Расчёт на устойчивость стержней из ЭДТ-10 при начальной погиби стержня в виде S-образной кривой
Исследование влияния температуры на механические характеристики полимеров. Определение высокоэластичности деформации полимерной конструкции уравнением уравнение Максвелла-Гуревича. Расчет ползучести стержня из эпоксидной смолы методикой Симпсона.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 29.05.2017 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Расчёт на устойчивость стержней из ЭДТ-10 при начальной погиби стержня в виде S-образной кривой
Литвинов С.В
Полимерные материалы плотно входят в нашу жизнь не только привычными ограждающими, гидроизолирующими материалами, но и имеющими конструкционное предназначение. К ним можно отнести полимерные арматуру, тяжи для крепления навесных потолков и стен. Обладая прекрасными эксплуатационными качествами, такими как кислото- и щелочестойкость, временное сопротивление разрыву некоторых полимеров достигает 2000 МПа, эти материалыне лишены недостатков - для них характерно развитие деформаций ползучести, которая происходит не в фазе с прилагаемой нагрузкой и, соответственно, с напряжениями в теле.
Исследованию устойчивости стержней посвящено много литературы, к примеру, ставшей классикой [3].В свое время вопрос устойчивости полимерных стержней освящен в работах [1, 2]; из современных работ можно выделить работу [4]. Однако при исследовании устойчивости стержней авторы рассматривают выпучивание стержней только в одном направлении относительно оси, связывающей опоры стрежней.
В качестве уравнения связи для таких полимерных конструкций наиболее точно подходит обобщенное нелинейное уравнение Максвелла-Гуревича, в дальнейших расчетах используемое в следующей форме:
,
где
; .
Здесь - деформации ползучести, - модуль высокоэластичности, - модуль скорости, - коэффициент начальной релаксационной вязкости.
Для полимерных материалов высокоэластические деформации в общем случае представляют собой суммы отдельных составляющих, каждая из которых соответствует определенному члену спектра времен релаксаций
,
При процессе ползучести до 1000 часов обычно преобладает первая составляющая высокоэластической деформации, так называемый старший спектр времен релаксации, т.е. s=1.
Как видно из выше представленных уравнений определяемые высокоэластические деформации находятся и в левой части уравнения (под оператором дифференцирования), и в правой части (в функции напряжений) . Всвязи с этим при использовании уравнения связи Максвелла-Гуревича возникают определенные трудности в применении таких программных комплексов, как ANSYS. Дальнейшее решение задач происходило в программном комплексе MatLab.
В практике стержни имеют некоторое искривление своей оси, также называемое "погибью", при этом сила обычно оказывается приложенной внецентренно (см. рис.1.). Подобного рода задачи в упругой постановке, однако, в случае закрепления "шарнир-шарнир", подробно рассмотрены в
Рассмотрим задачу, при которой стержень крепится по схеме "шарнир-шарнир", при этом его ось представлена в виде S-образной кривой. Здесь =.
При выводе основных уравнений используются следующие допущения и гипотезы:
1. Имеет место одноосное напряженное состояние ().
2. Гипотеза плоских сечений.
3. Геометрическая линейность
,
где - кривизна стержня.
4. Форма сечения (рассматривается прямоугольное сечение).
Пусть стержень имеет некоторую начальную погибь
,
где - начальная стрела прогиба.
Полную деформацию по оси стержня можно записать в виде
.
С учетом гипотезы плоских сечений можно записать
,
где - деформации средней оси стержня.
С учетом (3) и (4) можно записать
.
Для любого сечения стержня могут быть записаны интегральные условия
,
,
где
.
Подставляя выражение (5) в (6) и проведя интегрирование, определяются осевые деформации стержня:
.
Проводя аналогичные операции с выражениями (5) и (7):
,
где
С учетом того, что
получаем окончательное разрешающее уравнение для оси стержня:
.
Пусть
,
тогда
.
Граничные условия задачи:
при :, ;при :, .
Для возможности задания граничных условий применительно к задаче, уравнение (11) дифференцируется дважды по x:
.
Решение данного уравнения аналитически не представляется возможным даже в случае значительных упрощений, вследствие его структуры решение удобно произвести методом конечных разностей, интегрирование проводится методом Симпсона.
Далее рассматриваются задачи ползучести стержня из эпоксидной смолы ЭДТ-10. При этом исходные данные для параметров ползучести взяты из работы [2]. Исходные данные: , , , ,,, , , . Потеря устойчивости наступает через 1 час 32 мин.
Как видно из графиков, в образце с течением времени ось стремится принять форму полусинусоиды.
Рост стрелы прогиба во времени в стержне
механический полимер деформация максвелл
Рост напряжений в сечении стержня при x=l/2
Литература
1. Андреев В.И. Устойчивость полимерных стержней при ползучести: дис. … канд. техн. наук. - М., 1967.
2. Бабич В.Ф. Исследование влияния температуры на механические характеристики полимеров: дис. … канд. техн. наук. - М., 1966.
3. Вольмир А.С. Устойчивость деформируемых систем. - М.: Наука, 1975.
4. Языев С.Б. Устойчивость стержней при ползучести с учетом начальных несовершенств: дис. … канд. техн. наук. - Ростов-н/Д, 2010.
Размещено на Allbest.ru
...Подобные документы
Физико-механические свойства материала подкрепляющих элементов, обшивок и стенок тонкостенного стержня. Определение распределения перерезывающей силы и изгибающего момента по длине конструкции. Определение потока касательных усилий в поперечном сечении.
курсовая работа [7,5 M], добавлен 27.05.2012Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.
презентация [515,8 K], добавлен 11.10.2013Непротиворечивый вариант геометрически нелинейной теории плоских криволинейных стержней в квадратичном приближении. Алгоритм численного решения задачи устойчивости плоского криволинейного стержня. Линеаризованные уравнения нейтрального равновесия.
дипломная работа [4,0 M], добавлен 13.07.2014Определение физико-механических характеристик (ФМХ) конструкции: подкрепляющих элементов, стенок и обшивок. Расчет внутренних силовых факторов, геометрических и жесткостных характеристик сечения. Расчет устойчивости многозамкнутого тонкостенного стержня.
курсовая работа [8,3 M], добавлен 27.05.2012Основные аспекты создания стержней. Растяжение в центре и по бокам. Расчет статических стержневых систем и основных переменных. Оценка параметров закручивания. Создание стальной балки и стержня определенной жесткости. Определение опорных реакций.
курсовая работа [155,4 K], добавлен 27.07.2010Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.
реферат [1,1 M], добавлен 13.01.2009Построение эпюр нормальных и поперечных сил, изгибающих и крутящих моментов. Напряжения при кручении. Расчет напряжений и определение размеров поперечных стержней. Выбор трубчатого профиля стержня, как наиболее экономичного с точки зрения металлоёмкости.
контрольная работа [116,5 K], добавлен 07.11.2012Расчетное и экспериментальное определение критических сил стержней большой и средней гибкости. Сравнительный анализ результатов расчета и эксперимента. Построение диаграммы критических напряжений, определение расчетных значений критической силы стержня.
лабораторная работа [341,9 K], добавлен 06.10.2010Исследование влияния различных видов сушильных агентов на эффективность сушки формовочных смесей и стержней. Расчет сушильного агрегата в процессе сушки стержня воздухом, проходимым через сушило. Теплотехнические основы сушильного процесса, теплообмен.
курсовая работа [4,5 M], добавлен 04.11.2011Методика и основные этапы расчета стержня. Построение эпюры нормальных напряжений. Определение параметров статически неопределимого стержня. Вычисление вала при кручении. Расчет консольной и двухопорной балки. Сравнение площадей поперечных сечений.
контрольная работа [477,1 K], добавлен 02.04.2014Определение геометрических характеристик сечения тонкостенного подкрепленного стержня. Расчет нормальных напряжений в подкрепляющих элементах. Распределение напряжений по контуру. Определение потока касательных сил от перерезывающей силы, по контуру.
курсовая работа [2,2 M], добавлен 22.04.2012Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.
презентация [1,7 M], добавлен 10.12.2013Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.
контрольная работа [1,5 M], добавлен 29.01.2014Выбор материала, его характеристик и допускаемых напряжений. Расчет прочности и жесткости балок и рам, ступенчатого стержня и стержня постоянного сечения, статически неопределимой стержневой системы при растяжении-сжатии и при кручении. Построение эпюр.
курсовая работа [628,4 K], добавлен 06.12.2011Под устойчивостью понимают свойство стержня сохранять свою первоначальную форму равновесия под действием внешних и внутренних сил. Усталостное разрушение материала – длительный процесс, связанный с многократным нагружением и напряжением изделия.
реферат [932,9 K], добавлен 17.01.2009Современная наука о прочности, ее цели и задачи, основные направления. Классификация тел (элементов конструкции) по геометрическому признаку. Модель нагружения. Внутренние силовые факторы в поперечном сечении стержня. Перемещения и деформации, их виды.
презентация [5,0 M], добавлен 10.12.2013Расчет реакции опор и давление в промежуточном шарнире составной конструкции. Определение системы уравновешивающихся сил, приложенных ко всей конструкции. Уравнение равновесия для правой части конструкции. Оформление полученных результатов в виде таблицы.
контрольная работа [157,9 K], добавлен 19.05.2012Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.
контрольная работа [1,4 M], добавлен 18.05.2015Средняя радиационная стойкость для полиэтилена и эпоксидной смолы. Исследования прочностных характеристик материала, предложенного в качестве защиты от смешанного ионизирующего излучения. Конструкция панелей биологической защиты в виде контейнера.
дипломная работа [2,1 M], добавлен 18.05.2012Определение размеров деталей или внешних нагрузок, при которых исключается возможность появления недопустимых с точки зрения нормальной работы конструкции деформаций. Напряжения в точках поперечного сечения при изгибе с кручением. Расчет на прочность.
курсовая работа [1017,9 K], добавлен 29.11.2013