Исследование капельного уноса из гальванических ванн при нанесении хромовых покрытий
Распространение гальванических процессов в современной промышленности. Способы, применяемые для очистки выбросов и сбросов гальванических производств. Изучение состава капель, возникающих при разрушении пузырей, пленок и пен и образующих капельный унос.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 202,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование капельного уноса из гальванических ванн при нанесении хромовых покрытий
Е.С. Филь, С.Е. Гераськова
Гальванические процессы широко распространены в современной промышленности. Большинство наиболее распространенных электролитов содержат широкий спектр веществ, большинство из которых являются опасными для человека. В частности, широко применяемые при нанесении хромовых покрытий соединения шестивалентного хрома являются канцерогенными (ПДК среднесменная - 0,01 мг/м3) [э1].
Для очистки выбросов и сбросов гальванических производств применяются различные способы и методы, см., например, [э2].
При нанесении гальванических покрытий наблюдается значительное газовыделение, сопровождающееся образованием пузырей, пленок, пен [э3].
Изучение состава капель, возникающих при их разрушении и образующих капельный унос, представляет особый интерес, в первую очередь, с точки зрения обеспечения качества воздуха рабочей зоны. Такие исследования проводились и ранее, см., например, [э4, э5, э6]. Наша работа является дальнейшим их развитием.
В настоящее время наиболее прогрессивным является такой подход к экологизации воздуха рабочей зоны, при котором загрязняющие вещества улавливаются непосредственно в области, максимально прилегающей к месту их выделения. Преимущества аппаратов локального улавливания рассмотрены в работе [э7]. гальванический очистка капельный унос
Для иллюстрации эффективности такого подхода приведем данные о распределении концентрации выбросов стандартного хромового электролита по высоте при нанесении упрочняющих покрытий на изделия различных типоразмеров.
Изделие №1 представляет собой набор мелких деталей, изделие №2 - одиночное крупное изделие, при этом суммарные площади поверхностей обеих изделий примерно одинаковы.
Согласно существующим нормативным документам [э8] концентрацию хрома в воздухе следует измерять в зоне дыхания работника. Иногда для оперативности контроля можно пользоваться интегральной оценкой интенсивности капельного уноса с помощью фотометрического метода.
Однако, для реализации идеи локального электроулавливания необходима дифференциальная оценка капельного уноса (определение локального дисперсного состава), что позволит получить необходимые данные для расчета требуемой эффективности улавливания, а также промоделировать элементы теории и конструкции уловителей.
Для определения условий локального улавливания выброса электролита взятие проб для определения концентрации хрома в воздухе выполнялось не на уровне зоны дыхания (в соответствии с [э8]), а значительно ниже, в области вероятной установки локального уловителя. Кроме того, по причине малой высоты время взятия проб по сравнению с ГОСТ [э8] было существенно уменьшено. При этом руководствовались следующими соображениями.
Во-первых, на малой высоте измерения более оперативны, во-вторых, из соображений теории вероятности точность измерений в непосредственной близости к источнику выбросов должна быть выше, чем на большой высоте, так как закономерности капельного уноса носят более детерминированный характер.
Для взятия проб использовался метод осаждения капель на стеклянные пластины-зонды собственной разработки с последующей колориметрической обработкой.
В данном случае, ввиду высоких концентраций хрома в пробах, для выполнения колориметрических измерений потребовалось выполнять разбавление полученных проб в 100 и 1000 раз.
На рисунках 1 и 2 показаны зависимости содержания хрома в пробах, взятых на различных высотах над гальванической ванной при покрытии хромом изделий №1 и №2.
Рис. 1 Зависимость концентрации хрома в пробах воздуха от высоты над ванной (изделие №1, ток 900 А)
Рис. 2 Зависимость концентрации хрома в пробах воздуха от высоты над ванной (изделие №2. График 1: ток 1000 А, график 2: ток 1100 А)
Результаты экстраполяции функции распределения концентрации капельного уноса по высоте на уровень зоны дыхания (точку, расположенную на высоте h=0,4 м над зеркалом электролита) дали следующие концентрации хрома в воздухе:
- изделие №1 -- 3,45 мг/м3.
- изделие №2 -- 1,82 мг/м3;
Оба полученных значении концентрации вредного вещества значительно превышают ПДК.
Аналогичное распределение получено и в работе [э9]. Полученные нами экспериментальные данные могут быть положены в основу моделирования эффективности локальных уловителей.
Учитывая, что эффективность локальных уловителей достигает более 95%, то есть веские основания для выполнения дальнейших разработок улавливающих систем на их основе. Применение локальных уловителей в сочетании с другими способами улавливания капельного уноса (например, использованием улавливающих свойств динамических пенных слоев) представляется наиболее перспективным.
В перспективе дальнейших исследований предполагается моделирование процессов образования, движения и улавливания капельного уноса, а также разработка математических моделей процессов, происходящих в локальных улавливающих системах, а также решение задач оптимизации параметров улавливающих аппаратов и создание на их основе систем экологизации воздуха рабочей зоны. Т.к. указанные процессы являются многофакторными и в значительной степени носят вероятностный характер, то при создании моделей следует применять вероятностные методы, например, рассматриваемые в [э10, э11].
Литература
1. ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
2. А.В.Алешин, А.А.Онищенко. Влияние магнитного поля на процесс обработки сточных вод гальванических производств и осадка. [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4, том 1. Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1046 (доступ свободный). Загл. с экрана. Яз. рус.
3. Хентов В.Я. Физико-химия капельного уноса / Ростов-на-Дону. Изд.-во Рост. университета, 1979. 128 с.
4. Гаршин В.И., Харченко В.А. Исследования капельного выброса в гальваническом производстве // Безопасность жизнедеятельности. М.: «Новые технологии», 2005. №2. С. 49-53.
5. Blanchard D. С. Electrified droplets from bursting an air-sea water interface // Nature. 1955. v. 175. P. 334-336.
6. Matthews J.В., Mason BJ. Electrification produced by the rupture of large water drops in an electric field. // Quart. J. Roy. Met. Soc. 964. Vol. 90, № 385. P. 275--286.
7. В.И. Гаршин, С.Л. Пушенко, Е.С. Филь. Уточнение методики определения заряда капельного уноса в рабочую зону при барботаже электролитов. [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4, том 1. Режим доступа: http://www.ivdon.ru/magazine/archive/n4t1y2012/1072 (доступ свободный) - Загл. с экрана. Яз. рус.
8. ГОСТ 12.1.016-79. ССБТ. Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ.
9. Гаршин В. И., Гераськова С. Е., Пилюгина И. Н., Филь Е. С. Перспективы повышения эффективности систем улавливания гальванических аэрозолей. «Состояние и перспективы развития сельскохозяйственного машиностроения»: Материалы 6-й международной научно-практической конференции 26 февраля -- 1 марта 2013 г., г. Ростов-на-Дону. В рамках 16-й международной агропромышленной выставки «Интерагромаш-2013», Ростов-на-Дону, 2013. с. 408 - 410.
10. Богуславский Е.И., Омельченко Е.В. Моделирование процесса пылеулавливания в гравитационно-инерционном аппарате. // Безопасность жизнедеятельности. Охрана труда и окружающей среды: Межвуз. сб. науч. тр. Вып. 4 (междунар.) / РГАСХМ, Ростов н/Д. 2000. С. 15-17.
11. Woodcock. A.H. Bursting bubbles and air pollution / A.H. Woodcock // Sawage and Industr. Wastes. 1955. V, 27. № 10. P. 1189 - 1192.
Размещено на Allbest.ru
...Подобные документы
Влияние гальванических производств на окружающую среду. Описание общеобменной вентиляционной схемы. Оборудование для нанесения гальванических покрытий. Стационарная ванна. Бортовые отсосы. Виды отсосов от ванн. Фильтр для гальванических производств.
реферат [26,5 K], добавлен 25.11.2008Структура и свойства антифрикционных гальванических покрытий. Влияние процессов трения на структуру гальванических покрытий Pb-Sn-Sb. Технические рекомендации по повышению износостойкости пары прения подпятник – планшайба аксиально-поршневого насоса.
дипломная работа [5,7 M], добавлен 08.12.2012Классификация и назначение гальванических покрытий, а также характеристика механической, химической и электрохимической обработок поверхностей перед их нанесением. Требования к поверхностям и покрытиям. Устройство оборудования для гальванических операций.
курсовая работа [2,3 M], добавлен 28.01.2010Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.
реферат [26,8 K], добавлен 14.08.2011Состав и структура гибких производственных модулей (ГПМ) сварочного производства. Конструкторско-технологическая характеристика свариваемых деталей. Особенности ГПМ термической обработки и ГПМ гальванических покрытий деталей микроэлектронной аппаратуры.
реферат [49,4 K], добавлен 23.05.2010Влияние технологических факторов на процесс электролитического осаждения цинка на стальной подложке, органических добавок на качество и пористость цинковых покрытий. Зависимость толщины осаждаемых цинковых покрытий от продолжительности электролиза.
презентация [1,1 M], добавлен 22.11.2015Технология восстановления коленчатого вала методом хромирования. Показатели качества покрытия при хромировании. Механическая обработка. Составы щелочных растворов для химического обезжиривания. Установка для электролитического осаждения металлов.
курсовая работа [1,5 M], добавлен 21.01.2014Расчет участка цинкования стальных деталей простой конфигурации. Определение времени обработки деталей на технологических операциях. Количество гальванических ванн и габариты автооператорной линии. Расчет баланса напряжения на электрохимической ванне.
курсовая работа [1,2 M], добавлен 19.04.2017Анализ влияния технологических режимов формирования на структуру, физико-механические свойства композиционных гальванических покрытий. Разработка технологического процесса восстановления вкладышей подшипников скольжения коленчатого вала дизеля Д100.
дипломная работа [3,4 M], добавлен 08.12.2012Технологии гальванических покрытий. Обзор систем водоснабжения и водоотведения. Характеристика очистных сооружений и технология обезвреживания сточных вод гальванического цеха ОАО "Электоромашина". Разработка схемы доочистки общезаводсткого стока.
дипломная работа [1,9 M], добавлен 13.01.2015Механизм образования гальванических покрытий. Разработка технологического процесса участка никелирования для детали "Направляющая": характеристика изделия, выбор вида и толщины покрытия; подбор оборудования; расчет себестоимости; техника безопасности.
дипломная работа [356,4 K], добавлен 30.05.2013Осуществление контроля за количеством находящихся в промышленных водах ионов металлов. Основные виды и стадии инверсионного вольтамперометрического анализа. Вольтамперометрический анализатор TA-Lab. Анализатор ТА-Универсал. Анализатор Applikon 2045VA.
реферат [2,2 M], добавлен 22.03.2015Суть технологических процессов газоочистки, виды и свойства катализаторов. Принцип действия каталитической очистки промышленных выбросов электронной промышленности. Способ каталитической очистки высокотемпературных отходящих газов от смолистых веществ.
курсовая работа [522,2 K], добавлен 29.09.2011- Исследование процесса движения частиц в газоплазменном потоке при газотермическом нанесении покрытий
Характеристика основных закономерностей процесса газотермического нанесения покрытий. Устройство плазматрон. Преимущества технологии газотермического нанесения покрытий. Моделирование воздействия концентрированного потока энергии на поверхность.
контрольная работа [3,2 M], добавлен 16.06.2013 Создание технологической схемы малоотходной технологии производства покрытий. Расчет материальных балансов процессов. Выбор основного и вспомогательного оборудования для процессов получения покрытий, очистки СВ и воздуха. Основы процесса цинкования.
дипломная работа [1,2 M], добавлен 26.10.2014Система термической очистки газовых выбросов при использовании в качестве топлива природного газа. Обоснование и выбор системы очистки с энергосберегающим эффектом. Разработка и расчет традиционной системы каталитической очистки от горючих выбросов.
курсовая работа [852,0 K], добавлен 23.06.2015Коррозионная стойкость окрашенных изделий. Удаление окисных пленок. Обезжиривание, абразивная очистка, травление, фосфатирование, хроматирование, пассивирование. Классификация процессов нанесения металлических покрытий. Требования к готовым покрытиям.
презентация [180,4 K], добавлен 28.05.2014Методы физической, химической модификации пленок. Производство химически модифицированных пленок. Физическая сущность метода каландрования. Технология производства поливинилхлоридных пленок, производимых деформационным способом. Метод прокатки, строгания.
курсовая работа [806,1 K], добавлен 04.01.2010Виды и свойства керамических покрытий, способы получения. Электронные ускорители низких энергий в технологиях получения покрытий. Нанесение покрытий CVD-методом. Золь-гель технология. Исследование свойств нанесенных покрытий, их возможные дефекты.
курсовая работа [922,9 K], добавлен 11.10.2011Получение тонкопленочных покрытий в вакууме, термическое и магнетронное испарение. Конструирование жидкофазного магнетрона с помощью AutoCAD. Методы исследования параметров тонких пленок. Измерение толщины тонкопленочных покрытий с помощью профилометра.
дипломная работа [4,1 M], добавлен 15.06.2012