Рациональная технология послеуборочной обработки семян подсолнечника

Существенная особенность возделывания семенного материала путем последовательной обработки на всех зерноочистительных машинах. Характеристика применения фотоэлектронного сепаратора с последующим разделением семян подсолнечника на размерные фракции.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 20.05.2017
Размер файла 3,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАЦИОНАЛЬНАЯ ТЕХНОЛОГИЯ ПОСЛЕУБОРОЧНОЙ ОБРАБОТКИ СЕМЯН ПОДСОЛНЕЧНИКА

Технология послеуборочной обработки семенного материала является сложной функциональной системой, оказывающая всестороннее влияние на качество получаемых семян. Неудовлетворительное качество семян приводит к существенному снижению результативности технологий производства сельскохозяйственной продукции, большому перерасходу посевного материала и недобору урожая. Система мероприятий по сохранению качества семян является ответственным этапом, которые относятся к категории первоочередных, требующая немедленного результата. Фактическое влияние послеуборочной обработки на состояние семян и обусловленную им урожайность является значимой. Наиважнейшая задача, стоящая перед создателями конкурентоспособных семяочистительных комплексов является разработка рациональной технологии послеуборочной обработки семенного материала, которая обеспечит выход высококачественных кондиционных семян с минимальными затратами [1].

Существующие зерноочистительные агрегаты и комплексы для подготовки семенного материала типа ЗАВ (рисунок 1) предлагаемые Воронежсельмаш и ГСКБ Зерноочистка, компанией «Полымя» (Белоруссия), семзаводом для подсолнечника (г. Новоаннинск Волгоградской области) и др. осуществляют обработку материала путем последовательной обработки на всех зерноочистительных машинах. Возврат на любой этап не предусмотрен, для этого необходимо проводить повторную обработку по всей цепочке машин, что приводит к уменьшению выхода семян, снижению производительности и повышенному травмированию семенного материала [3]. зерноочистительный фотоэлектронный сепаратор подсолнечник

Для устранения перечисленных недостатков во ВНИИ масличных культур разработана контейнерная технология (рисунок 2), которая реализована в универсальном семяочистительном комплексе (рисунок 3, 4), позволяющая при необходимости закончить обработку семенного материала в момент соответствия семян требованиям ГОСТ на любом этапе [1].

Рисунок - Универсальная контейнерная технология подготовки семян двух различных культур или гибридов

Универсальный семяочистительный комплекс (рисунок 5) включает последовательно соединённые первый бункер 1 приёмный, транспортёр 2 загрузочный, первую норию 3 загрузочную, машину 4 первичной очистки, норию 5 промежуточную, блок 6 триерный, машину 7 ветро-решётную семяочистительную [9], норию 8 заключительную, стол 9 пневмосортировальный, бункер 10 накопительный, бункер 11 промежуточый, перегружатели 12,13, установленные у нории промежуточной и у нории заключительной соответственно, контейнеры 14 передвижные, а также второй бункер 15 приёмный, вторую норию 16 загрузочную и зернопроводы 17, 19, 20, 22, 23, 26, 27, 29-32, соединяющие верхнюю головку второй нории загрузочной через третий перекидной клапан 18 со входом машины первичной очистки (17а) или со входом машины ветро-решётной семяочистительной (17б), транспортёр загрузочный - с нижней головкой первой нории загрузочной, верхнюю головку первой нории загрузочной через четвёртый перекидной клапан 21 - со входом машины первичной очистки (20а) или со входом машины ветро-решётной семяочистительной (20б), выход машины первичной очистки - с нижней головкой нории промежуточной, верхнюю головку нории промежуточной через первый перекидной клапан 24 - со входом машины ветро-решётной семяочистительной (23а) или, через пятый перекидной клапан 25 - со входом блока триерного (23б) или со входом бункера промежуточного (23в), выход машины ветро-решётной семяочистительной - с нижней головкой нории заключительной, верхнюю головку нории заключительной через второй перекидной клапан 28 - со входом стола пневмосортировального (27а) или со входом бункера накопительного (27б), перегружатель установленный у нории заключительной, - с нижней её головкой, перегружатель, установленный у нории промежуточной, - с нижней её головкой, второй бункер приёмный - с нижней головкой второй нории загрузочной, выход триерного блока - со входом бункера промежуточного, один из выходов пятого перекидного клапана - со входом бункера промежуточного соответственно [3].

Рисунок 5 - Технологическая схема универсального семяочистительного комплекса для подготовки семян

Универсальный семяочистительный комплекс работает следующим образом [1]. Исходный ворох (рисунок 5) одной культуры выгружается в первый приёмный бункер из автотранспорта самостоятельно или разгрузчиком автомобилей, подаётся дозировано питателем-дозатором в транспортёр загрузочный, по зернопроводу - на нижнюю головку первой нории загрузочной, которая направляет его по зернопроводу через четвёртый перекидной клапан на вход машины первичной очистки. С выхода машины первичной очистки семена, очищенные от крупных и мелких примесей, поступают по зернопроводу на нижнюю головку нории промежуточной, которая направляет семена по зернопроводу через первый перекидной клапан, в зависимости от характеристики исходного вороха, либо по зернопроводу через пятый перекидной клапан на вход блока триерного, на котором происходит выделение коротких и длинных примесей, либо через пятый перекидной клапан и зернопровод, минуя блок триерный, - в бункер промежуточный, либо по зернопроводу на вход машины ветрорешётной семяочистительной, на которой происходит сортирование семян - выделяются семена обрушенные, щуплые, невыполненные, а также органические примеси, отличающиеся от кондиционных семян своими размерами и другими физико-механическими свойствами.

Семена, не нуждающиеся в очистке от длинных и коротких примесей или очищенные от них семена с выхода блока триерного, поступают в бункер промежуточный, который установлен под этим блоком, и там накапливаются. Основной выход машины ветро-решётной семяочистительной поступает по зернопроводу на нижнюю головку первой нории заключительной, которая подаёт его по зернопроводу через второй перекидной клапан либо на вход стола пневмосортировального, либо в бункер накопительный и далее - на хранение или на повторную обработку по другой технологической схеме.

Исходный ворох другой культуры или другого сорта той же культуры загружается во второй приёмный бункер и по зернопроводу подаётся на нижнюю головку второй нории загрузочной, которая направляет его по зернопроводу через третий перекидной клапан либо на вход машины первичной очистки (по зернопроводу) либо на вход ветро-решётной семяочистительной машины (по зернопроводу) - в зависимости от исходного состояния вороха: если ворох нуждается в первичной очистке, то его направляют по зернопроводу на машину, а если он нуждается только в сортировке, то - по зернопроводу сразу на машину ветро-решётную семяочистительную.

Наличие бункера промежуточного обеспечивает возможность регулирования очерёдности подачи разных ворохов на машину ветро-решётную семяочистительную посредством перегружателя и контейнеров: семена, обработанные на блоке триерном и накопившиеся в бункере промежуточном, могут перегружаться в контейнеры передвижные и далее направляться в них либо в склад, либо на обработку на машине ветро-решётной семяочистительной.

В зависимости от характеристики обрабатываемых ворохов после любой операции можно прекратить дальнейшую их обработку и с помощью контейнеров передвижных отправить семена по назначению.

Качественные показатели работы универсального семяочистительного комплекса показали, что исходный ворох семян, поступающий на семяочистительную машину первичной очистки ОЗС-50 [5] содержал семян основной культуры 92,59 %, примесей 7,41 %. В результате очистки его чистота составила 97,73 %, содержание примесей уменьшилось и составило 2,27 %, масса 1000 семян возросла с 109,4 до 116,8 г. Очищенные на машине первичной очистки ОЗС-50 семена поступают в семяочистительную машину МВУ-1500, где происходит их сортирование. Чистота полученных семян составила 98,57%, масса 1000 семян возросла до 126,6 г, содержание отхода - 1,43 %. Далее семена, очищенные на машине МВУ-1500 поступают в машину окончательной очистки МОС-9Н. Чистота полученного семенного материала составила 99,72%, содержание отхода составило 0,28%, масса 1000 семян возросла до 138,8 г [6].

В семенном выходе пневмосортировального стола МОС-9Н содержались больные семена, отличающиеся от здоровых семян по цвету и приводило к снижению качества семенного материала.

Для повышения качества семенного материала был применен фотоэлектронный сепаратор Ф 5.1 [2, 4, 8] с последующим разделением семян подсолнечника на размерные фракции (Ш7-Ш8 мм, Ш8-Ш9мм).

В результате фракционирования семян подсолнечника на фотосепараторе чистота их изменялась от 99,80 до 99,98 % в зависимости от их размеров Ш7-Ш8 мм и Ш8-Ш9 мм соответственно. Содержание семян основной культуры в отходе колебалась от 65,60 % (фракция Ш7-Ш8 мм) до 68,83 % (фракция Ш8-Ш9мм). Масса 1000 семян изменялась от 117 г (фракция Ш7-Ш8 мм) до 146 г (фракция Ш8-Ш9мм). Полученные семена во фракциях соответствуют требованиям ГОСТ. Выход очищенных семян при фракционировании изменялся от 93,20 % (фракция Ш7-Ш8 мм) до 92,90 % (фракция Ш8-Ш9 мм) [7].

В результате исследований контейнерной технологии с последующим фракционированием семян подсолнечника на фотосепараторе на конечной стадии их обработки позволило повысить выход высоко кондиционных семян с 92,90 до 93,20% по сравнению 91,20% (без фракционирования) и уменьшить содержание их в отходе от 68,83 до 65,60 % по сравнению 85,52 % (без фракционирования) в зависимости от размерной фракции.

Список литературы

1. Шафоростов В. Д. Универсальная контейнерная технология послеуборочной обработки семенного материала / В. Д. Шафоростов // Науч.-техн. бюл. ВНИИ масличных культур. - 2013. - Вып. № 2 (155-156). - С. 108-112.

2. Шафоростов В.Д., Припоров И.Е. Усовершенствование универсального семяочистительного комплекса. Международный научно-исследовательский журнал. 2014. № 8-1 (27). С. 71-73.

3. Шафоростов В.Д. Основные направления совершенствования технологии подготовки семенного материала высших репродукций / В.Д. Шафоростов, А.А. Тюрин, Е.А. Перетягин // Науч.-техн. бюл. ВНИИ масличных культур. - 2005. - Вып. № 2 (133). - С. 58-63.

4. Шафоростов В.Д., Припоров И.Е. Качественные показатели работы универсального семяочистительного комплекса на базе отечественных семяочистительных машин нового поколения. В сборнике: Разработка инновационных технологий и технических средств для АПК Сборник научных трудов 9-й Международной научно-практической конференции в 2-х частях. Редакционная коллегия: Хлыстунов В.Ф. ответственный редактор, Рыков В.Б., Бурьянов А.И., Беспамятнова Н.М., Камбулов С.И., Кушнарев А.П. ответственный секретарь. 2014. С. 162-167.

5. Шафоростов В.Д., Припоров И.Е. Технология послеуборочной обработки семян сои с использованием машин отечественного производства. Зернобобовые и крупяные культуры. 2014. № 4 (12). С. 119-122.

6. Припоров И.Е., Шафоростов В.Д. Технология послеуборочной обработки семян масличных культур. Инновации в сельском хозяйстве. 2014. № 5 (10). С. 10-14.

7. Шафоростов В.Д., Припоров И.Е. Качественные показатели работы фотосепаратора по фракционной технологии при разделении семян подсолнечника. Международный научно-исследовательский журнал. 2015. № 1-3 (32). С. 23-25

8. Припоров И.Е. Сортирование семян подсолнечника на фотосепараторе. Сельский механизатор. 2015. № 3. С. 12-13.

9. Припоров И.Е. Параметры усовершенствованного процесса разделения компонентов вороха семян крупноплодного подсолнечника в воздушно-решетных зерноочистительных машинах: автореферат диссертации на соискание ученой степени кандидата технических наук / Кубанский государственный аграрный университет. Краснодар, 2012.

Аннотация

РАЦИОНАЛЬНАЯ ТЕХНОЛОГИЯ ПОСЛЕУБОРОЧНОЙ ОБРАБОТКИ СЕМЯН ПОДСОЛНЕЧНИКА

Припоров Игорь Евгеньевич канд. техн. наук, ст. преподаватель SPIN-код автора: 4330-0224

Кубанский государственный аграрный университет, Краснодар, Россия 350044, Россия, г. Краснодар, ул. Калинина, 13

Лазебных Денис Валерьевич студент Кубанский государственный аграрный университет, Краснодар, Россия

Целью исследований является определение рациональной технологии послеуборочной обработки семян подсолнечника. Существующие технологии, которые реализованы в зерноочистительных агрегатах и комплексах для подготовки семенного материала типа ЗАВ (Воронежсельмаш), компанией «Полымя» (Белоруссия) и другие осуществляют обработку семенного материала путем последовательной обработки на всех зерноочистительных машинах. Возврат на любой этап не предусмотрен, для этого необходимо проводить повторную обработку по всей цепочке машин, что приводит к уменьшению выхода семян, снижению производительности и повышенному травмированию семенного материала. ВНИИ масличных культур разработана контейнерная технология, реализованная в универсальном семяочистительном комплексе, устраняет данные недостатки и позволяет при необходимости закончить обработку семенного материала в момент соответствия семян требованиям ГОСТ на любом этапе. В семенном выходе пневмосортировального стола МОС-9Н, входящий в семяочистительный комплекс, содержались больные семена, отличающиеся от здоровых семян по цвету и приводило к снижению их качества. Для повышения качества семенного материала был применен фотоэлектронный сепаратор Ф 5.1 с последующим разделением семян подсолнечника на размерные фракции (Ш7-Ш8 мм, Ш8-Ш9мм). В результате проведенных исследований контейнерной технологии с последующим фракционированием семян подсолнечника на фотосепараторе на конечной стадии их обработки позволяет повысить выход высоко кондиционных семян от 92,90 до 93,20 % по сравнению 91,20 % (без фракционирования) и уменьшить содержание их в отходе от 68,83 до 65,60 % по сравнению 85,52 % (без фракционирования) в зависимости от размерной фракции

Ключевые слова: УНИВЕРСАЛЬНЫЙ СЕМЯОЧИСТИТЕЛЬНЫЙ КОМПЛЕКС, ФОТОЭЛЕКТРОННЫЙ СЕПАРАТОР, ФРАКЦИОННАЯ ТЕХНОЛОГИЯ, КОНТЕЙНЕРНАЯ ТЕХНОЛОГИЯ, СЕМЕНА ПОДСОЛНЕЧНИКА

RATIONAL TECHNOLOGIES OF SUNFLOWER SEEDS POST-HARVEST PROCESSING

Priporov Igor Evgenevich Candidate of Technical Sciences, senior lecturer RSCI PIN-code: 4330-0224

Kuban State Agrarian University, Krasnodar, Russia 13, Kalinin st., 350044, Krasnodar, Russia

Lazebnikh Denis Valeryevich student Kuban State Agrarian University, Krasnodar, Russia

The aim of the research is the determination of rational technology of post-harvest treatment of seeds of sunflower. Existing technologies that are implemented in grain cleaning units and complexes for the preparation of seed material type GCM (Voronezhselmash), "Polyma" (Belarus) and others perform seed treatment by sequential processing on all cleaning machines. Return at any point not provided, it is necessary to conduct repeated handling throughout the chain of cars that leads to the reduction of seed yield, decreased performance and increased injury to seed. Research Institute of oil crops designed container technology in universal seed cleaning complex, eliminates these disadvantages and allows finishing the processing of seed material at the time of matching seeds with the requirements of GOST at any stage. In seed output pneumatic sorting machines MOS-9N, which is seed cleaning complex that contained diseased seeds that differ from healthy seeds by color and lowered their quality. To improve the quality of seed material was applied photoelectron separator F 5.1, followed by separation of sunflower seeds on the dimension fraction (Ш7-Ш8 mm, Ш8-Ш9мм). In the result of the research container technology with subsequent fractionation of sunflower seeds on the separator at the final stage of their processing improves the yield of highly certified seeds from 92.90 to 93.20 % compared 91,20 % (without fractionation) and reduce the content of their departure from 68,83 to 65,60 % compared 85,52 % (without fractionation) depending on size fraction

Keywords: UNIVERSAL SEED CLEANING COMPLEX, PHOTOELECTRON SEPARATOR, FRACTIONAL TECHNOLOGY, CONTAINER TECHNOLOGY, SUNFLOWER SEEDS

Размещено на Allbest.ru

...

Подобные документы

  • Выбор материала и способа получения заготовки, технология ее обработки. Технологические операции получения заготовки методом литья в металлические формы (кокили). Технологический процесс термической и механической обработки материала, виды резания.

    курсовая работа [1,7 M], добавлен 23.07.2013

  • Основные методы очистки масличных семян от примесей. Технологические схемы, устройство и работа основного оборудования. Бурат для очистки хлопковых семян. Сепаратор с открытым воздушным циклом. Методы очистки воздуха от пыли и пылеуловительные устройства.

    контрольная работа [5,0 M], добавлен 07.02.2010

  • История возникновения электрических методов обработки. Общая характеристика электроэрозионной обработки: сущность, рабочая среда, используемые инструменты. Разновидности и приемы данного типа обработки, особенности и сферы их практического применения.

    курсовая работа [34,8 K], добавлен 16.11.2010

  • Изучение и анализ технологического процесса изготовления детали. Характеристика материала. Анализ и выбор механической обработки детали. Выбор процесса и технологии термической обработки детали с учетом требований технических условий. Методы контроля.

    отчет по практике [1,4 M], добавлен 08.11.2012

  • Методы выбора технологического оборудования и оснастки для обработки заготовок. Расчет норм времени обработки на металлорежущих станках. Разработка технологического процесса производства кнопки. Характеристика материала, назначение и конструкция детали.

    курсовая работа [144,9 K], добавлен 27.07.2013

  • Характеристика материалов, применяемых при изготовлении костюма для мальчика. Выбор методов обработки изделия и оборудования. Разработка графических методов обработки, основных узлов, разработка инструкционной карты на оптимальный вариант обработки.

    курсовая работа [1,2 M], добавлен 25.10.2009

  • Основные инструменты и принадлежности для обработки деталей кроя: ножницы, иголки, нитки, сантиметровая лента. Анализ способов устранения дефектов прямой юбки. Последовательность обработки вытачек, особенности обработки застежки-молнии в среднем шве юбки.

    презентация [1,6 M], добавлен 25.03.2012

  • Проектирование протяжки для обработки шлицевой втулки. Расчет долбяка для обработки зубчатых колес. Комбинированная развертка для обработки отверстий. Разработка плавающего патрона для крепления развёртки. Выбор материала для изготовления инструмента.

    курсовая работа [1,4 M], добавлен 24.09.2010

  • Обоснование выбора модели и материала для ее пошива. Методы и режимы обработки изделия. Совершенствование существующих методов обработки наиболее трудоемких узлов. Экономический расчет проектируемой технологии при изготовлении женского летнего платья.

    курсовая работа [58,6 K], добавлен 23.09.2009

  • Сущность процесса струйной гидроабразивной обработки. Механизм процесса и область применения данного метода обработки. Срок службы суспензии и регенерация абразивного материала. Классификация струйных аппаратов, их схемы и конструкция. Закон Бернулли.

    контрольная работа [10,9 M], добавлен 25.05.2009

  • Характеристика перспективного направления моды. Описание моделей женского жакета и юбки. Обоснование выбора материалов и фурнитуры. Анализ деталей кроя, входящих в состав обработки узла. Режимы обработки на швейных машинах. Параметры машинных стежков.

    курсовая работа [274,5 K], добавлен 27.01.2014

  • Сущность и особенности механизма электроискровой обработки материалов, оценка его преимуществ и недостатков. Технология ультразвуковой и анодно-механической и электроимпульсной обработки, лазером и электронным лучом, пластическим деформированием.

    контрольная работа [40,6 K], добавлен 25.03.2010

  • Ультразвуковая обработка поверхностей как одно из направлений существенного повышения производительности и качества механической обработки материалов. Изучение практического опыта применения ультразвука в процессах абразивной обработки и их шлифования.

    контрольная работа [25,6 K], добавлен 30.01.2011

  • Назначение и область применения дрожжевого сепаратора ВСЖ-2. Общее устройство и классификация аппаратов этого класса. Их технические характеристики. Усовершенствование конструкции, алгоритм уточненного механического и энергетического расчета сепаратора.

    контрольная работа [653,6 K], добавлен 07.05.2014

  • Вид сборочных схем. Методы обработки бокового прорезного кармана. Особенности обработки и соединения с изделием воротников. Способы обработки бортов в пальто. Способы обработки низа рукавов в верхней одежде. Характеристика рабочих органов швейных машин.

    шпаргалка [357,9 K], добавлен 29.09.2008

  • Проектирование модели женского платья из материалов с эластичными волокнами. Выбор методов обработки и оборудования. Технологическая последовательность обработки изделия. Рациональная раскладка лекал изделия и расчет нормы расхода материалов на изделие.

    курсовая работа [1,5 M], добавлен 07.06.2015

  • Дифференциация и концентрация технологического процесса. Факторы, определяющие точность обработки. Межоперационные припуски и допуски. Порядок проектирования технологических процессов обработки основных поверхностей деталей. Технология сборки машин.

    учебное пособие [6,5 M], добавлен 24.05.2010

  • Характеристика марки стали 40Х, её химический состав и механические свойства. Выбор вида и способа термической обработки и назначение режимов. Выбор последовательности всех операций обработки. Выбор оборудования для поверхностной закалки детали.

    контрольная работа [238,7 K], добавлен 21.05.2012

  • Общая характеристика методов термической обработки. Разработка операций термической обработки детали. Температура нагрева, продолжительность выдержки в печи, скорость охлаждения. Оборудование для термической обработки. Дефекты термической обработки.

    курсовая работа [249,8 K], добавлен 29.05.2014

  • Анализ формы точности, шероховатости, размеров материала и обработки детали, а также характера нагружения. Определение технологического маршрута обработки поверхности детали в зависимости от точности размеров и шероховатости поверхностей детали.

    курсовая работа [594,7 K], добавлен 25.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.