Экспериментальные исследования параметров и режимов электротехнологического процесса озонирования яйцескладов птицефабрик
Перспектива применения озона в промышленном птицеводстве, оценка его преимуществ по сравнению с другими химическими веществами. Технологическое обоснование параметров и режимов электротехнологического процесса озонирования яйцескладов птицефабрик.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 26.05.2017 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Экспериментальные исследования параметров и режимов электротехнологического процесса озонирования яйцескладов птицефабрик
Озонирование, являясь эффективным способом дезинфекции, дезинсекции и дезодорирования практически любых сред, особенно воздуха и воды, активно используется на птицефабриках. Главная цель дезинфекции инкубационных яиц - уничтожение патогенных микроорганизмов, при том, что сам озон не образует вредных веществ и не влияет негативно на продукты питания. Обработанные озоном яйца лучше сохраняются, вывод молодняка увеличивается на несколько процентов. Кроме того, яйцо можно подвергнуть прямой дезинфекции озоном несколько раз: практически сразу, после снесения, перед закладкой в инкубатор и после переноса в выводной шкаф.
Значительные научные исследования, выполненные в 60-80 гг. специалистами ВНИТИП, другими научными учреждениями, были обобщены в монографии И.П. Кривопишина «Озон в промышленном птицеводстве» (1988). В частности, было установлено, что концентрация озона в птицеводческих помещениях должна составлять 15-20 мг/м3, что достаточно для уничтожения основных видов микрофлоры в течение 15-и минутной обработки. На этой экспериментальной основе разработаны эффективные технологии озонирования птичников и инкубаториев, пищевых и инкубационных яиц, которые успешно внедрялись на птицефабриках. Однако такие технологии не получили в своё время широкого распространения из-за отсутствия высокоэффективных и экономичных озонаторов отечественного производства. В ранних исследованиях ВНИТИП было установлено, что наибольшая эффективность озонирования отмечалась при обработке инкубационных яиц, когда уничтожается до 98% микроорганизмов в воздухе помещения, а бактериальная обсемененность скорлупы уменьшается в 5-8 раз, при этом вывод суточного молодняка и его сохранность повышаются на несколько процентов. В действующих рекомендациях по инкубации яиц (2008 г.) предлагается проводить длительное хранение инкубационных яиц в среде, обогащенной озоном. Яйца, уложенные в лотки, в тележках размещают в герметичном помещении яйцесклада, в котором поддерживается определённая концентрация озоновоздушной смеси.
Проведенные поисковые эксперименты на яйцескладе ООО «Птицевод» Краснодарского края показали, что существует проблема в нестабильной работе озонаторов в помещении.
Концентрация озона, создаваемая электроозонатором, в помещении яйцесклада не одинакова. Чем больше расстояние от электроозонатора, тем меньше концентрация озона, что влияет на качество обработки яиц. В свою очередь необходимо также учитывать не только расстояние от озонатора до самой удалённой точки, но и количество яиц, закладываемое в яйцесклад, так как они и в том числе поверхности помещения яйцесклада также способствуют разложению озона. Такие исследования до сих пор не проводились, поэтому целесообразно создание и обоснование параметров и режимов электротехнологического процесса озонирования яйцескладов птицефабрик.
При обосновании параметров и режимов электротехнологического процесса озонирования яйцескладов птицефабрик были выполнены экспериментальные исследования. Для проведения эксперимента была собрана лабораторная установка, которая позволяет подавать озоновоздушную смесь заданной концентрации (рис. 1). Лабораторная установка состоит из трех основных частей: электроозонатора, щита управления и датчиков концентрации озона.
Рисунок 1. Структурная схема лабораторной установки: 1 ? регулятор; 2 ? датчик температуры DS18B20; 3 ? яйца; 4 ? второй датчик концентрации озона; 5 ? контейнер для хранения яиц; 6 ? первый датчик концентрации озона; 7 ? разрядное устройство; 8 ? вентилятор; 9 ? щит управления, 10 ? источник питания; 11 ? силовые ключи, 12 ? повышающий трансформатор
яйцесклад птицефабрика электротехнологический озон
Концентрация озона измерялась газоанализатором «Циклон - 5.41». Принцип действия газоанализатора заключается в фотометрическом определении озона по собственной полосе поглощения на л=2537А. Газоанализатор представляет собой однолучевой фотометр, в котором функцию второго канала выполняет источник опорного сигнала.
Рисунок 2. Общий вид газоанализатора «Циклон - 5.41»
Методика определения микробной обсемененности основана на седиментационном методе исследования осажденных микроорганизмов на открытых поверхностях питательных сред, физиологического раствора или стерильных стекол.
Микроорганизмы в воздухе находятся во взвешенном состоянии. Обычно они фиксированы на частичках пыли или мельчайших капельках воды. Так формируется естественный бактериальный аэрозоль, который перемещается в воздухе в горизонтальном и вертикальном направлениях. Воздух постоянно обогащается различной микрофлорой, попадающей в него с поверхности почвы и водоемов.
Микроорганизмы, находящиеся в воздухе, относятся, в основном, к сапрофитным видам, причем в большинстве они представлены споровыми палочками, пигментными бактериями, грибками и плесенями.
Попавшие в воздух микробы в состоянии бактериального аэрозоля способны сохранять жизнеспособность от нескольких часов до несколько суток, а в отдельных случаях до несколько месяцев. На сроки выживания бактерий в аэрозолях влияют температура и влажность воздуха, солнечная и ультрафиолетовая радиация и другие причины. Воздушный путь передачи заразных микроорганизмов является одним из наиболее опасных. Доказано широкое распространение аэрогенных инфекций, которые по своему удельному весу занимают первое место в инфекционной патологии. Поэтому в их профилактике важную роль играет санитарно-бактериологический контроль над состоянием воздушной среды.
Обсемененность скорлупы инкубационных яиц в яйцескладе определяли чашечным методом Коха, который заключается в следующем: стерильные чашки Петри с посевами тест-бактерий помещали в специальную камеру, куда подавалась озоновоздушная смесь из лабораторного генератора озона барьерного типа. В качестве среды культивирования использовали питательный агар производства ООО НПП «ПанЭко».
В каждую чашку вносили по 0,1 мл микробной суспензии, содержащей 1000 микробных клеток, которую распределяли по всей поверхности агара. После этого посевы подвергали озонированию. При этом были испытаны концентрации озона 25, 12 и 7 мг/м3 при экспозиции 15, 30, 60 и 120 мин. По окончании озонирования чашки с культурами помещали в термостат при температуре 37єС на 24 часа. Результаты опытов оценивали по количеству выросших колоний. Каждое исследование проводили в трех повторностях. В качестве контроля использовались посевы, обработанные общепринятым традиционным препаратом ? формальдегидом.
Данные в таблице 1 свидетельствуют о том, что скорлупа инкубационных яиц сильно загрязнена болезнетворными микроорганизмами. Бактериальная обсеменённость инкубационных яиц достигает 410 тыс. бактерий.
Таблица 1. Эффективность электротехнологического процесса озонирования яйцескладов птицефабрик
Период отбора проб |
Общая бактериальная обсемененность скорлупы инкубационного яйца |
||
тыс. |
% обеззараживания |
||
До обработки |
410±11,3 |
? |
|
После обработки |
0,29±0,05 |
99,89 |
После дезинфекции инкубационных яиц озоном общая бактериальная обсемененность скорлупы яиц снизилась на 99,89%, что достаточно для профилактики инфекций.
Для того, чтобы стабильно получать положительный эффект от обработки инкубационных яиц озоно-воздушной смесью в яйцескладе птицефабрик необходимо создать равномерную концентрацию озона по всему объему помещения. Для достижения поставленной задачи были проведены исследования распределения озона по помещению яйцесклада в ООО Пксп «Птицевод» Краснодарского края.
Для обоснования требуемого управляющего воздействия для управления распределением концентрации озона в помещении яйцесклада при различных исходных данных была получена математическая модель электротехнологического процесса озонирования яйцескладов птицефабрик.
, (1)
где, q - расход озона, м3/ч; LВЕНТ - вентиляционный расход, м3/ч; D - коэффициент диффузии озона м2/ч; SПР - площадь открытого проема, м2; LПР - характерное расстояние от электроозонатора до открытого проема, м; V - объем помещения, м3; а, b, с - полуоси эллипсоида м; kЯ - коэффициент поглощения озона яйцами (k = 0,0001); N - количество яиц, шт.; a1, b1, c1 - стороны параллелепипеда (длина, ширина и высота помещения соответственно), м; kСТ - коэффициент поглощения озона стенами (kСТ = 0,042). ? масса озона, поглощенная яйцом, мг; ? масса озона, поглощенная стенами, мг; GОЗ - производительность разрядного устройства по озону, мг/с; tC - температура стекла диэлектрических барьеров, єС; РРУ - мощность разрядного устройства, Вт; aG1, aG2, …, aG6 - коэффициенты модели; UРУГ - напряжение горения разряда для используемого РУ; IРУ - средний ток, при котором рассчитывается мощность, мА; IРУЗ - ток зажигания разряда, мА;
Для подтверждения разработанной математической модели в яйцескладе был установлен электроозонатор с параметрами, заявленными при математическом моделировании. Схема проведения эксперимента представлена на рисунке 3.
Эксперимент проводился следующим образом. Вдоль всего яйцесклада от газоанализатора «Циклон - 5.41» 4 был протянут шланг для забора проб воздуха 3. При закрытых дверных проёмах включали электроозонатор 1. Через час его работы путём постепенного вытягивания шланга 3 из помещения яйцесклада через каждый метр измеряли концентрацию озона. Количество яиц - 50000 шт.
Рисунок 3. Схема эксперимента: 1 - электроозонатор, 2 - контейнеры с яйцами, 3 - шланг забора проб воздуха, 4 - газоанализатор «Циклон - 5.41»
По полученным экспериментальным данным (табл. 3), а также по результатам математического моделирования были построены графики, представленные на рисунке 4.
Таблица 3. Экспериментальные данные распределения озона по помещению яйцесклада
Расстояние, м |
Концентрация озона, мг/м3 |
|
0 |
19,8 |
|
1 |
19,5 |
|
2 |
18,6 |
|
3 |
16,4 |
|
4 |
14,9 |
|
5 |
11,1 |
|
6 |
9,2 |
|
7 |
6,8 |
|
8 |
3 |
|
9 |
1,1 |
|
10 |
0,2 |
Графики (рис. 3) подтверждают полученную математическую модель. Установлено, что сходимость теоретических и экспериментальных исследований составила 93%.
Рисунок 3. Графики сравнения теоретических и экспериментальных данных распределения концентрации озона по помещению яйцесклада.
В результате производственных испытаний был апробирован разработанный электротехнологический процесс озонирования яйцескладов птицефабрик. В ходе эксперимента было задействовано 35000 яиц. Размеры яйцесклада 10Ч7Ч3 м. Расположение электроозонатора потолочное в центре яйцесклада. Продолжительность работы электроозонатора составила 118 минут (8 минут ? длительность переходного процесса + 110 минут работы). Измерение концентрации озона производилось непосредственно у второго датчика концентрации озона, который располагался на полу под электроозонатором и находился на расстоянии 2,7 м от него (0,3 м ? высота электроозонатора).
Результаты эксперимента по исследованию разработанного электротехнологического процесса озонирования яйцескладов птицефабрик представлены на рисунке 4 и в таблице 4. Динамическая ошибка и коэффициент перерегулирования не превышают допустимого значения, что является необходимым условием для равномерного распределения озона по помещению яйцесклада.
Обобщённый интегральный среднеквадратичный показатель (J = 10,6%) снижен на 22,1% по сравнению с вариантом без регулирования (J = 32,7%), что говорит о достаточно качественном регулировании распределения концентрации озона в яйцескладе и удовлетворяет предъявленному допустимому значению данного показателя (не более 15%).
Рисунок 4. Графики проверки адекватности разработанного электротехнологического процесса озонирования яйцескладов птицефабрик
Таблица 4. Полученные показатели качества, разработанного электротехнологического процесса озонирования яйцескладов птицефабрик
Показатели |
С регулированием |
Без регулирования |
Допустимые значения |
|
Время регулирования |
8 мин |
- |
< 30 мин |
|
Динамическая ошибка |
0,9 |
-4,5 |
1 -1 |
|
Коэффициент перерегулирования, % |
4,5 |
22,5 |
20 -20 |
|
Обобщённый интегральный среднеквадратичный показатель, % |
10,6 |
32,7 |
не более 15% |
Определены дозы для качественной обработки яиц озоном для зон с количеством яиц равным 35000 штук (табл. 5).
Таблица 5. Дозы обработки яиц озоном
Концентрация озона, мг/м3 |
Время обработки, мин |
|
20 |
110 |
|
15 |
125 |
|
10 |
240 |
|
5 |
360 |
Проведённые производственные испытания показали снижение микробной обсеменённости при использовании разработанного электротехнологического процесса озонирования яйцескладов птицефабрик на 99,89%. Это объясняется созданием равномерного поля концентрации озона по помещению яйцесклада.
В результате экспериментальных исследований подтверждена полученная математическая модель распределения озона по помещению яйцесклада. Относительные погрешности экспериментальных значений от теоретических составляют 7%. В результате производственных испытаний установлены параметры качества, разработанного электротехнологического процесса озонирования яйцескладов птицефабрик: время регулирования ? 8 минут, динамическая ошибка ? 0,9, коэффициент перерегулирования ? 4,5%, обобщённый интегральный среднеквадратичный показатель ? 10,6%. Полученные данные свидетельствуют о качественном регулировании распределения концентрации озона в яйцескладе. Проведённые производственные испытания показали снижение микробной обсеменённости при использовании разработанного электротехнологического процесса озонирования яйцескладов птицефабрик.
Список литературы
1. Бородин И.Ф. Совершенствование предынкубационной обработки куриных яиц / И.Ф. Бородин, В.Ф. Сторчевой // Техника в сел. хоз-ве. -2002. - №2. - С. 32-33.
2. Возмилов А.Г. Электроочистка и электрообеззараживание воздуха в промышленном животноводстве и птицеводстве. Автореферат дис. на соиск. уч. степ. д.т.н. Челябинск: ЧеГАУ, 1993. - 37 с.
3. Горячий И.В. Озоно-воздушная обработка посевного материала и плодовых тел гриба / И.В. Горячий, Г.П. Стародубцева, В.И. Хайновский // Механизация и электрификация сельского хозяйства. 2008. №12. С. 12-14.
4. Донсков А.П. Современные технологии в камерах газации инкубационных яиц / А.П. Донсков, А.А. Гончаров, А.П. Волошин // Международное научное периодическое издание по итогам Международной научно-практической конференции: «Новая наука: современное состояние и пути развития»: / в 4 ч. Ч. 3 - Стерлитамак: РИЦ АМИ, 2016. - 238 с. С. 62-64.
5. Ксенз Н.В. Использование электроозонированного воздуха в сельскохозяйственном производстве / Н.В. Ксенз, И.Ф. Бородин // Техника в сел. хоз-ве. - 1993. - №3. - С. 13-14.
6. Ксенз Н.В. Электроозонирование воздушной среды. Зерноград, 1991, 171 с.
7. Лытнев А.С. Результаты экспериментальных исследований модернизированной конструкции разрядного устройства пластинчатого типа / А.С. Лытнев, А.П. Волошин // Материалы VI международной научно-практической конференции «Актуальные проблемы энергетики АПК»: / Под общ. ред. Трушкина В.А. - Саратов: ООО «ЦеСАин», 2015. - 327 с. С. 30-33.
8. Нормов Д.А. Электроозонные технологии в сельскохозяйственном производстве / Д.А. Нормов, И.Ф. Бородин // М.: «Вестник Российской академии сельскохозяйственных наук» №1, 2009.-С 57-59.
9. Николаенко С.А. Параметры системы стабилизированного электроозонирования ульев при лечении бактериозов пчел. Диссертация. Краснодар: КубГАУ, 2010. - 180 с.
10. Овсянников Д.А. Учебное пособие для практических занятий в примерах по дисциплине «Планирование и обработка результатов исследований»: учеб. пособие / Д.А. Овсянников, С.А. Николаенко, Д.С. Цокур, А.П. Волошин // - Краснодар, 2014. -76 с.: ил.
11. Оськин С.В. Электротехнологии в сельском хозяйстве: учебник для студентов вузов / С.В. Оськин. - Краснодар: КубГАУ, 2016. - 501 с.
12. Пат. РФ №2417159, МПК С2 С01В13/11 (2006.01) Электроозонатор / Д.А. Овсянников, С.А. Николаенко, С.С. Зубович, А.П. Волошин, Д.С. Цокур; заявитель и патентообладатель КГАУ. - №2009126863 заявл. 13.07.2009; опубл. 27.04.2011. Бюл. №2. - 5 с.
13. Пат. РФ №2429192, МПК С2 С01В13/11 (2006.01) Электроозонатор / Д.А. Овсянников, С.А. Николаенко, С.С. Зубович, А.П. Волошин, Д.С. Цокур; заявитель и патентообладатель КГАУ. - №20091330067 заявл. 2.09.2009; опубл. 20.09.2011. Бюл. №26. - 6 с.
14. Свид. РФ №2010620348. Зависимости технологических, электрических и энергетических параметров электроозонатора от температуры нагрева диэлектрических барьеров и напряжения питания / Д.А. Овсянников, С.А. Николаенко, С.С. Зубович, А.П. Волошин, Д.С. Цокур; заявитель и правообладатель КГАУ. - №2010620203 заявл. 11.05.2010; опубл. 28.07.2010. - 32 с.
Размещено на Allbest.ru
...Подобные документы
Расчет параметров режимов резания для каждой поверхности по видам обработки. Определение норм времени. Назначение геометрических параметров режущей части резца. Расчет режимов резания при сверлении и фрезеровании. Выбор инструмента и оборудования.
курсовая работа [161,2 K], добавлен 25.06.2014Методика и основные этапы разработки технологического процесса механической обработки детали - вала первичного КПП трактора ДТ-75. Характеристика и назначение данной детали, расчет необходимых параметров и материалов. Выбор и обоснование режимов резания.
контрольная работа [56,3 K], добавлен 11.01.2011Определение возможных видов структурной обработки. Определение параметров режимов назначенных видов структурной обработки. Фазовые и структурные превращения при нагреве и охлаждении в процессе назначенных видов и режимов обработки.
курсовая работа [500,8 K], добавлен 20.03.2004Структура управления предприятием. Характеристика основного и вспомогательного оборудования. Основные параметры полуфабрикатов и основного продукта по технической документации. Регулирование режимов технологического процесса и контроль параметров работы.
отчет по практике [1,1 M], добавлен 11.03.2015Устройство и принцип действия сушильной камеры ВК-4 и вспомогательного оборудования. Обоснование режимов сушки и влаготеплообработки древесины. Расчёт количества сушильных камер. Определение параметров агента сушки. Организация технологического процесса.
курсовая работа [599,7 K], добавлен 24.08.2012Требования ГОСТ к заданному изделию. Выбор схемы технологического процесса производства, типа оборудования и его основных параметров. Ориентировочный расчет деформационного и скоростного режимов прокатки. Технологический процесс производства.
курсовая работа [19,5 K], добавлен 14.02.2007Описание физической сущности ручной дуговой сварки покрытым электродом. Физическая сущность процесса сварки. Основные и вспомогательные материалы, вредные факторы. Влияние химических элементов на свариваемость. Расчет параметров режима процесса сварки.
курсовая работа [530,4 K], добавлен 05.12.2011Технологический процесс производства холоднокатаной полосы из стали. Выбор типа оборудования и его основных параметров. Ориентировочный расчёт деформационного и скоростного режимов. Расчёт часовой и годовой производительности основного агрегата.
курсовая работа [2,9 M], добавлен 12.01.2015Энергосиловой и кинематический расчёты параметров привода. График типовых режимов нагружения. Коэффициент максимальной перегрузки. Расчет частоты вращения валов привода, мощностей и вращающих моментов валами. Расчётные данные параметров привода.
контрольная работа [385,3 K], добавлен 29.01.2014Обоснование выбора типа соединений, схемы сварки. Описание материала деталей и его свариваемости. Расчет параметров режимов сварки. Описание материала деталей и его свариваемости. Выбор оборудования, индуктивное сопротивление вторичного контура.
курсовая работа [398,3 K], добавлен 10.01.2014Расчет параметров режимов резания при сверлении отверстия в заготовке и при шлифовании вала на круглошлифовальном станке. Сравнительный анализ эффективности обработки плоских поверхностей с заданной точностью при процессах строгания и фрезерования.
контрольная работа [392,7 K], добавлен 19.11.2014Расчет силовой нагрузки электротехнологического цеха по отделениям. Выбор конструктивного исполнения распределительной сети, размещения электрооборудования. Оценка сечений проводников и основного защитного оборудования кузнечно-термического отделения.
курсовая работа [990,6 K], добавлен 11.05.2014Технология получения деталей из дерева с помощью круглопильных станков. Выбор типового инструмента и определение его основных параметров. Расчет и анализ предельных режимов обработки (скорости подачи, мощности и фактических сил резания), механизма подачи.
курсовая работа [456,8 K], добавлен 02.12.2010Определение режимов сварки, коэффициента полезного действия процесса и эффективной тепловой мощности. Выбор расчетной схемы. Построение графика изотермических циклов и линий, максимальных температур. Методика и этапы расчета параметров сварочной ванны.
дипломная работа [407,0 K], добавлен 20.11.2013Полный аналитический расчет режимов резания. Выбор геометрических параметров резца. Определение подач, допускаемых прочностью пластинки, шероховатостью обработки поверхности. Расчет скорости, глубины, силы резания, мощности и крутящего момента станка.
курсовая работа [711,8 K], добавлен 21.10.2014Устройство и принцип действия сушильной камеры. Выбор режимов сушки и влаготеплообработки. Расчет требуемого количества камер. Определение массы испаряемой влаги, параметров агентов сушки, расходов теплоты на сушку. Разработка технологического процесса.
курсовая работа [1,4 M], добавлен 11.10.2012Состав предприятия, характеристика продукции и сырьевые материалы. Режим работы производства и его технологическая схема. Расчет основных параметров технологических режимов и организация производства изделия. Проектирование технологического процесса.
курсовая работа [331,5 K], добавлен 30.01.2009Определение параметров сварочной ванны аналитическим и графическим способами. Построение графиков изотермических циклов, линий и максимальных температур. Особенности определения КПД процесса и эффективной тепловой мощности. Определение режимов сварки.
курсовая работа [399,5 K], добавлен 19.11.2013Оформление технологической документации на операции и переходы, применяемые в ходе получения детали. Расчёт режимов резания и энергосиловых параметров изготовления автотракторной детали. Определение необходимой частоты вращения шпинделя и силы резания.
контрольная работа [827,7 K], добавлен 30.09.2012Описание непрерывного стана 1200 холодной прокатки Магнитогорского металлургического комбината им. В.И. Ленина. Оборудование и технология прокатки. Выбор режимов обжатий и расчет параметров, рекомендации по совершенствованию технологии прокатки.
курсовая работа [5,5 M], добавлен 27.04.2011