - нагнетательный канал; 11 - вал водила (первичный вал коробки перемены передач); 12 - коробка перемены передач; 13 - муфта сцепления; 14 - двигатель; 15 - регулируемый дроссель; 16 - вход в дроссель; 17 - предохранительный клапан; 18 - кран управления; 19 - демпферный клапан; 20 - гидробак; 21 - сжатый воздух; 22 - пневмогидроаккумулятор; 23 - подвижный поршень, 24 - маслопровод

Рисунок 1. Принципиальная схема упругодемпфирующего механизма (УДМ) в трансмиссии трактора по патенту 2222440 RU, МПК В60К 17/10

пахотный упругодемпфирующий трактор технологический

Коронная шестерня 2 планетарного редуктора 1 соединена с маховиком двигателя и передает крутящий момент на вал 11 привода коробки передач и на сателлиты, связанные с водилом и солнечной шестерней 3. Водило имеет жесткую связь с ведущим валом коробки перемены передач. Центральная шестерня 3 редуктора через шестерню 4 приводит во вращение податливое звено упругодемпфирующего механизма - гидронасос 5. Насос имеет всасывающий и нагнетательный каналы. Нагнетательный канал соединяет гидронасос с масляной полостью пневмогидроаккумулятора 22 (ПГА). Вторая полость ПГА, отделенная от первой поршнем с уплотнениями, заправлена сжатым воздухом. Заправка осуществляется через воздушный кран. Закономерность подачи масла в ПГА может изменяться регулируемым дросселем 15. Максимальное давление в нагнетательной полости насосов ограничивается предохранительным клапаном 17. Сброс масла при срабатывании клапана 17 и при открытом положении крана 18 осуществляется в бак 20. За время работы в аккумулятор подается определенный объем масла, который зависит от числа оборотов насоса.

В первоначальный период трогания агрегата начинают вращаться солнечная шестерня планетарного редуктора и гидронасос, нагнетая масло в ПГА. Так как момент сопротивления на ведущем валу коробки перемены передач имеет большое значение, трактор стоит на месте до тех пор, пока сопротивление на солнечной шестерне меньше, чем на водиле. При дальнейшем нарастании давления в ПГА агрегат начинает плавно разгоняться, а насос постепенно останавливается. Практически движение трактора начинается в момент, когда ведущий момент на валу коробки передач равен приведенному моменту сопротивления. Скорость нарастания ведущего момента можно регулировать, изменяя проходное сечение дросселя. В конце первой фазы разгона происходит резкое возрастание ведущего момента и, чтобы предупредить динамические нагрузки в трансмиссии трактора, предусмотрен предохранительный клапан. Во второй фазе разгона ведущий момент постепенно снижается до значения приведенного момента сопротивления, на установившемся режиме движения МТА насос стоит, то есть работает в режиме «стоп», и трансмиссия практически ничем не отличается от серийной. При повышении нагрузки насос проворачивается, подавая дополнительную порцию масла в ПГА, и снижает скорость движения МТА, а при снижении нагрузки насос работает в режиме гидромотора, который приводится во вращение маслом из ПГА через обратный клапан 19, увеличивая скорость движения МТА. Тем самым автоматически поддерживается высокий коэффициент загрузки двигателя.

Функциональная схема сельскохозяйственного МТА с УДМ в трансмиссии трактора представлена на рисунке 2.

Рисунок 2. Функциональная схема МТА с УДМ в трансмиссии

Для соблюдения динамического подобия реального агрегата движущиеся массы двигателя заменены маховиком с моментом инерции , масса коронной шестерни УДМ моментом инерции , масса водила УДМ моментом инерции , массы солнечной (центральной) шестерни УДМ моментом инерции , массы силовой передачи - моментом инерции , массы движителя и колес - моментом инерции , поступательно движущиеся массы трактора и сельхозмашины, не связанные с силовой передачей трактора - массой . То есть машинно-тракторный агрегат можно представить последовательно соединёнными звеньями: двигатель - силовая передача - ведущее колесо - нагрузка, с отображением реальных связей между ними (рисунок 3).

Рисунок 3. Схема динамической модели, эквивалентной агрегату с УДМ в трансмиссии трактора

Модель составлена при следующих основных допущениях:

- остов трактора вместе с кабиной рассматривается как твердое тело;

- колебания рассматриваются от положения статического равновесия с началом координат в центре масс трактора;

- трактор движется прямолинейно;

- упругие элементы имеют линейную характеристику;

- воздействия на правое и левое колеса одинаковые и одновременные;

- силы вязкого трения в элементах шины, трансмиссии и УДМ пропорциональны относительным скоростям, а силы неупругого сопротивления - действующим усилиям.

Поведение такой динамической модели определяется следующими обобщенными координатами системы: углами поворота коленчатого вала двигателя, вала муфты сцепления, , , соответственно центральной шестерни, водила планетарного механизма и коронной шестерни первичного вала трансмиссии, оси ведущего колеса, беговой дорожки шины; х - положением МТА. Вследствие того, что двигатели сельскохозяйственных тракторов снабжены всережимным регулятором (масса - ), а некоторые и турбонагнетателем (момент инерции ), необходимо к вышеперечисленным добавить следующие обобщённые координаты: - положение рейки топливного насоса; - угол поворота ротора турбонагнетателя [7 и др.].

Производные от координат по времени представляют собой обобщенные скорости системы: угловые скорости коленчатого вала двигателя, вала муфты сцепления, центральной шестерни, водила, коронной шестерни, первичного вала трансмиссии, оси ведущих колес трактора, беговой дорожки шины, ротора турбонагнетателя; - скорость МТА; - скорость перемещения муфты регулятора.

Движение машинно-тракторного агрегата осуществляется под действием следующих моментов и сил: М1 - крутящего момента двигателя; - момента трения муфты сцепления двигателя; - момента трения фрикциона переключения передач; Мупр - момента упругих сил связи в трансмиссии трактора; - момента закрутки шины; Мш - момента, обусловленного упругостью и демпфированием в шине; - усилием в контакте отпечатка шины; Рс - усилием сопротивления рабочих органов машины [7 и др.].

Для соблюдения динамического подобия реальных машинно-тракторных агрегатов в представленных моделях необходимо учитывать при расчете сил и моментов сухое и вязкое трение в трансмиссии и шинах, жесткость трансмиссии, жесткость шины, буксование движителей, характеризуемые соответствующими коэффициентами , , , , , , , и .

Математическую модель МТА с УДМ в трансмиссии трактора (1 фаза разгона ?) представим в следующем виде (1):

(1)

; ; ;

При равенстве , получим видоизмененную систему (2):

(2)

; ; ;

где , соответственно радиусы сателлитов, центральной шестерни;

, объем камеры сжатия аккумулятора в начале сжатия и текущий;

, - давление воздуха в начале сжатия и текущее его значение;

, площадь поршня пневмогидроаккумулятора, дросселя;

, соответственно полное и текущее значение хода поршня.

Для решения системы уравнений движения МТА нами принят метод Рунге-Кутта, который обеспечивает необходимую точность расчетов и базируется на методе численного интегрирования четвертого порядка.

Результаты, полученные при анализе математической модели пахотного агрегата на базе трактора класса 5 показывают, что относительная ошибка не превышает 5,1%, значения критериев Стьюдента и Фишера не превышают табличных значений, а коэффициент корреляции показывает тесную связь между сравниваемыми результатами. То есть, математическую модель МТА можно считать вполне удовлетворительной.

Анализ диаграмм разгона (рисунок 4), полученных при решениях математической модели МТА на базе трактора класса 5, показывает, что УДМ в трансмиссии трактора оказывает существенное влияние на характер протекания показателей разгона МТА.

--- - серийная трансмиссия; - - - - - - опытная трансмиссия;

1, 2 - угловые скорости двигателя и первичного вала трансмиссии;

3 - момент упругой связи; 4 - коэффициент буксования

Рисунок 4. Диаграммы разгона МТА с опытной и серийной трансмиссиями

В результате анализа данных, полученных при теоретических исследованиях, можно сделать следующие выводы:

- в связи со значительными колебаниями внешней нагрузки достижение потенциальной производительности МТА возможно путём установки упругодемпфирующих механизмов в трансмиссию трактора;

- при разгоне МТА с УДМ в трансмиссии трактора класса 5 минимальная угловая скорость вращения коленчатого вала двигателя увеличилась на 7,2% и более, максимальное значение момента упругой связи снизилось на 24,5%, динамические нагрузки в трансмиссии уменьшились на 21,4%, работа трения фрикциона стала меньше на 25,6% по сравнению с серийным вариантом;

- установка УДМ в трансмиссию трактора устраняет резонансные режимы функционирования МТА в зоне реальных частот колебаний внешней нагрузки (в результате этого амплитуда колебаний поступательной скорости уменьшается на 8%, а производительность агрегата увеличивается свыше 5%);

- на низких частотах колебаний внешней нагрузки при <1,0 Гц «прозрачность» механизма резко снижается, на частотах > 1,0 Гц «степень прозрачности» УДМ изменяется незначительно, но снижается при уменьшении , что позволяет работать трактору класса 5 при выполнении сельскохозяйственных операций с постоянной частотой вращения коленчатого вала двигателя;

- предлагаемая конструкция УДМ в трансмиссии трактора класса 1,4 способствует снижению колебаний поступательной скорости и позволяет снизить колебания внешней тяговой нагрузки, передающиеся на двигатель в среднем на 15…20% в полевых условиях и на 30…40% на твердых устойчивых фонах (бетон, асфальт).

Список литературы

1. Агеев, Л.И. Основы расчета оптимальных и допустимых режимов работы машинно-тракторных агрегатов / Л.И. Агеев. - Л.: Колос, 1978. - 296 с.

2. Барский, И.Б. Динамика трактора / И.Б. Барский, В.Я. Анилович, Г.М. Кутьков. - М.: Машиностроение, 1973. - 280 с.

3. Иофинов, С.А. Определение эксплуатационных параметров и показателей работы агрегатов при вероятностном характере исследуемых величин / С.А. Иофинов, Б.К. Микуберг // Механизация и электрификация социалистического сельского хозяйства. - 1971. - №12. - С. 42…46.

4. Поливаев, О.И. Упругодемпфирующий привод на колесных тракторах / О.И. Поливаев, Н.Е. Гусенко, А.С. Дурманов, Р.И. Фролов // Механизация и электрификация сельского хозяйства. - 1990. - №3. - С. 11…12.

5. Патент 2222440 Российская Федерация, МПК В60К 17/10. Устройство для снижения жёсткости трансмиссии транспортного средства / В.А. Кравченко, А.А. Сенькевич, С.Е. Сенькевич, Ю.С. Толстоухов, В.Г. Яровой; заявитель и патентообладатель ФГОУ ВПО АЧГАА. - №2002129554/11; заявл. 04.11.2002 // Изобретения. Полезные модели. - 2004. - №3. - Ч. III. С. 657.

6. Кравченко, В.А. Упругодемпфирующий механизм в трансмиссии трактора / В.А. Кравченко, Д.А. Гончаров, В.В. Дурягина // Сельский механизатор. - 2008. - №11. С. 40…41.

7. Кравченко, В.А. Математическая модель культиваторного агрегата / В.А. Кравченко, В.Г. Яровой, С.Г. Пархоменко // Адаптивные технологии и технические средства в полеводстве и животноводстве: сб. науч. тр. / ВНИПТИМЭСХ. - Зерноград, 2000. - С. 67…72.

Размещено на Allbest.ru

...

Подобные документы

  • Краткая характеристика хозяйства исследуемого района. Механизированная технология возделывания и уборки сельскохозяйственной культуры. Подготовка машинно-тракторного агрегата к работе и обоснование оптимального состава тракторного парка хозяйства.

    курсовая работа [117,9 K], добавлен 28.02.2011

  • Определение сил, действующих на навесной плуг трактора. Расчет и анализ процесса перевода плуга из рабочего в транспортное положение гидросистемой тракторного насоса. Определение продольной устойчивости навесного агрегата при помощи коэффициента запаса.

    контрольная работа [62,8 K], добавлен 16.02.2011

  • Конструкция трактора "Беларус-1025.4". Методы и приборы, позволяющие экспериментально определить величину угловых скоростей отдельных частей трансмиссии трактора. Существенные параметры разгона трактора с учетом системы топливоподачи CommonRail.

    курсовая работа [1,2 M], добавлен 08.05.2016

  • Разработка технологического процесса механизации работ по созданию древесных насаждений в пригородном лесопарке. Комплектование машинно-тракторного агрегата. Расчет сопротивлений орудий, агрегируемых с тракторами, расхода горюче-смазочных материалов.

    курсовая работа [1,1 M], добавлен 25.05.2016

  • Устройство и принцип работы машинного агрегата. Структурный анализ его механизмов, их кинематический, силовой анализ и синтез. Уравновешивание сил инерции кривошипно-ползунного механизма. Расчет махового колеса и коэффициента полезного действия агрегата.

    курсовая работа [2,1 M], добавлен 11.11.2010

  • Определение эксплуатационного веса и массы заданного трактора, силы сопротивления качению. Принципы подбора пневмошин и его обоснование, расчет технических данных. Зависимость буксования от тяговой силы. Параметры выбранного серийного тракторного дизеля.

    контрольная работа [463,2 K], добавлен 12.12.2014

  • Регулярная характеристика дизеля для колесного трактора. Максимальная угловая скорость вала двигателя. Передаточные числа трансмиссии для диапазона рабочих скоростей. Максимальная крюковая сила на каждой передаче при максимальном крутящемся моменте.

    контрольная работа [45,8 K], добавлен 19.01.2011

  • Выбор технологического комплекса машин. Состав агрегата на операции посадка. Расчет тягового сопротивления СЛГ-1А, баланса и мощности трактора, эксплуатационных показателей. Техническое обслуживание машины, обоснование эффективности ее применения.

    курсовая работа [756,5 K], добавлен 22.09.2014

  • Кинематические характеристики машинного агрегата; алгоритм аналитического решения задачи. Расчет скоростей и ускорений всех точек и звеньев агрегата в заданном положении. Силовой расчет рычажного механизма. Динамический синтез кулачкового механизма.

    курсовая работа [2,9 M], добавлен 24.01.2012

  • Описание конструкции агрегата: газохода, рекуператора. Характеристика и принцип работы тепловой работы агрегата. Расчет процесса горения природного газа, вертикального газохода, металлического трубчатого петлевого рекуператора для нагрева воздуха.

    курсовая работа [496,5 K], добавлен 24.02.2012

  • Структурный и динамический анализ рычажного механизма. Расчет масштаба кинематической схемы. Построение диаграммы приращения кинетической энергии машинного агрегата, звеньев рычажного механизма. Расчет параметров зубчатой передачи, межосевого расстояния.

    курсовая работа [853,6 K], добавлен 15.05.2013

  • Анализ конструкции гильзы кристаллизатора. Поиск аналога для проектирования чистовой клети. Устройство и принцип работы летучих ножниц. Технология изготовления опорного ролика, вала редуктора ЦО-450 литейно-прокатного агрегата. Оценка труда литейщика.

    дипломная работа [3,5 M], добавлен 26.10.2014

  • Функциональная схема автоматизации агрегата. Разработка программы управления МНА с применением алгоритмов защит по вибрации и осевому сдвигу. Оценка экономической эффективности проекта внедрения системы виброконтроля магистрального насосного агрегата.

    дипломная работа [3,6 M], добавлен 29.04.2015

  • Математическое обеспечение системы нейро-нечёткого управления многосвязными тепловыми объектами агрегата гуммированных покрытий металла. Имитационная модель сушки материалов на поверхности металлической полосы в печах агрегата гуммированных покрытий.

    дипломная работа [2,3 M], добавлен 09.11.2016

  • Проектировочный тяговый расчет трактора 4К2 при условии прямолинейного движения на невзлущенной стерне нормальной влажности. Определение номинальных тягово-скоростных и мощностных параметров. Расчет показателей топливной экономичности и КПД трактора.

    курсовая работа [94,9 K], добавлен 01.03.2014

  • Назначение и описание компрессорной станции. Система подготовки транспортируемого газа на КС. Назначение и технические данные газоперекачивающего агрегата. Техническое обслуживание и ремонт ГПА. Устройство и работа агрегата, система пожаротушения.

    отчет по практике [582,0 K], добавлен 11.11.2014

  • Информационное обеспечение для моделирования нечеткого контроллера, управляющего подъемно-транспортным механизмом. Модель и алгоритм управления подъемно-транспортным механизмом, предназначенные для улучшения качесва управления процессом переноса груза.

    дипломная работа [1,2 M], добавлен 15.01.2009

  • Основные конструктивные характеристики, расчеты по топливу, воздуху и продуктам сгорания, составление теплового баланса котельного агрегата ПК-19. Выявление потерь от механического и химического недожога и вследствие теплообмена с окружающей средой.

    курсовая работа [603,3 K], добавлен 29.07.2009

  • Описание двухбарабанного вертикально-водотрубного реконструированного котла и его теплового баланса. Количество воздуха необходимого для полного сгорания топлива и расчетные характеристики топки. Конструкторский расчет котельного агрегата и экономайзера.

    курсовая работа [611,8 K], добавлен 20.03.2015

  • Определение кинематических характеристик агрегата. Динамический анализ движения звена приведения и нагруженности рычажного механизма. Расчет динамики машины на ЭВМ. Обработка и графическая проверка результатов. Механизм с коромысловым толкателем.

    курсовая работа [1,2 M], добавлен 23.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.