Изменение электрофизических параметров материалов системы ЦТС методом комбинирования
Ознакомление с основой большинства высокоэффективных пьезокерамических материалов. Рассмотрение свойств шихты для синтеза легированных порошков пьезофаз, которая получена методом диспергирования. Исследование петель диэлектрического гистерезиса.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 878,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Изменение электрофизических параметров материалов системы ЦТС методом комбинирования
Нагаенко А.В., Нестеров А.А., Свирская С.Н.,.Панич А.Е
Введение
Пьезокерамика на основе фаз системы (1-х)PbTiO3-xPbZrO3 является основой большинства высокоэффективных пьезокерамических материалов. Электрофизические и механические свойства этих материалов можно изменять в широких пределах при относительно небольших изменениях состава в пределах морфотропной области (МО). Вторым традиционным методом варьирования электрофизическими параметрами материалов рассматриваемой группы является их макро- и микролегирование. В настоящее время влияние отдельных катионов на изменение основных электрофизических параметров (ЭФП) керамических материалов типа ЦТС изучено достаточно подробно [1 - 7], однако сведения об их совместном влиянии в рамках одной системы крайне противоречивы [1 - 9]. В связи с этим, актуальным представляется изучение влияния на свойства материала системы ЦТС, содержащего легирующие добавки в подрешётке (А), фаз системы ЦТС, содержащих легирующие добавки в кристаллографической позиции (В).
В качестве модельных объектов были выбраны фазы системы ЦТС, составы которых принадлежали МО, в одной из которых часть ионов Pb2+ была замещена парой (Na+ + Bi3+) - фаза А, а в другой - ионы Ti4+ и Zr4+, на пару ионов (1/3Ме2+ + 2/3Nb5+), где Ме -Ni+2, Zn+2 - фаза В.
Шихта для синтеза легированных порошков пьезофаз получена методом диспергирования. В качестве исходных компонентов использованы предварительно высушенные порошки необходимой квалификации с влажностью не более 0,2 масс.%:
TiO2 и Nb2O5 - марки «о.с.ч.»; PbO и Bi2O3 марки «ч. д. а.»; SrCO3, NiO, ZnO и Na2CO3 - «ч»; ZrO2 марки «ЦРО-1». Качество прекурсоров и продуктов синтеза контролировалось методами ДТА (Diamond TG\DTA) и РФА (ARL'Xtra - CuKр1 излучение Ni-в-фильтр). Смешение и помол порошков прекурсоров проводился в планетарной мельнице Planetary Mill pulverisette 5 (Fritsch), время помола составляло 2 часа. Синтез целевых фаз проводился при 850єС по режиму одностадийного технологического процесса. Размер зерна керамики определялся по изображениям сколов на растровом электронном микроскопе JCM-6390 (JEOL).
Образцы для исследования были получены двумя методами: в первом случае в качестве исходных прекурсоров использовались предварительно синтезированные материалы системы ЦТС, один из которых был легирован в подрешетке А (компонент А), другой - в подрешетке В (компонент В). Синтезированные фазы смешивались (без дополнительного синтеза) в необходимой пропорции и из полученного порошка формовались и спекались пьезозаготовки. При этом мольные доли материалов типа А и В изменялись в пределах от 0,1 до 0,9 с шагом 0,1, что позволило оценить влияние совместного легирования по подрешеткам, а также зависимость свойств материалов при переходе от преимущественного легирования по подрешетке А к преимущественному легированию по подрешетке В.
Во втором случае необходимая композиция с различной долей легирования по подрешеткам изготавливалась с использованием перечисленных выше прекурсоров в виде оксидов и карбонатов, которые смешивались в необходимой пропорции, а целевая система получалась после одностадийного синтеза. После измельчения синтезированного продукта из него формовались и спекались пьезозаготовки. Во втором случае мольные доли материалов типа А и В изменялись в пределах от 0,1 до 0,45.
Спекание прессзаготовок осуществлялось в специальной засыпке, исключающей нарушение состава образцов. Скорость повышения температуры системы составляла 1000C/ч, а время изотермической выдержки при температуре 1150єС - 2 часа.
Согласно данным растровой микроскопии средний размер частиц получаемой керамики изменялся (в зависимости от состава) в пределах от 2 до 5 мкм (рис.1). Однако, как видно из представленных рисунков при увеличении в системе мольной доли компонента (В) до 0,45 скорость вторичной рекристаллизации в ней снижается, а затем вновь возрастает.
Рисунок 1- Микроструктура спеченных керамических образцов с различным содержанием компонента В (в мольных долях).
Рост доли стеклофазы в системе несколько увеличивает значения коэрцитивных полей материалов и снижает величину их спонтанной поляризации (рис.2, табл.1). При переходе к образцам, полученным с использованием второго метода, по сравнению с первым вариантом необходимо отметить рост значений коэрцитивных полей с сохранением величин спонтанной поляризации при одинаковой доле компонента В в системе.
Рисунок 2 - Петли диэлектрического гистерезиса при различном содержании компонента (В) в системе.
Таблица 1.
Содержание компонента В, моль. доли |
Величина коэрцитивного поля, В/мм |
Значение остаточной поляризации, нКл/мм2 |
|
Метод 1 |
|||
0.1 |
600 |
1750 |
|
0.3 |
600 |
1750 |
|
0.4 |
700 |
1500 |
|
0.6 |
700 |
1500 |
|
0.7 |
650 |
1550 |
|
0.9 |
650 |
1550 |
|
Метод 2 |
|||
0.2 |
650 |
1550 |
|
0.3 |
700 |
1550 |
|
0.4 |
1000 |
1500 |
|
0.5 |
1000 |
1500 |
Установлено, что изменение температуры Кюри в исследованных системах изменяется по закону, приближенному к аддитивному, при этом наблюдается ее снижение от 210 до 185єС с ростом мольной доли компонента В, независимо от метода получения материала.
Микроструктура образцов, полученных методом 2, также отлична от микроструктуры керамики, полученной по первому методу (рис. 3).
Рисунок 3 - Микроструктура керамических образцов (метод 2) с различной долей компонента В.
Электрофизические свойства материалов в зависимости от соотношения компонентов А и В в системе представлены на рисунках 4 (а, б и в). Установлено, что изменение основных пьезопараметров материалов с ростом содержания компонента В в системе носит характер близкий к экстремальному, что свидетельствует об образовании между ними непрерывных рядов твёрдых растворов.
Рисунок 4 - Изменение значений относительной диэлектрической проницаемости (а), продольного пьезомодуля (б) и скорости звука (в) по мере роста мольной доли компонента В в системе.
Полученные зависимости свидетельствуют, что наибольшие значения относительной диэлектрической проницаемости и продольного пьезомодуля приходятся на 0,5-0,6 мольных долей компонента В, т.е. при сопоставимом количестве компонентов, легированных в позициях А и В кристаллической решетки. пьезокерамический шихта диспергирование
Абсолютные значения пьезомодулей, для образцов полученных по методу 2, в среднем ниже на 15 - 20 %, тогда как значения относительной диэлектрической проницаемости выше примерно на 12%. Это свидетельствует об уменьшении коэффициентов электромеханической связи, а рост значений коэрцитивных полей для средней области составов свидетельствует об увеличении сегнетожёсткости материалов.
Заключение
Проведённые исследования показали, что одним из эффективных способов варьирования ЭФП пьезоматериалов может быть формирование твёрдых растворов на основе двух и более известных пьезоэлектрических фаз, имеющих различное сочетание электрофизических параметров.
Установлено, что изменение основных пьезопараметров материалов для исследованных фаз системы ЦТС носит характер близкий к экстремальному, что свидетельствует об образовании между ними непрерывных рядов твёрдых растворов
Отмечены изменения скорости формирования зерновой структуры пьезокерамики при соотношениях в системе компонентов А и Б близких к 50:50. Указанный факт может быть объяснён повышением энергии активации процессов кристаллизации [10-13].
Показано, что повышение доли стеклофазы в системе способствует росту сегнетожёсткости образцов, что позволяет изготавливать образцы с различным сочетанием ЭФП.
Литература
1. Яффе В., Кук У., Яффе Г., Пьезоэлектрическая керамика. М. «Мир» 1974. 287 с.
2.Веневцев Ю.Н., Е.Д. Политова, С.А.Иванов. Сегнето- и антисегнетоэлектрики семейства титаната бария.1985, М.,«Химия», 256 с.
3. Кнотько А.В., Пресняков И.А., Третьяков Ю.Д. Химия твердого тела. М.- Академия. 2006. 302 с.
4. Klimov V.V. New piezoelectric ceramics [Text] / V.V. Klimov, 0.S. Didkovskaya, G. Е. Savenkova, Yu.N.Venevtsev // J. Phys. Coll. C. 2. 1972. V. 33. P. 243--245.
5.. Klimov V. V. Some physico-chemical aspects indevelopment and production of piezoceramic materials [Text] / V. V. Klimov, О.S. Didkovskaya, V.V. Prisedsky // Ferroelectrics. 1982. V. 41. N1/4/ P/ 97--109.
6.Нестеров А.А., Лупейко Т.Г., Нестеров А.А., Пустовая Е.Л. Влияние способа синтеза шихты на электрофизические свойства керамики состава Pb0,76Ca0,24Ti0,94(Cd0,5W0,5)0,06O3. Изв. АН РФ Неорганические материалы 2004,т.40, №12, с.1530-1534.
7. Нестеров А.А., Панич А.А. Современные проблемы материаловедения пьезокерамических материалов. Ростов-на-Дону. Изд.-во ЮФУ. 2010. 226 с.
11. Мараховский, М.А., Нестеров, А.А. Влияние стеклодобавок на параметры пьезоматериалов [Электронный ресурс] // «Инженерный вестник Дона», 2010, №3.- Режим доступа: http://www.ivdon.ru/magazine/archive/n3y2010/205 (доступ свободный) - Загл. С экрана. - Яз.рус.
12. Панич, А.А., Мараховский, М.А., Мотин, Д.В. Кристаллические и керамические пьезоэлектрики [Электронный ресурс] // «Инженерный вестник Дона», 2011, №1. - Режим доступа: http://www.ivdon.ru/magazine/archive/n1y2011/325 (доступ свободный) - Загл. с экрана. - Яз. рус.
8. Ю.Д. Третьяков. Твёрдофазные реакции. М.: «Химия». 1978. 360 с.
9.Кингери, У.Д. Введение в керамику М.: Изд. лит. по строительству, 1967. - 500 с.
10. Кинетика и механизм химических реакций в твёрдом теле. Под ред. В.В. Свиридова. Минск: БелГУ. 1975, 403 с.
Размещено на Allbest.ru
...Подобные документы
Исследование химического диспергирования алюминиевого сплава; влияние концентрации щелочи на структуру диспергированных порошков и физико-механические свойства керамических материалов. Разработка технологической схемы спекания; безопасность и экология.
дипломная работа [2,9 M], добавлен 27.01.2013Исследование характеристик исходного сырья для производства спеченных периклазовых порошков, которые служат огнеупорной основой для периклазовых материалов. Описание свойств готовой продукции. Технологическая схема обжига. Используемое оборудование.
реферат [28,1 K], добавлен 30.01.2011Характеристика расчета шихты аналитическим путем. Методы определения количества шихтовых материалов, обеспечивающих получение жидкого чугуна заданного химического состава и определенных механических свойств. Особенности технических условий на отливку.
практическая работа [24,7 K], добавлен 26.01.2010Рассмотрение целей и задач материаловедения. Кавитация как образование в жидкости полостей, заполненных паром. Особенности определения параметров, влияющих на процессы диспергирования и кавитационного разрушения. Виды эрозионного разрушения материалов.
реферат [75,8 K], добавлен 05.12.2012Анализ методов оценки упругопластических свойств материалов для верха обуви при растяжении. Обоснование выбора методов испытаний и исследуемых материалов. Разработка автоматизированного комплекса для оценки свойств при одноосном и двухосном растяжении.
дипломная работа [4,8 M], добавлен 26.10.2011Исследование структуры, фазового состава и свойств покрытий системы Ti–Si–B, полученных электронно-лучевой наплавкой в вакууме и методом электронно-лучевого оплавления шликерной обмазки. Получение и перспективы применения МАХ-материалов на основе титана.
дипломная работа [4,0 M], добавлен 14.06.2013Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.
дипломная работа [1,7 M], добавлен 21.11.2010Анализ микроструктуры стали 20 и баббита, роль легирования в улучшении свойств материалов. Оценка структуры и свойств баббита Б83 после нанесения на поверхность антифрикционного покрытия на базе индия методом искродугового легирования в среде азота.
дипломная работа [2,5 M], добавлен 17.11.2011Понятия и классификация нанотехнологий, виды наноструктур. Характеристика способов наноконстуирования. Исследование свойств материалов, применение и ограничения в использовании наноматериалов. Модифицирование сплавов с нанокристаллической решеткой.
курсовая работа [9,1 M], добавлен 14.07.2012Создание виртуальной лабораторной работы. Классификация и характеристика магнитомягких материалов, исследование их свойств. Анализ стандартного метода измерения начальной магнитной проницаемости и тангенса угла магнитных потерь магнитомягких материалов.
дипломная работа [728,6 K], добавлен 19.11.2013- Технологические особенности переработки полимерных материалов в изделия методом горячего прессования
Основные технические свойства пластмасс и их использование в производстве. Особенности переработки полимерных материалов в изделия методом горячего прессования. Технология литья по выплавляемым моделям. Составляющие литейного модельного комплекта.
контрольная работа [764,6 K], добавлен 23.01.2010 Рассмотрение сущности и параметров процесса цементации. Общая характеристика, применение легированных сталей. Литье по выплавляемым моделям и в оболочковые формы. Производственный процесс машиностроительства. Тепловые явления при резании металлов.
контрольная работа [1020,7 K], добавлен 16.10.2014Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.
курсовая работа [43,7 K], добавлен 03.04.2010Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.
реферат [480,5 K], добавлен 16.10.2008Порошковая металлургия как отрасль техники, занимающаяся получением металлических порошков. Анализ схемы строения композиционных материалов. Знакомство с основными функциями и назначением алюминиевой пудры. Особенности физико-химических свойств алюминия.
дипломная работа [1,8 M], добавлен 22.11.2014Металлические порошки и порошки сплавов - основное сырьё для производства изделий методом порошковой металлургии. Смешивание, прессование, спекание порошков. Выбор порошков, химического состава и оборудования. Подготовка технологического процесса.
контрольная работа [61,2 K], добавлен 15.01.2011Определение содержания элементов в шихте с учетом угара, их описание. Балансовое уравнение по углероду. Обеспечение получения жидкого чугуна с заданными механическими свойствами. Химический состав шихтовых материалов и технические условия на отливку.
практическая работа [24,9 K], добавлен 30.01.2010Отбор образцов, проб и выборок для исследования свойств текстильных материалов, методы оценки неровности текстильных материалов. Однофакторный эксперимент. Определение линейного уравнения регрессии первого порядка. Исследование качества швейных изделий.
лабораторная работа [128,0 K], добавлен 03.05.2009История возникновения и развития агломерации. Общая схема агломерационного процесса методом просасывания. Подготовка сырых материалов и отбор проб. Определение оптимального состава, смешение и увлажнение шихты. Выгрузка пирога агломерата и его разделка.
дипломная работа [745,5 K], добавлен 18.10.2011Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.
курсовая работа [442,7 K], добавлен 17.10.2008