Определение режимов генератора технологических импульсов
Определение особенностей влияния различных технологических режимов обработки на производительность, точность, качество обрабатываемых поверхностей и износ электрода-инструмента в процессе электроэрозионного профилирования алмазных шлифовальных кругов.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 25,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Определение режимов генератора технологических импульсов для электроэрозионного профилирования алмазных шлифовальных кругов
А.Д. Семёнов
А.С. Никиткин
О.В. Авдеева
Процесс электроэрозионного профилирования алмазных шлифовальных кругов довольно подробно изучен, выявлены влияния различных технологических режимов обработки на производительность, точность и качество обрабатываемых поверхностей, износ электрода-инструмента [1]. Однако ввиду сложности взаимосвязей между режимами процесса профилирования и его технологическими характеристиками, рекомендации по выбору параметров разрядных импульсов обосновываются, в первую очередь, практическим опытом и результатами экспериментальных исследований [2]. шлифовальный электрод профилирование
Обоснованный выбор формы разрядных импульсов особенно важен при профилировании алмазно-абразивного инструмента, так как чрезмерное увеличение мощности разрядных импульсов приводит к тому, что алмазные зёрна заметно разрушаются вследствие графитизации, окисления и возникновения термических микронапряжений [3]. С другой стороны уменьшение мощности импульсов приводит к снижению производительности процесса профилирования. Стремление увеличить производительность за счет уменьшения межэлектродного зазора недопустимо, поскольку может привести к механическому воздействию алмазных зерен шлифовального круга на электрод-инструмент, что приведет к его интенсивному износу. Обоснованный выбор длительности и частоты разрядных импульсов обеспечивает равномерное размещение эрозионных лунок в промежутке между алмазными зернами. Такое размещение эрозионных лунок значительно снижает термическое воздействие разрядных импульсов на алмазные зерна, и как следствие, обеспечивает неизменность их режущих свойств.
Таким образом, рациональный выбор параметров разрядных импульсов приводит к повышению размерной стойкости фасонных алмазных шлифовальных кругов, а также сохраняет их режущие свойства.
В работе [3] установлено, что максимальный эффект эрозии при обработке алмазосодержащего слоя будет достигнут при тех условиях, когда электрические параметры разряда позволят обеспечить на поверхности этого слоя лунки с диаметрами, не превышающими среднеквадратичного расстояния между алмазными зёрнами
,
где dЛ - номинальный диаметр лунки, соответствующий разряду на свободной поверхности электрода; lЗ - квадратичное среднее расстояние между зёрнами (шаг зёрен).
Таким образом, для установления обоснованных временных параметров разрядных импульсов необходимо определить структуру геометрии рабочей поверхности алмазного шлифовального круга и определить среднее расстояние между алмазными зёрнами у шлифовальных кругов различной зернистости при различной концентрации алмазного порошка в связке.
Для выявления структуры геометрии рабочей поверхности было проведено её сканирование профилографом-профилометром «Сейтроник ПШ8-4 (С.С.)» в плоскости, проходящей через ось алмазного круга и перпендикулярной вектору скорости резания.
Анализ коррелограмм и спектрограмм позволил установить, что неровности рабочей поверхности алмазных кругов содержат квазипериодическую составляющую, период которой зависит от концентрации и зернистости алмазного порошка. Для рассматриваемого алмазного круга со 100% концентрацией и зернистостью 50/40 мкм период оказался равен 385 мкм.
На основании этого было сделано предположение, что наличие квазипериодической составляющей обусловлено наличием алмазных зёрен, выступающих над поверхностью связки.
Для экспериментальной проверки этого предположения было проведено фотографирование различных участков рабочей поверхности алмазного круга.
Поскольку рабочая поверхность алмазных кругов является случайной функцией удовлетворяющей условиям стационарности и эргодичности [4], то нет необходимости рассматривать её всю целиком. Достаточно определить средний шаг алмазных зёрен на локальном участке этой поверхности. Полученное значение среднего расстояния между алмазными зёрнами будет справедливо для всей рабочей поверхности шлифовального круга.
С целью уточнения расстояния между алмазными зёрнами был проведён вычислительный эксперимент, в соответствии с которым на рассматриваемом участке поверхности с размерами 640х1840 мкм, равными размерам фотографии, случайным образом, по равномерному закону распределения, размещались n точек, число которых равно числу алмазов (n = 14). Затем с помощью программного пакета Matlab строилась триангуляция Делоне и определись длины векторов образующих треугольники . После этого вычислялась средняя геометрическая величина длины этих векторов, которая и является средним расстоянием между алмазными зёрнами (шагом зёрен).
Среднее расстояние между алмазными зёрнами lЗ для шлифовального круга зернистостью 50/40 мкм и концентрацией 100% получилось равным 410 мкм.
Таким образом, установлено, что наблюдается квазипериодическое расположение алмазов на рабочей поверхности алмазного круга, зависящее от концентрации и зернистости алмазного порошка в алмазосодержащем слое. В связи с этим для определения среднего расстояния между алмазными зернами необходимо рассчитать количество алмазных зерен, приходящихся на единицу площади рабочей поверхности алмазного круга.
Для этого рассмотрим локальный участок рабочей поверхности алмазного круга шириной и длиной равными 640х1840 мкм. Для расчета числа алмазных зёрен находящихся на этом участке примем его глубину равной половине среднего диаметра алмазного зерна h = dср/2. Выбор такой глубины обусловлен тем, что алмазные зёрна, погруженные в связку на глубину меньше половины их диаметра можно не учитывать, так как они из-за слабого сцепления со связкой не смогут участвовать в процессе шлифования. Так для зернистости 50/40 мкм глубина объёмного локального участка будет равна 35 мкм.
Средний диаметр алмазных зёрен можно определить по формуле [5]:
[мкм],
где N - число абразивных частиц в навеске, шт.
Рассчитаем количество алмазных зёрен, находящихся в объёме рассматриваемого участка:
,
где Vуч - объём рассматриваемого участка, мкм3; Va - относительный объём, занимаемый алмазами в алмазосодержащем слое; kр - поправочный коэффициент, учитывающий, что при толщине слоя равном h = dср/2 относительный объём алмазов в алмазосодержащем слое будет меньше Va; Vкуб - объём куба, в который вписано алмазное зерно, диаметр которого рассчитывается по формуле 2, мкм3;
Для определения численного значения kр рассмотрим возможные расположения алмазного зерна диаметром dср в алмазосодержащем слое толщиной h = dср/2.
Первое положение алмазного зерна, обозначенное цифрой 1, соответствует минимальной глубине погружения равной . При меньшей глубине погружения зерно, в процессе шлифования, не будет удерживаться в связке и под действием механических усилий, при шлифовании, отделится от неё. Второе положение зерна, когда оно погружено в связку на , соответствует случаю, когда объем зерна, погруженный в выделенный слой связки, будет максимальным. Третье положение соответствует полному погружению зерна в связку и четвертое положение, когда зерно полностью выходит из заданного слоя (h).
Зависимость относительного объёма зерна, находящегося в слое равном h от относительной глубины погружения равна
где - относительный объём, приведённый к полному объёму зерна, - относительная глубина погружения, приведённая к радиусу зерна.
Среднее значение поправочного коэффициента kр равно
.
Таким образом, формула для определения количества алмазных зёрен, находящихся в объёме рассматриваемого участка принимает вид:
где b и l - ширина и длина рассматриваемого участка, мкм.
По этой формуле был проведён расчёт количества алмазных зёрен на участке поверхности 640х1840 мкм шлифовального круга зернистостью 50/40 мкм и концентрацией 100%. Расчетное число алмазов совпало с экспериментальными данными (n = 14), полученными при фотографировании рабочей поверхности алмазного круга.
В результате была разработана методика расчета параметров импульсов напряжения формируемых генератором по характеристикам алмазных шлифовальных кругов, которая заключается в следующем.
Рассчитывается количество алмазных зерен, приходящихся на единицу площади рабочей поверхности алмазного круга:
Исходя из заданной достоверности, задается число алмазных зерен и вычисляется площадь участка рабочей поверхности алмазного круга, на котором случайным образом по равномерному закону распределения размещаются эти зерна. Строится триангуляция Делоне и вычисляется среднее геометрическое значение расстояния между алмазными зернами. После чего вычисляется нижняя граница частоты рабочих импульсов fг и верхняя граница длительности импульсов tи при электроэрозионной обработке алмазных кругов
где V - частота вращения алмазного шлифовального круга, м/с.
Исследования в работе [3] показывают, что максимальная производительность электроэрозионного профилирования достигается при скорости вращения алмазного круга V равной 1 ... 4 м/с. При повышении скорости более 4 м/с форма лунок, образующихся вследствие прохождения электрических разрядов, вытягивается, одновременно уменьшаясь по глубине и сужаясь по ширине по мере прекращения разряда, в результате чего объем удаляемого материала резко сокращается.
На основе механизма электрического пробоя жидкостей и допустимой энергии разрядных импульсов проведен расчет формы и амплитуды импульсов напряжения генератора технологических импульсов.
Амплитуда «поджигающих» и «силовых импульсов» определяется по следующим формулам
[В]
где Eпр - предельная электрическая прочность жидкой среды в межэлектродном промежутке, определяемая по формуле Мартина [6], В/мкм; S - величина межэлектродного промежутка, мкм.
, [В]
где Pи - мощность единичного разрядного импульса, Вт; Rср - среднее сопротивление межэлектродного промежутка во время импульсного разряда, определяемое по осциллограммам тока и напряжения разрядных импульсов, Ом.
Максимальная мощность единичного разрядного импульса определяется из условия не превышения оптимальной величины энергии разрядных импульсов:
, [Вт]
где Wопт - оптимальная энергия разрядного импульса, Дж; tи - длительность разрядных импульсов, с.
В результате рассчитанные, по вышеприведенным зависимостям, предельно допустимые (sup, inf) режимы электроэрозионного профилирования для алмазных кругов 100% концентрации.
Таким образом, определена процедура расчёта среднего расстояния между алмазными зёрнами, позволяющая рассчитать нижнюю границу частоты и верхнюю границу длительности разрядных импульсов при электроэрозионном профилировании алмазно-абразивного инструмента. Адекватность расчёта величины среднего расстояния между алмазными зёрнами подтверждена определёнными статистическими характеристиками рабочей поверхности алмазных шлифовальных кругов, а также фотографированием этой поверхности.
Разработана методика расчета параметров импульсов напряжения формируемых генератором по характеристикам алмазных шлифовальных кругов, которая позволит назначать оптимальные технологические режимы профилирования, обеспечивающие повышение размерной стойкости и точности рабочего профиля алмазно-абразивного инструмента.
Литература
1.Иоффе В.Ф., Коренблюм М.В., Шавырин В.А. Автоматизированные электроэрозионные станки. - Л.: Машиностроение, 1984. - 227с.
2.Атрощенко В.В., Голубятников А.Г., Лахмостов А.Б., Митрофанов А.А., Полянин В.И. Повышение эффективности электроэрозионной обработки методом гибкого энергетического воздействия // Авиационная промышленность, 1989. - Вып. 10. - с. 40 - 43.
3.Чачин В.Н., Дорофеев В.Д. Профилирование алмазных шлифовальных кругов. - Минск: Наука и техника, 1974. - 160с.
4.Азарова Н.В., Матюха П.Г. Влияние способа правки алмазного круга на характеристики его рабочей поверхности // Наукові праці Донецького національного технічного університету. Серія: Машинобудування і машинознавство. - 2007. с. 16 - 20.
5.Соколов В.О. Комплексное обеспечение точности профильной алмазно-абразивной обработки. - Дисс. докт. техн. наук, Саратов, 2000. - 497с.
6.Ушаков В.Я. Импульсный электрический пробой жидкостей. - Томск: Изд-во ТГУ, 1975. - 254с.
Размещено на Allbest.ru
...Подобные документы
Анализ аналогов шлифовальных станков для профилирования инструмента. Определение класса точности, режимов резания, ресурса точности, толщины стенки корпуса, времени безотказной работы станка, радиального биения шпинделя. Модули станочного конфигуратора.
курсовая работа [537,7 K], добавлен 02.10.2013Методики проектирования электрода-инструмента для прошивки отверстия методом электроэрозионной обработки. Анализ обрабатываемого материала - сталь У10А. Расчет технологических параметров обработки. Операционный маршрут изготовления электрода-инструмента.
курсовая работа [314,4 K], добавлен 28.01.2014Проектирования технологических процессов обработки деталей. Базирование и точность обработки деталей. Качество поверхностей деталей машин. Определение припусков на механическую обработку. Обработка зубчатых, плоских, резьбовых, шлицевых поверхностей.
курс лекций [7,7 M], добавлен 23.05.2010Анализ выбора режущего инструмента и оборудования для операций механической обработки деталей. Определение основных режимов резания, необходимых для формообразования поверхности. Характеристика токарных, сверлильных, фрезерных и шлифовальных операций.
курсовая работа [420,3 K], добавлен 15.12.2011Определение возможных видов структурной обработки. Определение параметров режимов назначенных видов структурной обработки. Фазовые и структурные превращения при нагреве и охлаждении в процессе назначенных видов и режимов обработки.
курсовая работа [500,8 K], добавлен 20.03.2004Назначение и конструкция детали, анализ и оценка ее технологичности. Определение типа организации производства. Выбор способов обработки поверхностей и назначение технологических баз. Выбор режимов обработки, расчет сил резания и потребной мощности.
курсовая работа [66,4 K], добавлен 22.12.2011Конструкторско-технологическое согласование. Идентификация поверхностей и элементов детали и заготовки. Определение плана обработки поверхностей. Формирование маршрутного технологического процесса и содержание операции. Определение режима обработки.
практическая работа [165,1 K], добавлен 19.02.2011Выбор типа заготовки для втулки. Назначение и оценка экономической эффективности вариантов технологических маршрутов обработки поверхности детали. Расчет промежуточных и общих припусков. Определение рациональных режимов резания и технических норм времени.
курсовая работа [111,6 K], добавлен 29.05.2012Определение объема выпуска переходника и типа производства. Разработка технологического процесса обработки детали. Выбор оборудования, режущего инструмента и приспособления. Расчет размеров заготовки, режимов резания и нормы времени для токарной операции.
курсовая работа [1,2 M], добавлен 17.01.2015Метод получения заготовок для деталей машин. Расчет режимов обработки, затрат времени на выполнение технологических переходов и синхронизация выполнения технологических переходов на позициях автоматизированного оборудования. Выбор технологических баз.
курсовая работа [657,4 K], добавлен 08.12.2014Конструкция и назначение детали "Вал". Способ получения заготовки и расчет ее себестоимости. Определение технологических базовых поверхностей. Выбор приспособлений, режущего и мерительного инструментов. Расчет режимов резания и нормирование операций.
дипломная работа [1,9 M], добавлен 19.05.2011Описание технологических операций - сверления и развертывания для получения отверстий в детали "плита кондукторная". Выбор станочного приспособления для ее обработки. Принцип его действия и расчет на точность. Определение режимов резания и усилия зажима.
курсовая работа [204,4 K], добавлен 17.01.2013Анализ служебного назначения детали, технические требования к точности относительного положения поверхностей. Определение метода получения заготовок. Расчет припусков на обработку, технологических режимов резания. Расчет усилий закрепления заготовки.
контрольная работа [59,3 K], добавлен 19.01.2011Расчет параметров режимов резания для каждой поверхности по видам обработки. Определение норм времени. Назначение геометрических параметров режущей части резца. Расчет режимов резания при сверлении и фрезеровании. Выбор инструмента и оборудования.
курсовая работа [161,2 K], добавлен 25.06.2014Служебное назначение детали. Требуемая точность механической обработки поверхностей. Материал детали и его свойства. Выбор метода получения заготовки в мелкосерийном производстве. Выбор технологических баз, оборудования. Схема технологических операций.
реферат [382,8 K], добавлен 13.09.2017Разработка технологического процесса обработки детали “Нож”. Выбор исходной заготовки, определение типа производства. Выбор оптимальных технологических баз. Расчет режимов резания, соответствующих выбранным методам обработки, определение припусков.
курсовая работа [41,4 K], добавлен 08.01.2012Типы производства, формы организации и виды технологических процессов. Точность механической обработки. Основы базирования и базы заготовки. Качество поверхности деталей машин и заготовок. Этапы проектирования технологических процессов обработки.
курс лекций [1,3 M], добавлен 29.11.2010Разработка технологического процесса механической обработки "Корпуса резца". Расчет размерных технологических цепей и режимов резания. Проверочный расчет инструмента. Минимум приведенных затрат для токарной операции. Расчет и назначение нормы времени.
курсовая работа [1,0 M], добавлен 20.02.2013Служебное назначение, техническая характеристика детали. Выбор технологических баз и методов обработки поверхностей заготовок, разработка технологического маршрута обработки. Расчет припусков, режимов резанья и технических норм времени табличным методом.
курсовая работа [101,7 K], добавлен 16.06.2009Расширение технологических возможностей методов обработки зубчатых колес. Методы обработки лезвийным инструментом. Преимущества зубчатых передач - точность параметров, качество рабочих поверхностей зубьев и механических свойств материала зубчатых колес.
курсовая работа [1,0 M], добавлен 23.02.2009