Применение критерия равнопрочности при проектировании сменных режущих пластин для отрезных и канавочных резцов

Математическая модель режущих пластин для сборных отрезных и канавочных резцов. Эксплуатационные свойства отрезных резцов с разработанной формой заточки. Повышение прочности лезвия и стойкости инструментов за счет равнопрочной передней поверхности.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.05.2017
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.Allbest.ru/

Применение критерия равнопрочности при проектировании сменных режущих пластин для отрезных и канавочных резцов

А.А. Моховиков, С.В. Корчуганов

Распространенной операцией заготовительного производства и технологических процессов изготовления деталей машин является отрезка. Инструменты, предназначенные для выполнения данной операции, работают в особо тяжелых условиях, которые объясняются переменным значением скорости резания, трением между стенками прорезаемой канавки и стружкой, а также стесненными условиями стружкообразования. Распространенными представителями этих инструментов являются отрезные и канавочные резцы, имеющие ряд особенностей конструкции и условий эксплуатации [1].

Отечественной и зарубежной промышленностью производятся различные конструкции этих резцов, предназначенные для эксплуатации на универсальном и программном оборудовании, а также станках-автоматах [2]. В настоящее время значительного успеха в разработке передовых конструкций отрезных инструментов достигли ведущие зарубежные фирмы такие как Kennametal Hertel (Германия, США), Iscar (Израиль), Korloy (Корея), Sandvik Coromant (Швеция, Россия) и др. Ими для отрезных и канавочных резцов разработаны различные формы и конструкции режущих пластин, с помощью которых решается одна из основных проблем отрезки и прорезки канавок - удаление стружки из прорезаемого паза. Передняя поверхность этих резцов формирует плотноупакованную в рулоны узкую стружку, свободно выходящую из прорезаемого паза и одновременно, за счет снижения силы резания, позволяют увеличить значения рабочих подач.

Однако, несмотря на многообразие и определенное совершенство существующих конструкций режущих пластин для отрезных и канавочных резцов, одной из основных причин выхода их из строя является хрупкое разрушение режущей части [3, 4], что свидетельствует о недостаточной прочности режущего лезвия данных инструментов.

Авторами [5, 6, 7, 8] показано, что прочность и в определенной степени стойкость режущего лезвия инструментов определяется соответствием его формы внешним нагрузкам. Одним из подходов определения такой формы лезвия инструмента является критерий равнопрочности передней поверхности режущей пластины, предложенный Петрушиным С.И. [9].

Исходя из аналитических решений [9] получим, для условий работы отрезных и прорезных инструментов, следующее уравнение:

(1)

где - отнесенные на единицу ширины режущего лезвия радиальная и тангенциальная составляющие силы резания, Н;

- значение текущего переднего угла, соответствующее радиус-вектору (рис. 1);

- некоторая величина напряжения, значение которого находится в пределах , МПа.

Рис. 1 - Расчетная схема

Построение искомых профилей передней поверхности было реализовано численным методом с помощью разработанной в среде универсального математического пакета Maple программы расчета координат точек профиля. Исходные данные для расчета: экспериментальные значения технологических составляющих силы резания [10], значения допускаемых напряжений -50, -100, 50, 100 МПа и величина заднего угла = 8о. Полученные результаты представлены на рис. 2.

Рис. 2 - Расчетные профили равнопрочной передней поверхности

Построенные расчетные профили передней поверхности представляют собой линии, имеющие переменную кривизну, форма которых определяется исходными данными. Изменение величины допустимого напряжения в большую сторону приводит к увеличению кривизны линии, описывающей равнопрочную форму передней поверхности, а знак допускаемого напряжения влияет на её вид. Если , то поверхность получает выпуклый вид, в противном случае при передняя поверхность приобретает вогнутую форму.

Радиус кривизны получаемого профиля в значительной степени определяется соотношением касательной и радиальной составляющих силы резания, которые изменяются при различных значениях скорости резания и подачи. Анализ и сопоставление экспериментальных значений составляющих силы резания [10] позволил установить, что среднее значение отношения .

Принимая во внимание полученное соотношение для значений напряжения на передней поверхности , равных 50, -50, 100, -100 МПа, при максимальном экспериментальном значении были получены расчетные усредненные профили передней поверхности, которыми описывается форма равнопрочного лезвия отрезных инструментов (рис. 3).

Рис. 3. - Расчетные усредненные профили передней поверхности равнопрочного лезвия

Полученные расчетные данные показывают, что равнопрочная форма передней поверхности может в зависимости от принятой величины и знака допускаемого напряжения принимать различный вид - выпуклый или вогнутый.

В работе [3] на основе принципа равнопрочности разработана форма заточки для отрезных резцов с напаянными режущими пластинами и на основе сравнительных экспериментальных исследований эксплуатационных свойств отрезных резцов с разработанной формой заточки и с плоской передней поверхностью экспериментально доказано повышение прочности лезвия и стойкости данных инструментов за счет равнопрочной передней поверхности.

Однако в современном производстве широкое применение получили сборные режущие инструменты со сменными режущими пластинами, получаемыми методом порошковой металлургии с последующей шлифовкой их плоских рабочих поверхностей. Передняя поверхность сменных режущих пластин формируется при прессовке порошков твердых сплавов, что позволяет ей придать практически любую форму и дает широкие возможности при проектировании, в том числе и применении принципа равнопрочности в их конструкциях.

Полученные математическим моделированием равнопрочной передней поверхности режущего лезвия данные стали основой для разработки режущих пластин для сборных отрезных и канавочных резцов (рис. 4 и 5), представляющих собой компьютерную композицию сложной геометрической формы, состоящей из набора преобразованных расчетных профилей [11]. отрезной резец равнопрочный поверхность лезвие

Режущая пластина, представленная на рис. 4, имеет форму передней поверхности, в основу которой положена поверхность образованная прямолинейным перемещением по главной режущей кромке расчетного усредненного профиля с . Для формирования свободно выходящей из прорезаемого паза стружки предусмотрена канавка, расположенная с занижением на середине режущей кромки. Профиль канавки получен аналогично на основе расчетного усредненного профиля для допустимого напряжения на передней поверхности . Такая форма режущей пластины позволит снизить усилия резания за счет снижения трения стружки о стенки прорези, и может применяться при отрезке и прорезке глубоких канавок.

Рис. 4 - Сменная режущая пластина для отрезных и канавочных резцов, предназначенная для отрезки и прорезки канавок (обрабатываемый материал Сталь 45)

Сменная режущая пластина, представленная на рис. 5 спроектирована для отрезки, точения канавок «в разгонку» и при необходимости контурного точения. В целях успешного осуществления указанных технологических переходов пластина имеет большие, чем у предыдущего проекта, вспомогательные задние углы . Ее передняя поверхность получена перемещением вдоль главной и вспомогательных режущих кромок усредненного расчетного профиля с . Облегчение выхода стружки при прорезке и отрезке обеспечивается канавкой сформированной на передней поверхности. Представленная форма передней поверхности позволяет режущей пластине работать с поперечной и продольной подачей, значение которых определяется жесткостью головки резца.

Все представленные проекты сменных режущих пластин позволяют значительно повысить жесткость рабочей части инструмента за счет выполнения задних вспомогательных углов и вспомогательных углов в плане на самой пластине.

Рис. 5. - Сменная режущая пластина для отрезных и канавочных резцов, предназначенная для отрезки, точения канавок «в разгонку» и контурного точения (обрабатываемый материал Сталь 45)

Для крепления режущей пластины в корпусе державки нижняя ее часть имеет V - образную форму с углом, равным 1200. Для спроектированных пластин главный задний угол был принят равным 80.

Таким образом, критерий равнопрочности лезвия, на наш взгляд, может быть применен при проектировании сменных режущих пластин повышенной прочности, предназначенных для отрезных и канавочных резцов.

Литература:

1. Gadzinski M. Understanding parting-off operations. Part 1 of 2 // Cutting Tool Engineering. - 2001. - v. 53, Nr.2. - P. 34-37.

2. Демаков Д.В. Краткий анализ исследований проблем развития регионального машиностроения // Инженерный вестник Дона, электрон. науч.- инновац. журн. - 2012.

3. Моховиков А.А. Повышение прочности отрезных и канавочных резцов за счет равнопрочной формы лезвия: дис.канд. техн. наук . - Томск. 2004. 177 с.

4. Tokahara К., Makio S. Analisis of cutting farce on cutting off // Kisazazu Kagyo koto senmon gakko kiyo Bull / Kisazazu Nat. Call. Technoll. - 1999. №32. - P.1-5.

5. Бетанели А.И. Прочность и надежность режущего инструмента. [Текст] - Тбилиси: Сабчота сакартвело, 1973. - 172 с.

6. Артамонов Е.В., Ефимович И.А., Смолин Н.И., Утешев М.Х. Напряженно-деформированное состояние и прочность режущих элементов инструментов / Под ред. М.Х. Утешева. [Текст] - М.: ООО «Недра: Бизнесцентр», 2001.

7. Хает Г.Л. Прочность режущего инструмента. - М. [Текст]: Машиностроение, 1975. - 168 с.

8. Петрушин С.И., Бобрович И.М., Корчуганова М.А. Оптимальное проектирование формы режущей части лезвийных инструментов: Учебное пособие. [Текст] - Томск: Изд. ТПУ, 1999. - 91 с.

9. Петрушин С.И. Теоретические основы оптимизации режущей части лезвийных инструментов: дис. докт. техн. наук. [Текст] - Москва, 1995. 307 с.

10. Моховиков А.А. Измерение силы резания и шероховатости торцевой поверхности при прорезке канавок. [Текст] // Технология металлов. - 2002. - №12. - C. 24-26.

11. Рачковская Г.С. Математическое моделирование и компьютерная визуализации сложных геометрических форм [Электронный ресурс] // Инженерный вестник Дона [Электронный ресурс]: электрон. науч.- инновац. журн. - 2013. - №1 Размещено на Allbest.ru

...

Подобные документы

  • Подготовка исходных данных для расчета профиля фасонного резца. Определение геометрии режущих кромок фасонных резцов. Геометрия режущих кромок, обрабатывающих радиально-расположенные поверхности деталей. Аналитический расчет профиля фасонных резцов.

    курсовая работа [1,6 M], добавлен 13.12.2010

  • Описание объекта исследования - резца борштанги: его структура, принцип работы, предназначение и основные недостатки. Исследование уровня техники режущей пластины, патентной чистоты усовершенствованного объекта, патентоспособности технического решения.

    научная работа [37,3 K], добавлен 19.07.2009

  • Конструктивные особенностей резцов с многогранными твёрдосплавными пластинами. Достоинства и недостатки различных способов установки в державке резца многогранных сменных пластинок. Крепление прихватом сверху для наилучшей точности установки пластины.

    лабораторная работа [72,3 K], добавлен 12.10.2013

  • Основные технологические способы обработки поверхности режущих инструментов упрочняющими слоями. Оборудование и технологии для нанесения плазменных, вакуумных покрытий. Номенклатура режущих инструментов, используемых в кожевенно-меховых производствах.

    дипломная работа [3,5 M], добавлен 11.04.2015

  • Упрочнение режущих инструментов, используемых в кожевенно-меховом производстве, с применением плазменных нанотехнологий. Разработка технологического процесса ионно-плазменного нанесения на режущий инструмент покрытия нитрида титана с упрочняющей фазой.

    дипломная работа [3,3 M], добавлен 08.04.2015

  • Применение фасонных резцов для точения из прутка деталей в виде тел вращения с фасонными профилями. Графическое профилирование фасонного резца. Определение конструктивных параметров круглых фасонных резцов. Анализ оптимальности геометрических параметров.

    контрольная работа [549,3 K], добавлен 26.05.2015

  • Процесс протягивания, виды протяжек и их назначение. Расчет круглой протяжки. Проектирование круглого фасонного резца: расчет значений заднего угла, глубины профиля для каждого участка, длины рабочей части резца, допусков на изготовление фасонных резцов.

    курсовая работа [281,7 K], добавлен 19.05.2014

  • Ознакомление с классификацией, назначением и применением токарных резцов, с последовательностью расчета и конструирования отрезного резца. Классификация токарных резцов. Назначение и применение отрезного резца. Изображение отрезной резец и геометрии.

    реферат [44,5 K], добавлен 21.11.2010

  • Основные разновидности токарных резцов, особенности их формы и отличительные признаки, функциональное назначение и сферы применения. Конструкция токарного резца и его элементы Приборы для измерения углов резца и техника их использования. Виды стружки.

    контрольная работа [48,0 K], добавлен 18.01.2010

  • Исследование геометрических параметров и элементов спирального сверла. Особенности метода подточки по передней поверхности сверла вдоль всей длины режущих кромок. Измерение конструктивных элементов резца и вычисление углов в различных точках лезвия.

    лабораторная работа [147,1 K], добавлен 12.10.2013

  • Технологический процесс изготовления режущих пластин токарного обрезного резца. Режим термической обработки, структура и механические свойства стали для валов двигателей внутреннего сгорания. Характеристика быстрорежущих сталей. Явление хладноломкости.

    контрольная работа [50,6 K], добавлен 25.08.2015

  • Выбор двигателя и редуктора. Резание на токарно-отрезных станках. Работа двигателя при торцевой подрезке. Расчет статических и динамических усилий в механизме и построение упрощенной нагрузочной диаграммы. Расчет потребной мощности и выбор двигателя.

    контрольная работа [289,4 K], добавлен 25.01.2012

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Общие основы расчета и конструирование протяжек. Классификация и обобщенный алгоритм проектирования инструментов, предназначенных для изготовления сложных поверхностей. Червячные фрезы для нарезания зубчатых колес. Особенности призматических резцов.

    курс лекций [2,0 M], добавлен 27.05.2012

  • Технологія виготовлення планарного діода: вхідний контроль, підготовка напівпровідникових пластин, епітаксія, окислювання кремнієвих пластин, фотолітографія, металізація. Скрайбування та розламування пластин на кристали. Розрахунок дифузійного процесу.

    курсовая работа [696,4 K], добавлен 10.11.2013

  • Расчет и проектирование призматического фасонного резца, применяющегося в качестве основного вида режущего инструмента для обработки фасонных деталей в автоматизации процессов механической обработки. Расчет шлицевой протяжки. Периметры режущих кромок.

    курсовая работа [179,7 K], добавлен 19.11.2011

  • Выбор режущих инструментов для фрезерования плоской поверхности и цилиндрического зубчатого одновенцового колеса. Подбор шлифовального круга для обработки вала. Определение режима резания и основного технологического времени, затрачиваемого на заготовку.

    контрольная работа [427,8 K], добавлен 04.12.2013

  • Применение фасонных резцов для обработки поверхностей на токарных станках. Подготовка чертежа к расчету резца и проектирование его державки. Расчет шпоночной протяжки. Расчет червячной фрезы для цилиндрических зубчатых колес с эвольвентным профилем.

    курсовая работа [95,2 K], добавлен 08.02.2009

  • Дифференциальное уравнение изгиба абсолютно жестких пластин судового корпуса. Перемещения пластины и значения изгибающих моментов. Цилиндрическая жесткость пластины. Влияние цепных напряжений на изгиб пластин. Определение напряжений изгиба пластины.

    курсовая работа [502,8 K], добавлен 28.11.2009

  • Материал, выбор вида заготовки и определение ее размеров. Применение прогрессивных высокопроизводительных методов обработки. Определение режимов резания. Расчет резцов на прочность и жесткость. Определение времени на обслуживание рабочего места.

    курсовая работа [1,3 M], добавлен 21.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.