Челночная технология изготовления фибробетона с агрегированным распределением фибр

Сложность создания агрегированного распределения волокон по длине или объему элемента как одна из основных проблем фибробетона. Смешивание бетона и фибр внутри опалубки изготавливаемого компонента - специфическая особенность челночной технологии.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 28.05.2017
Размер файла 173,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

3

Размещено на http://www.allbest.ru

Одной из основных проблем фибробетона и фиброжелезобетона является создание равномерного (агрегированного) распределения волокон по длине или объему элемента.

Эту проблему, чаще всего без особого успеха, пытаются решить с помощью раздельных технологий перемешивания различных компонентов фибробетона в бетоносмесителях или с применением специальных их видов.

Ниже предлагается челночная технология создания фибробетона с агрегированным распределением волокон, исследуются его прочностные и деформативные характеристики и диаграммы деформирования «напряжения-деформации» при сжатии и растяжении, а также даются рекомендации по их расчетной оценке как основных параметров, используемых для расчета и проектирования строительных конструкций.

Идея челночной технологии основана также на раздельном, но не перемешивании, а смешивании основных компонентов фибробетона - бетона и фибр, и внутри не смесителя, а опалубки изготавливаемого элемента.

Так, для линейных элементов, например балок, плит или колонн, вдоль оси опалубки, слева и справа от нее устанавливаются две системы направляющих (салазок), вдоль которых по заданному режиму перемещаются каретки (рис. 1):

- с одной стороны - с подающей бетон трубой бетононасоса,

- с другой стороны - с подающим фибры раструбом дозатора волокон.

фибробетон агрегированный волокно челночный

Рис. 1. Челночная технология изготовления фибробетона

Перемещения кареток могут быть заданы в 4 разных режимах:

- последовательного однонаправленного движения,

- последовательного разнонаправленного движения,

- одновременного однонаправленного движения,

- одновременного разнонаправленного движения.

Подача материалов - бетона и фибр - также может регулироваться задаванием различных режимов, соответствующих режимам движения кареток.

Для массивных элементов с размерами одного порядка по всем осям предлагаемая технология включает устройство подвижных кареток с подачей бетона и фибр по двум или четырем сторонам изготавливаемого элемента, режимы движения и подачи материалов при этом могут быть заданы в любой последовательности и продолжительности.

Исследования конструктивных свойств и диаграмм деформирования фибробетонов с агрегированным распределением волокон были проведены для проверки эффективности предлагаемой челночной технологии и включали испытания на осевое сжатие и растяжение 60 опытных образцов из фибробетона, изготовленных по обычной и челночной технологиям.

В опытах варьировались (рис. 2):

- технология приготовления фибробетона - обычная, челночная в четырех режимах (последовательного одно- и разнонаправленного и одновременного одно- и разнонаправленного движения);

- вид НДС - осевое сжатие, осевое растяжение;

- вид образцов - призмы 10х10х40 см, восьмерки 10х10х70 см;

- возраст бетона - 7, 28, 90 и 365 суток;

- режим испытаний - с постоянной скоростью нагружения, с постоянной скоростью деформирования.

Рис. 2. Программа экспериментальных исследований

В качестве исходных материалов принимались бетон обычный тяжелый, плотностью 2500 кг/м3 класса В 30 и стальные волокна, с процентом фибрового армирования 4%.

Испытания опытных образцов проводили в возрасте 7, 28, 90 и 365 суток, дублируя их - с постоянной скоростью нагружения и с постоянной скоростью деформирования. При этом использовалось как тензометрическое, так и осциллографическое оборудование, позволившее получить не только прочностные и деформативные характеристики фибробетона, но и его полные диаграммы деформирования «напряжения-деформации» при сжатии и растяжении.

Перемещения кареток с подающей бетон трубой бетононасоса и с подающим фибры раструбом дозатора волокон осуществлялись с помощью горизонтальных лебедочных механизмов. Последние были установлены по обе стороны от опалубок опытных образцов всей серии, выставленных в ряд по одной оси, в начале и в конце.

Каретки перемещались вдоль опалубки со скоростью, равной примерно 0,2 м/сек.

Скорости расхода бетона и фибр для большей равномерности распределения (агрегирования) волокон были подобраны таким образом, чтобы при одной проходке кареток заполнялась не более 1/8 высоты опалубки. Другими словами, полное заполнение опалубки обеспечивалось за 4 проходки каждой из кареток.

Анализ результатов исследований выявил следующую картину.

Прочность на сжатие (табл. 1, 2) в возрасте 7 суток у фибробетонов, изготовленных по челночной технологии по режимам 1, 2, 3 и 4, была выше, чем у фибробетонов, изготовленных по обычной технологии, - на 6,3; 6,7; 6,4 и 6,9% соответственно. К 28 суткам эта разница составила соответственно 9,6; 9,8; 9,7 и 10,1%, к 90 суткам - 10,4; 10,8; 10,5 и 11% соответственно и на 365 сутки - 11,5; 12,1; 11,7 и 12,2% соответственно.

Прочность на растяжение (табл. 1,2) демонстрировала те же тенденции - здесь в возрасте 7 суток отклонения составляли 8,3; 7,9; 8,1 и 8,9% %, 28 суток - 10,2; 10,8; 10,0 и 11,1%, к 90 суткам - 12,3; 12,8; 12,6 и 12,9% соответственно и на 365 сутки - 12,4; 13,2; 12,7 и 13,3% соответственно.

Таблица 1. Прочность фибробетона при различных технологиях изготовления на осевое сжатие и осевое растяжение

Технология изготовления фибробетона

Средняя прочность, МПа, в возрасте, сут.

7

28

90

365

Rb

Rbt

Rb

Rbt

Rb

Rbt

Rb

Rbt

Обычная

13,3

1,1

28,1

2,7

29,3

2,9

30,2

3,1

Челночная: режим 1

режим 2

режим 3

режим 4

14,1

14,2

14,15

14,2

1,2

1,2

1,2

1,2

30,8

30,85

30,8

30,9

3

3

3

3

32,3

32,5

32,4

32,5

3,3

3,3

3,25

3,3

33,7

22,85

33,75

33,9

3,5

3,5

3,5

3,5

Таблица 2. Отклонения прочности на осевое сжатие (числитель) и осевое растяжение (знаменатель) фибробетонов по челночной технологии от фибробетонов по обычной технологии

Режимы челночной технологии фибробетона

Отклонения прочности, %, в возрасте, сут.

7

28

90

365

режим 1

режим 2

режим 3

режим 4

6,3

8,3

6,7

7,9

9,6

10,2

9,8

10,8

10,4

12,3

10,8

12,8

11,5

12,4

12,1

13,2

Анализ полученных данных позволил сделать следующие выводы.

1 - причиной повышения прочности на осевое сжатие и растяжение фибробетонов, изготовленных по челночной технологии по сравнению с фибрбетонами, изготовленных по обычной технологии в любом возрасте являлось равномерное (агрегированное) распределение волокон по сечениям, позволяющее, во-первых - сделать кластерообразование в таких фибробетонах более равномерным, а во-вторых - более полно использовать прочностные качества фибр.

2 - величина повышения прочности фибробетонов, изготовленных по челночной технологии по сравнению с прочностью фибробетонов, изготовленных по обычной технологии, находилась примерно в одних и тех же пределах практически независимо от режима челночной технологии.

3 - превышение прочности фибробетонов, изготовленных по челночной технологии над прочностью фибробетонов, изготовленных по обычной технологии, растет с увеличением возраста бетона вплоть до 365 суток при любом режиме челночной технологии, что объясняется упорядочением продолжающихся процессов гидратации в цементном камне в течение всего этого периода.

4 - относительное превышение прочности фибробетонов, изготовленных по челночной технологии над прочностью фибробетонов, изготовленных по обычной технологии, несколько больше при осевом растяжении, чем при осевом сжатии, хотя в целях упрощения расчетных рекомендаций их можно принять одинаковыми.

Предельные деформации (соответствующие максимальной прочности) фибробетонов как при осевом сжатии, так и при осевом растяжении демонстрировали обратную картину - у фибробетонов, изготовленных по челночной технологии, по сравнению с фибробетонами, изготовленными по обычной технологии, они снижались, причем во все контрольные сроки твердения.

Так, при 7 сутках предельные деформации при осевом сжатии еbR у фибробетонов, изготовленных по челночной технологии они были меньше, чем у фибробетонов, изготовленных по обычной технологии - на 7,7…9,3%. К 28 суткам эта разница составила 10,1…12,9%, к 90 суткам - 12,2…14,5% и на 365 сутки - 14,8…15,6% соответственно, причем независимо от режима челночной технологии.

Указанные тенденции характерны и для предельных деформаций и при осевом растяжении еbtR у фибробетонов, изготовленных по челночной и обычной технологиям.

Начальный модуль упругости при сжатии Еb и растяжении Еbt у фибробетонов, изготовленных по челночной технологии практически при всех ее режимах и во все сроки твердения был одинаков и до 9,9…11,1% выше, чем у фибробетонов, изготовленных по обычной технологии.

Повышение начального модуля упругости объяснялось повышением прочности и уменьшением предельных деформаций фибробетонов, изготовленных по челночной технологии по сравнению с теми же характеристиками фибробетонов, изготовленных по обычной технологии, что смещало вверх и влево максимум на диаграмме «напряжения-деформации».

Диаграммы деформирования «напряжения-деформации» - для них при сжатии и при растяжении фибробетонов, изготовленных по челночной технологии по сравнению с фибробетонами по обычной технологии, принятых за эталонные, при всех сроках твердения характерны уже упомянутые выше особенности (рис.3): максимум смещается вверх и влево; угол подъема в начале координат растет; увеличивается подъемистость диаграммы в восходящей ветви.

В целом же очевидно, что при изготовлении по челночной технологии независимо от ее режима становится возможным получение фибробетонов улучшенной структуры и с более высокими физико-механическими характеристиками.

Предложения по аналитическому описанию характеристик фибробетонов при челночной технологии в различные сроки твердения сводятся к рекомендациям по аналитическому описанию коэффициентов изменения их прочностных и деформативных характеристик в зависимости от возраста бетона в виде:

K = f (t), (1)

где f - соответствующая функция; t - возраст фибробетонов.

За единую базовую функцию примем зависимость П. Сарджина, рекомендованную ЕКБ-ФИП для описания диаграмм деформирования бетона:

, (2)

где XR, YR - координаты максимума графика функции (2) в абсолютных показателях; К - управляющий параметр, влияющий на форму графика функции (2), трансформирующегося в прямую (К=1), квадратичную параболу (К=2) и действительную ветвь квадратичной гиперболы (1<K<2 и K>2).

В качестве функции Y/YR в выбранной нами функции (2) выступают приращения прочностных Rb, Rbt и деформативных еbR, еbtR характеристик, а также начального модуля упругости Eb=Ebt фибробетонов, приготовленных по челночной технологии, а в качестве аргумента Х/XR - относительный возраст фибробетона (t/28).

Статистическая обработка полученных результатов позволила определить значения значений управляющих параметров К для прочностных Rb, Rbt, деформативных еbR, еbtR характеристик и начального модуля упругости Eb=Ebt фибробетонов, изготовленных по челночной технологии и свести их в таблицу 3. При этом выяснилось, что значения К для всех указанных параметров при сжатии и растяжении близки между собой, что дало основание рекомендовать для расчетов единые значения К при сжатии и растяжении.

Таблица 3. Функции, аргументы и значения параметров зависимости (2) для определения прочностных и деформативных характеристик фибробетонов при челночной технологии изготовления и в разные сроки твердения

Вид бетона

Вид функции

Функция

Аргумент

Значения параметра К при сжатии и растяжении

Фибробетон по челночной технологии

KR= f (t)

KR

t

KеR= f (t)

KеR

t

KE= f (t)

KE

t

Анализ показал хорошую сходимость разработанных теоретических рекомендаций с нашими экспериментальными результатами.

Аналитическое описание диаграмм деформирования "напряжения-деформации" фибропенобетонов, изготовленных по челночной технологии и сроках твердения, и их взаимосвязь при сжатии и растяжении.

Одной из наиболее удобных и распространенных в мире зависимостей является функция, предложенная П. Сарджином, и рекомендованная ЕКБ-ФИП для расчетов железобетонных конструкций:

, (3)

где R и R - максимальная прочность и соответствующие ей деформации на сжатие или растяжение; К=RЕ/R - численный параметр, равный отношению начального Е (касательного) модуля упругости к предельному (секущему) модулю упругости R/R в момент достижения максимума функции (5) с координатами R и R.

В тех же рекомендациях предлагалось принимать диаграммы деформирования бетона при сжатии "bb" и при растяжении "btbt" подобными, имеющими одинаковый начальный Еb=Еbt и секущий модуль упругости Rb/bR = Rbt/btR , как и параметр К.

В целях единообразия предлагаемых расчетных зависимостей, применим единые функции (2)-(3) как для оценки изменения прочностных и деформативных характеристик, так и для описания диаграмм деформирования фибробетона в различные сроки твердения при сжатии и растяжении.

В целом, порядок расчетной оценки изменения свойств фибробетона при челночной технологии имеет вид.

На первом этапе определяется изменение прочностных Rb и Rbt и деформативных bR, btR, Еb, Еbt при необходимых температурах воды затворения и сроках твердения при сжатии и растяжении - по зависимости (2) и табл. 3.

На втором этапе для описания диаграмм "" фибробетона при челночной технологии и сроках твердения при сжатии и растяжении в различные сроки твердения используется функция (3) с подстановкой в нее вместо R и R соответственно (Rb + Rb); ( + bR); Еb, при сжатии и (Rbt + Rbt); (btR + btR); Еbt при растяжении, при этом параметр К:

(4)

Анализ показал хорошую сходимость опытных и расчетных результатов.

Взаимосвязь изменения диаграмм деформирования фибробетонов при сжатии и растяжении наиболее просто и достоверно отражена в уже упоминавшихся рекомендациях ЕКБ - ФИП - в них принимается равенство начальных модулей упругости при сжатии и растяжении Eb = Ebt, то есть касательных к диаграммам “уb -еb” и “уbt - еbt” в начале координат и рекомендуется одинаковое значение параметра при сжатии и растяжении:

(5)

то есть секущих в точках максимумов диаграмм “уb -еb” и “уbt - еbt”, а также дается одинаковая функция “у -е” при сжатии и растяжении - формула (3).

Тем самым диаграммы при сжатии и растяжении предполагаются подобными.

Анализ полученных нами опытных данных выявил дополнительные факты взаимосвязи изменения диаграмм “у-е” фибробетонов, приготовленных по челночной технологии, при сжатии и растяжении.

Это касается координат максимумов диаграмм “уb -еb” и “уbt -еbt” при каждом определенном сроке твердения - оказалось, что они лежат при сжатии и растяжении на одной прямой, проходящей через начало координат графика.

То есть, подобие диаграмм “уb -еb” и “уbt -еbt” имеет место и для фибробетонов, приготовленных по челночной технологии, при сжатии и растяжении в одинаковые возрасты твердения.

Нормативные и расчетные характеристики фибропенобетона при челночной технологии. После установления изменения характеристик фибробетонов при челночной технологии необходимы рекомендации по расчетному определению их нормативных и расчетных сопротивления для расчета по предельным состояниям I и II групп.

Для этого необходима определенная статистика, основанная на большом количестве экспериментальных данных.

С этой целью нами были проведены дополнительные экспериментальные исследования - изготовлено и испытано 80 кубов размером 10х10х10см из фибробетона, приготовленного по челночной технологии, из которых по 40 испытывались на осевое сжатие и растяжение при раскалывании.

По результатам статистической обработки опытных данных были определены нормативные сопротивления сжатию и растяжению при надежности 0,95. Их значения, являющиеся одновременно расчетными сопротивлениями для предельных состояний второй группы Rb,ser и Rbt,ser для фибробетонов класса В 30 с процентом фибрового армирования µ=4% приводятся в таблице 4.

Расчетные сопротивления фибробетонов для предельных состояний первой группы Rb и Rbt получали как частное от деления нормативных сопротивлений сжатию и растяжению на соответствующие коэффициенты надежности по бетону при сжатии bc = 1,3 и при растяженииbt = 1,5.

При расчете и проектировании фибробетонных элементов необходимо учитывать также деформативность тяжелых фибробетонов.

Для них при µ=4%, при обычной технологии изготовления предельную сжимаемость можно принимать при кратковременном нагружении равной 260 . 10-5 , а предельную растяжимость - 30 . 10-5. Другими словами, предельная сжимаемость увеличивается в 1,3 раза, а предельная растяжимость - в 1,5 раза по сравнению с нормированными значениями для бетона без фибр.

Для тяжелых же фибробетонов при µ=4%, при челночной технологии изготовления предельную сжимаемость можно принимать при кратковременном нагружении равной 235 . 10-5 , а предельную растяжимость - 27 . 10-5. Другими словами, предельная сжимаемость и растяжимость фибробетонов при челночной технологии снижается на 10% по сравнению с обычной технологией.

Таблица 4. Нормативные и расчетные характеристики фибробетона класса В 5 при челночной технологии с процентом фибрового армирования µ=4%

Вид сопротивления

Нормативные и расчетные характеристики, МПа

нормативные сопротивления Rbn, Rbtn или расчетные сопротивления II группы Rb,ser Rbt,ser

расчетные сопротивления I группы Rb, Rbt

начальные модули упругости Еb(bt) 10-3

Сжатие осевое

29,7

22,8

3,57

Растяжение осевое

3,0

2,0

3,57

Выводы.

1. Проведенные экспериментальные исследования фибробетонов класса В 30, изготовленных по предложенной челночной технологии, выявили, что они имеют лучшие конструктивные характеристики по сравнению с фибробетонами, изготовленными по обычной технологии.

2. Установлено, что у фибробетонов класса В 30, изготовленных по челночной технологии, в возрасте 28 суток - увеличивается прочность на осевое сжатие - до 10,1% ; прочность на осевое растяжение - до 11,1%; модуль упругости - до 12,9%; уменьшаются предельные деформации - до 12,8%.

3. Выявлено, что изменение характеристик фибробетонов, изготовленных по челночной технологии, продолжается и стабилизируется к возрасту 365 сут.

4. Предложены расчетные рекомендации для учета изменения прочностных и деформативных характеристик фибробетонов, изготовленных по челночной технологии, в возрасте 7,28,90,365 суток при осевом сжатии и растяжении, определены их параметры и коэффициенты.

Выявлено изменение диаграмм деформирования «напряжения-деформации» фибробетонов, изготовленных по челночной технологии, в возрасте 7,28,90,365 суток при осевом сжатии и растяжении.

5. Предложено использовать для расчетного описания диаграмм деформирования «напряжения-деформации» в любом возрасте при осевом сжатии и растяжении формулу ЕКБ-ФИП с учетом разработанных рекомендаций по оценке изменения их прочностных и деформативных характеристик.

6. Выявлена взаимосвязь изменений характеристик и диаграмм деформирования фибробетонов, изготовленных по челночной технологии, в различном возрасте при осевом сжатии и растяжении. Предложена расчетная зависимость для описания этой взаимосвязи, имеющая в целях единообразия, одинаковый вид и структуру с расчетными рекомендациями, разработанными для характеристик фибробетона и его диаграмм деформирования.

7. По результатам статистической обработки опытных данных при надежности 0,95 определены и рекомендованы для применения при проектировании нормативные сопротивления на сжатие и растяжение Rbn и Rbtn фибробетона класса В 30, изготовленных по челночной технологии, при проценте фибрового армирования 4%, а также расчетные сопротивления для предельных состояний первой Rb и Rbt и второй группы Rb,ser и Rbt, ser.

Размещено на Allbest.ru

...

Подобные документы

  • Работа посвящена технологии изготовления деталей из керамики. Химический анализ и подготовка керамического сырья. Тонкий помол и смешивание компонентов. Способы, которыми осуществляется формование заготовок. Механическая обработка необожженных заготовок.

    реферат [79,0 K], добавлен 18.01.2009

  • Назначение, область применения, классификация бетона. Технология изготовления (получения) бетона. Технологические факторы, влияющие на свойства бетонной смеси. Выбор номенклатуры показателя качества бетона. Факторы, влияющие на снижение качества бетона.

    курсовая работа [569,0 K], добавлен 10.03.2015

  • Технология обработки в отделочном производстве суровой вискозно-штапельной ткани. Технология подготовки тканей гидратцеллюлозных волокон перед крашением и печатанием. Особенности технологии и механизм заключительной отделки из гидратцеллюлозных волокон.

    контрольная работа [17,5 K], добавлен 23.07.2012

  • Изучение технологии изготовления бетона - искусственного камня, получаемого в результате формования и твердения рационально подобранной смеси вяжущего вещества, воды и заполнителей (песка и щебня или гравия). Классификация бетона и требования к нему.

    реферат [25,2 K], добавлен 10.04.2010

  • Разработка технологии изготовления фланцевого соединения труб системы газопровода. Выбор конструкции фланца в зависимости от рабочих параметров и физико-химических свойств газа. Описание детали, эскиз заготовки; маршрутная технология изготовления фланца.

    курсовая работа [723,9 K], добавлен 30.04.2015

  • Технико-экономические преимущества бетона и железобетона. Основные недостатки бетона как строительного материала. Виды добавок для бетонов. Материалы, необходимые для приготовления тяжелого бетона. Реологические и технические свойства бетонной смеси.

    реферат [19,2 K], добавлен 27.03.2009

  • Бетон - искусственный композиционный материал: свойства, эффективность применения в строительстве. Проект предприятия по выпуску сборного железобетона: номенклатура изделий, подбор компонентов, расчет агрегатно-поточных линий, технология изготовления.

    курсовая работа [225,5 K], добавлен 15.11.2010

  • Классификация деревянных клееных конструкций. Типовая технология изготовления элемента (бруса) путем склеивания. Способы сушки древесины, основные режимы. Дефекты, возникающие при камерной сушке. Требования к укладке пиломатериалов во время процесса.

    презентация [1,3 M], добавлен 24.11.2013

  • Автоклавная тепловлажнастная обработка бетона как наиболее энергоемкий процесс производства. Конструктивный расчет и режим работы автоклава. Массовый баланс воды в технологии, энергетический баланс и эксергетический баланс потоков энергии системы.

    курсовая работа [5,1 M], добавлен 19.01.2012

  • Рассмотрение понятия, методов изготовления (дефибрерный, рафинерный), свойств (степень помола, разрывная длина, состав по длине волокон, сорность, белизна) древесной массы, характеристика современного состояния и перспектив развития ее производства.

    курсовая работа [28,8 K], добавлен 17.04.2010

  • Рассмотрение основных особенностей технологического процесса изготовления детали "Зеркало". Технология машиностроения как наука, занимающаяся изучением закономерностей процессов изготовления машин. Этапы расчета необходимого количества оборудования.

    курсовая работа [561,9 K], добавлен 19.12.2012

  • Технология изготовления офсетных печатных форм. Технология Computer-to-Plate. Формные пластины для данной технологии. Основные способы изготовления печатных форм. Сущность косвенного и комбинированного способов изготовления трафаретных печатных форм.

    курсовая работа [2,9 M], добавлен 24.01.2015

  • Особенности структур и свойств полиакрилонитрильных волокон. Основные подготовительные операции при обработке шерстяных тканей. Технология изготовления тканей суконной группы. Синтезирование катионных красителей. Образование на волокне азоидных пигментов.

    контрольная работа [32,7 K], добавлен 28.05.2013

  • Характеристика отрасли швейной промышленности. Производственная структура фабрики, виды цехов. Материалы, применемые для пошива сорочек, химический состав волокон. Технология изготовления мужской рубашки классической модели с прямой кокеткой на спинке.

    курсовая работа [160,4 K], добавлен 13.03.2011

  • Понятие и способы изготовления стеклянных изделий, их классификация и типы, применяемые методы и материалы. История керамики и общее описание изготавливаемого изделия, оборудование. Особенности применения стеклянных и керамических изделий в оформлении.

    курсовая работа [299,6 K], добавлен 17.11.2013

  • Основные элементарные стадии процесса экструзии при переработке пластмасс, их характеристика. Расчет распределения температур по длине зоны загрузки и по высоте канала, распределение давления по длине зоны загрузки при прохождении полимером зоны загрузки.

    лабораторная работа [216,8 K], добавлен 04.06.2009

  • Технологии пищевых производств и разработка систем автоматизации химических процессов. Математическая модель материалов и аппаратов, применяемых для смешивания. Описание функциональной схемы регулирования количества подаваемых на смеситель компонентов.

    курсовая работа [26,8 K], добавлен 12.07.2010

  • Описание технологии изготовления билета учащегося. Алгоритм работы обжимного пресса, одного из основных станков переплетной мастерской, применяющегося для обжима книжного блока с целью уменьшения его толщины. Вставка блока в переплетную крышку, штриховка.

    дипломная работа [393,6 K], добавлен 09.07.2011

  • Анализ развития производства химических волокон. Основные направления совершенствования способов получения вискозных волокон. Современные технологии получения гидратцеллюлозных волокон. Описание технологического процесса. Экологическая экспертиза проекта.

    дипломная работа [313,0 K], добавлен 16.08.2009

  • Анализ конструкции мельницы "МШЦ 3,8х5500". Разработка маршрутной технологии изготовления крупногабаритных деталей и операционной технологии изготовления детали "стенка торцевая". Техническое нормирование времени операции и испытание оборудования.

    дипломная работа [1,9 M], добавлен 27.10.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.