Исследование режимов формирования гибридных углеродных наноструктур на основе нанотрубок для создания наноструктурированных материалов
Применение новых углеродных наноматериалов. Формирование элементной базы наноэлектроники. Создание наноматериалов, обладающих уникальными свойствами. Свойства углеродных нанотрубок, эмиссионные характеристики. Создание гибридных углеродных наноструктур.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 29.05.2017 |
Размер файла | 835,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование режимов формирования гибридных углеродных наноструктур на основе нанотрубок для создания наноструктурированных материалов
Применение новых углеродных наноматериалов позволяет достичь существенного прогресса в технологии формирования перспективной элементной базы наноэлектроники и создания наноматериалов, обладающих уникальными свойствами [1].
Одним из перспективных объектов изучения нанотехнологий являются углеродные нанотрубки (УНТ) [2]. Они обладают множеством уникальных свойств, таких как высокое аспектное соотношение, хорошая электропроводность и эмиссионные характеристики, высокая химическая стабильность, которые открывают широкие перспективы для их применения [3].
Создание гибридных углеродных наноструктур (ГУНС), сочетающих все преимущества углеродных нанотрубок, но при этом подверженных модификации в целях создания необходимых свойств будущего изделия, открывают новые возможности их использования в самых широких областях науки и отраслях промышленности [4].
Целью данной работы является исследование влияния технологических режимов на образование ГУНС на базе многофункционального кластерного сверхвысоковакуумного нанотехнологического комплекса НАНОФАБ НТК-9.
Для модификации углеродных нанотрубок была сформирована партия из трех образцов, на которых проводился синтез вертикально-ориентированного массива нанотубок с диаметром 30-70 нм, высотой - 5-6 мкм, на подложке кремния. Синтезированные УНТ росли преимущественно по вершинному механизму. В качестве реакционного газа использовался ацетилен (С2Н2).
Образец 1 подвергался ионно-лучевому травлению (рис. 1,а) в течение 2-х минут при токе пучка 0.1 нА и ускоряющем напряжении ионной пушки 30 кэВ. В результате данной операции было осуществлено удаление каталитических частиц, находящихся в вершинах массива УНТ.
нанотрубка углеродный гибридный
На образце 2, УНТ были функционализованы углеродом (рис.1,б), методом ионно-стимулированного осаждения. В результате образовались гибридные углеродные наноструктуры, имеющие форму «гриба». Модифицированные таким образом вершины УНТ позволили повысить площадь активной части нанотрубок, применяемых в качестве чувствительных элементов приборов микро- и наносистемной техники, в частности, для применения в газовых датчиках и нановискерах.
а) образец 1 б) образец 2
Рисунок 1 - Модифицированные УНТ
На образце 3, УНТ были функционализованы вольфрамом, методом ионно-стимулированного осаждения, для формирования новых каталитических центров, отличных от исходного (никеля). Также такое покрытие позволяет нанести на полупроводниковые УНТ слой металла, и тем самым увеличить число проводящих нанотрубок, применяемых в качестве эмиттеров в дисплеях на основе УНТ и ионизационных газовых датчиках.
После подготовки подложек с модифицированными УНТ, проводился эксперимент по созданию ГУНС. Модифицированные подложки передавали в модуль PECVD, и проводили повторный рост УНТ. Исследования полученных структур проводились с помощью РЭМ Nova NanoLab 600.
По результатам РЭМ-исследования установлено, что на образце 1 произошло «вскрытие» укороченных УНТ а в отсутствии каталитических частиц наращивания не произошло.
На образце 2 из исходных структур образовались УНТ с более тонкими нанотрубками и графитовыми чешуйками (рис. 2,а)). На вершинах УНТ покрытых вольфрамом (образец 3), произошло наращивание с образованием ГУНС. В частности были получены структуры имеющие Y-образную форму (рис. 2,б)). Подобные ГУНС могут быть использованы в качестве транзисторных элементов наноэлектронных приборов и могут применяться наноэлектронике.
а) образец 2 б) образец 3
Рисунок 2 - Модифицированные УНТ
Проведя анализ полученных результатов, были выявлены основные параметры, влияющие на образование ГУНС. Было отмечено, что на нанотрубках покрытых углеродом произошло «боковое» наращивание дополнительных трубок, направление роста которых определялось положением исходных нанотрубок относительно вектора напряженности электрического поля, порождаемого индуцированной плазмой. Так как материал нанотрубки и материал нанесенной пленки был идентичным, был проведен эксперимент по созданию ГУНС без нанесения углеродной пленки. Для обеспечения максимальной площади наращивания были сформированы массивы, не имеющие четкой вертикальной ориентации. На первом этапе проводился рост УНТ с давлением 4,5 Торр. После полученный массив подвергался наращиванию при повышенным давлением в камере (3,5 Торр).
В результате проведенных операций были получены ГУНС (рис. 3) покрытые графитовыми чешуйками. Выращенные ГУНС обладают свойствами нанотрубок, но при этом имеют большую развитость поверхности и сложную геометрическую форму, а, следовательно, проявляют повышенную адсорбционную способность, легче диспергируются в поли-мерах и образуют более устойчивые дисперсии, что позволяет применять такие ГУНС в качестве наполнителей различных композитных соединений.
Рисунок 3 - ГУНС покрытые графитовыми чешуйками
В результате проведенной работы исследованы и отработаны режимы по модификации УНТ и созданию ГУНС, получены модифицированные и Y-образные гибридные углеродные наноструктуры, которые могут быть использованы в качестве элементов наноэлектроники, выращены гибридные углеродные наноструктуры покрытые графитовыми чешуйками, обладающие большей развитостью поверхности и сложной геометрической формой, которые могут быть использованы в качестве наполнителей композитных соединений и аккумуляторов водорода.
Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.А18.21.2052 «Разработка технологии формирования наноструктурированных материалов и гибридных сенсорных систем на их основе»
Список литературы
1. Агеев О.А., Коноплев Б.Г., и др. Модификация зондовых датчиков-кантилеверов для атомно-силовой микроскопии методом фокусированных ионных пучков [Текст] // Нано- и микросистемная техника. № 4, 2011, с. 4-8.
2. Раков Э.Г. Нанотрубки и фуллерены: учебное пособие. - М.: Университетская книга, Логос, 2006. - 376с.
3. Агеев О.А., Климин В.С., Коноплев Б.Г., Федотов А.А. Исследование режимов формирования каталитических центров для выращивания ориентированных массивов углеродных нанотрубок методом PECVD [Текст] // «ХИМИЧЕСКАЯ ФИЗИКА И МЕЗОСКОПИЯ», 2011, Том 13, №2, с.226-231
4. Агеев О.А., Коломийцев А.С., Смирнов В.А. и др. Получение наноразмерных структур на основе нанотехнологического комплекса НАНОФАБ НТК-9 [Текст] // Известия Южного федерального университета. Технические науки. Том 114, №1., 2011 г. с. 109-116
Размещено на Allbest.ru
...Подобные документы
Классификация углеродных наноструктур. Модели образования фуллеренов. Сборка фуллеренов из фрагментов графита. Механизм образования углеродных наночастиц кристаллизацией жидкого кластера. Методы получения, структура и свойства углеродных нанотрубок.
курсовая работа [803,5 K], добавлен 25.09.2009Общие сведения об углероде. Структура нанотрубок, хиральность. Схема классификации углеродных материалов в зависимости от степени гибридизации составляющих их атомов. Каталитическое разложение углеводородов. Электронные и эмиссионные свойства нанотрубки.
курсовая работа [2,6 M], добавлен 19.10.2014Разработка Vantablack для абсолютной калибровки спутниковых систем. Основные свойства специального покрытия, созданного на базе миллионов углеродных нанотрубок. Сфера применения материала, которой поглощает ультрафиолетового и инфракрасного излучения.
презентация [2,3 M], добавлен 19.04.2018Понятия и классификация нанотехнологий, виды наноструктур. Характеристика способов наноконстуирования. Исследование свойств материалов, применение и ограничения в использовании наноматериалов. Модифицирование сплавов с нанокристаллической решеткой.
курсовая работа [9,1 M], добавлен 14.07.2012Классификация реакций твердых тел. Предположения термодинамической теории твердофазных реакций. Метод свободной поверхности и реакции обмена. Атомные механизмы на границе раздела фаз. Синтез углеродных нанотрубок и образование коллоидных кластеров.
презентация [956,7 K], добавлен 22.10.2013Понятие токсичности и наноматехнологии. Преимущества и недостатки использования наноматериалов. Лабораторные исследования по токсичности наноматериалов. Исследования по токсичности наноматериалов на живых организмах. Применение наноматериалов в медицине.
реферат [5,3 M], добавлен 30.08.2011Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.
реферат [1,6 M], добавлен 13.05.2011Сорбционные процессы на границе раздела фаз сорбат – сорбент. Методы получения пористых углеродных материалов. Адсорбционные методы очистки сточных вод. Основные реакции взаимодействия компонентов смесей органических материалов в процессах со-термолиза.
дипломная работа [3,8 M], добавлен 21.06.2015Структура графита, определяющая его электрофизические свойства. Однослойные и многослойные углеродные нанотрубы. Энергия связи брома с графитовым слоем. Методика эксперимента и характеристика установки. Феноменологическое описание процесса бромирования.
курсовая работа [43,4 K], добавлен 17.09.2011Исследование уникальных свойств объемных наноструктурных материалов, обладающих необычной атомно-кристаллической решеткой, механические характеристики. Особенности моделей наноструктур, методы их получения, область применения; нанопроволоки и нановолокна.
курсовая работа [1,5 M], добавлен 11.05.2011Применение газовых сенсоров в системах автоматической пожарной сигнализации. Основные стадии наночастиц и наноматериалов. Механические свойства наноматериалов. Мицеллярные и полимерные гели. Золь-гель метод синтеза тонких пленок с солями металлов.
курсовая работа [1,6 M], добавлен 21.12.2016Построение экспериментальных искусственных наномашин с использованием биологических природных материалов, синтез живых и технических систем. Молекулярная электроника, свойства наноструктур, разработка новых способов их получения, изучение и модификация.
контрольная работа [38,1 K], добавлен 14.11.2010Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.
реферат [397,6 K], добавлен 23.10.2011Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.
презентация [4,6 M], добавлен 12.12.2013Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.
реферат [3,1 M], добавлен 19.04.2010Методы получения наноматериалов. Синтез наночастиц в аморфных и упорядоченных матрицах. Получение наночастиц в нульмерных и одномерных нанореакторах. Цеолиты структурного типа. Мезопористые алюмосиликаты, молекулярные сита. Слоистые двойные гидроксиды.
курсовая работа [978,0 K], добавлен 01.12.2014Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.
доклад [277,6 K], добавлен 26.09.2009Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. История развития нанотехнологий, особенности и свойства наноструктур. Применение нанотехнологий в автомобильной промышленности: проблемы и перспективы.
контрольная работа [3,8 M], добавлен 03.03.2011Цели и задачи материаловедения наносистем. Предмет, цели и основные направления в нанотехнологии, ее особенности. Сканирующая туннельная микроскопия, наилучшее пространственное разрешение приборов. Виды и свойства, применение наноматериалов, технологии.
курсовая работа [2,4 M], добавлен 05.05.2009Общие закономерности строения композитных наноматериалов, их виды: на основе керамической, слоистой, металлической и полимерной матрицы. Механические, электрические, термические, оптические, электрохимические, каталитические свойства нанокомпозитов.
реферат [377,0 K], добавлен 19.05.2015