Низкотемпературный термический синтез наностержней оксида цинка из паров цинка без катализатора

Свойства и структура квазиодномерных нанокристаллических ZnO структур. Газотранспортные методы синтеза массивов наностержней, их практическое применение. Влияние соотношения паров цинка и кислорода на оптические и морфологические свойства нанотрубок.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.05.2017
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

НИИ механики и прикладной математики им. Воровича И.И. Южного федерального университета

Низкотемпературный термический синтез наностержней оксида цинка из паров цинка без катализатора

В.И. Пушкарев, Н.В. Лянгузов, Е.М. Кайдашев

г. Ростов-на-Дону, Россия

Введение

На протяжении последних лет внимание различных исследовательских групп привлекают квазиодномерные нанокристаллические ZnO структуры, такие как нанопроволки, наностержни, наноленты и нанокабели, благодаря их уникальным свойствам и потенциальной возможности применения в наноразмерных устройствах.

В частности, массивы хорошо ориентированных наностержней ZnO представляют особый интерес в связи с комбинированием превосходных электронных и оптоэлектронных свойств каждого отдельного наностержня и возможности использования таких массивов в изготовлении высокопроизводительных наноустройств, таких как светодиоды [1], наносенсоры [2], УФ лазеры [3], фотоприёмники [4], и т. д.

Для реализации практических применений основной задачей является получение массивов наноструктур ZnO, имеющих необходимые морфологию и физические свойства. Существуют различные методики по получению массивов наностержней ZnO: гидротермальный метод, метод импульсного лазерного напыления, а также группа газотранспортных методов.

Методики транспорта газа, при которых синтез осуществляется при осаждении материала из паровой фазы, являются наиболее оптимальными, благодаря относительной простоте их технической реализации. Как правило, в большинстве перечисленных методик используются катализаторы - частицы различных металлов (Au, Cu, Ag, Sn), которые снижают энергию активации роста кристалла (являются центрами кристаллизации) и частично определяют морфологические свойства синтезируемых структур.

Однако, в последние годы было показано [5], что так же возможно осаждение массивов наностержней из паровой фазы без использования катализаторов. В этом случае морфология структур будет зависеть от особенностей конкретного эксперимента.

Одним из перспективных газотранспортных методов синтеза является термический метод синтеза наностержней ZnO из паров Zn, реализованный в данной работе. Использование относительно низких температур подложки, при реализации данного метода позволяет получать наностержни высокого структурного и оптического качества.

Оптимизация низкотемпературного термического синтеза наностержней ZnO без использования катализатора, а также, исследование влияния соотношения концентраций паров Zn и O2 на физические свойства наноструктур и являлось целью данной работы.

Экспериментальная часть

В рамках данного исследования были проведены эксперименты по получению массивов наностержней в различных температурных режимах и при различных соотношениях потоков аргона и кислорода.

Используемая техника синтеза массивов наностержней ZnO основывалась на термическом испарении металлического Zn в атмосфере смеси газов Ar и O2, переносе паров прекурсоров к подложке и последующем осаждение наностержней ZnO из паровой фазы на подложке без использования катализаторов.

Подложки представляли собой кремниевые пластины (100)Si прямоугольной формы с размерами 9Ч10 мм, на которых предварительно были получены пленочные подслои ZnO толщиной 80 нм, с помощью метода импульсного лазерного напыления с использованием излучения KrF-лазера ( = 248 нм, ф = 15 нс) с энергией 300 мДж, фокусируемого на поверхность вращающейся мишени с плотностью энергии ~ 2 Дж/см2. Гранула цинка и подложка помещались в кварцевую трубку диаметром 9 мм и длинной 10 см.

В отличие от работы [6-8] нами использована кварцевая трубка открытая с двух сторон. Такая трубка распологалась в реакционной камере -кварцевой трубке диаметром 32 мм, помещенной в резистивный нагреватель. Подача Ar и O2 в вакуумную камеру осуществлялась через общий ввод и контролировалась системой напуска и контроля газов типа MKS 647C.

Такая конфигурация в определённом интервале температур и давлений позволяет проще получить пересыщение рабочей атмосферы парами Zn в трубке малого диаметра и стабилизировать режим синтеза при низком содержании кислорода. Значение такого пересыщения является резко убывающей функцией от расстояния.

Учитывая направление потоков Ar и O2, в трубке малого диаметра открытой с двух сторон, можно утверждать, что изменения пересыщения будут отличаться в различных направлениях от металлической гранулы.

В первом серии экспериментов гранула Zn(чистота 99,9999) весом 500 мг помещалась в центр кварцевой трубки. Подложка ZnO/(100)Si устанавливалась на расстоянии 0,5 см от гранулы Zn в направлении к вводуAr и O2, после чего была произведена откачка камеры до давления 2 мбар, с последующей подачей Ar. Скорость потока Ar была 240 см3/мин при давлении в камере 11 мбар. Далее, в течении 35минут осуществлялся нагрев подложки и металлического Zn до температуры синтеза 600°C.

После достижения необходимой температуры, вместе с Ar в камеру подавался O2 со скоростью 8 см3/мин. Синтез осуществлялся в течении 15 минут, после чего осуществлялось охлаждение камеры естественным образом до температуры ~ 150оС.

Результаты исследования синтезированных наностержней методом сканирующей электронной микроскопии и методом фотолюминесценции представлены на рисунке 1. Для изучения влияния величины пересыщения атмосферы парами цинка на свойства наностержней производилось исследование областей, находящихся на различных расстояниях от прекурсора Zn. Из полученных результатов следует, что значение соотношения паров цинка и кислорода в области синтеза оказывает значительное влияние как на морфологические свойства наностержней, так и на их оптические свойства.

При приближении к открытому концу трубки против направления потока Ar и O2, то есть при уменьшении величины соотношения концентраций Zn/O2 в паровой фазе наблюдается уменьшение размеров стержней, а также концентрации дефектов, обусловленных кислородными вакансиями кристалла[9,10].

Рис.1. СЭМ изображения и ФЛ спектры наностержней ZnO, полученные с областей подложки, находящихся на различных расстояниях l до ближайшего открытого конца трубки: a) 45 мм; b) 40 мм;c) 35 мм; (d- средний диаметр стержней в соответствующей области). Спектры фотолюминесценции получены при комнатной температуре.

При проведении второй серии экспериментов подложка располагалась с другой стороны от гранулы цинка на расстоянии 3,5 см таким образом, что направление движения паров цинка к подложке совпадало с направлением движения Ar и O2.

После предварительной откачки кварцевой трубки и последующей подачи Ar со скоростью 240 см3/мин, скорость откачки изменялась таким образом, чтобы давление в камере достигало значения ~150 мбар. Далее, в течении 30 минут осуществлялся нагрев камеры. Используя градиент температуры в нашей системе, подложка и гранула цинка былирасположены в областях с температурами 525°С и 550°С соответственно. При данных значениях температуры и давления, величина скорости испарения цинка мала. После выхода на нужный температурный режим давление в камере уменьшалось до 11 мбар,что приводило к резкому возрастанию давления паров цинка.В этот момент в камеру начиналась подачаO2 со скоростью 5 см3/мин. Синтез осуществлялся в течении 30 минут, после чего подача давление в камере увеличивалось. При таких уловиях осуществлялось охлаждение камеры естественным образом до температуры ~ 150оС в атмосфере O2.

На рисунке 2 представлены результаты исследования синтезированных наностержней методом сканирующей электронной микроскопии и методом фотолюминесценции.

Полученные результаты свидетельствуют, что изменение рабочего давления, а как следствие и уменьшение количества паров цинка в паровой фазе в пределах одной области также влияет на форму стержней. Как и в первой серии экспериментов, было продемонстрировано, что уменьшение соотношения концентраций Zn/O2 приводит к уменьшению толщины стержней.

Рис. 2 СЭМ изображения и ФЛ спектры наностержней ZnO, полученные с областей подложки, находящихся на расстояниях: a) 15 мм и b) 10мм от ближайшего открытого конца трубки. Спектры фотолюминесценции получены при комнатной температуре.

Заострённая форма наностержней (Рис. 2) синтезированных во второй серии наших экспериментов аналогична форме наноструктур, полученных в работе [11]. Малый радиус кривизны вероятно обусловлен довольно резким изменением отношения концентраций прекурсоров в паровой фазе, а также изменением скорости движения молекул в результате повышения давления от 11 мбар до 150 мбар.

Как видно из спектров ФЛ, выращенные структуры обладают пиком высокой интенсивности в ультрафиолетовой области спектра на длине волны ~380, и низким пиком в видимом спектре, что соответствует высокому структурному и оптическому качеству кристаллов.

Вывод

В данной работе продемонстрирован термический метод синтеза полупроводниковых одномерных наноструктур ZnO без использования катализатора. Показана возможность использования низких температур синтеза при реализации такого метода.

Конфигурация, используемая в настоящей работе, позволяет локализовать подложку в областях, с различными соотношениями паровой фазы цинка и кислорода. Проведённые исследования методами сканирующей электронной микроскопии и фотолюминесцентной спектроскопии показали, что от таких соотношений в паровой фазе будет зависеть как форма синтезируемых материалов, так и дефектность выращиваемых структур связанная с дефицитом по кислороду.

Таким образом, используя этот метод, при низких температурах и правильной локализации подложки, возможно получение одномерных структур ZnO, с низким уровнем дефицита по кислороду. Такие стержни представляют большой интерес в квантовой оптоэлектронике, в частности, перспективным является их использование в фотоприёмниках и светоизлучающих диодах ультрафиолетового диапазона.

газотранспортный оптический наностержень цинк

Литература

1. Sun X. W., Huang J. Z., Wang J. X., Xu Z. // Nano Lett. 2008. V. 8 N .4, P. 1219-1223

2. Kim D. Y., Son J. Y., // Electrochemical and Solid-State Letters. 2009. V. 12 N. 12, P. 109-111

3. Huang M. H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P. // Science. 8 June 2001. P.1897-1899

4. Chien Y. L., Shoou-J. C., Sheng P. C., Ching T. L., Che F. K., Hong M. C. // Applied Physics Letters 2006 V. 89, P. 153101

5. Li S., Zhang X., Yan B., Yu T. // Nanotechnology 2009.V.20, P. 495604 (9P.).

6. Park J., Choi H., Siebein K., Singh R. // Journal of Crystal Growth. 2003. V.258, P. 342-348.

7. Chang P., Fan Z., Wang D., Tseng W., Chiou W., Hong J., Lu J. // Chem. Mater. 2004. V. 16, P. 5133-5137.

8. Red'kin A.N., Makovei Z.I., Gruzintsev A.N., Dubonos S.V., Yakimov E.E. // Inorganic Materials.2007. V. 43, N. 3, P. 253-257.

9. Карапетьян Г.Я., Николаев А.Л., Лянгузов Н.А., Несветаев Д.Г., Кайдашев Е.М. Исследование влияния адсорбции моноокиси углерода на характеристики линии задержки на ПАВ с чувствительным элементом из наностержней оксида цинка [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1189 (доступ свободный) - Загл. с экрана. - Яз. рус.

10. Несветаев Д.Г., Лянгузов Н.В., Николаев А.Л., Кайдашев Е.М. Исследование наностержней оксида цинка методом фотолюминесценции для оптимизации характеристик чувствительного элемента ПАВ сенсора CO [Электронный ресурс] // «Инженерный вестник Дона», 2012, №4. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1178 (доступ свободный) - Загл. с экрана. - Яз. рус.

11.Pan N., Wang X., Zhang K., Hu H., Xu B., Li F., Hou J. // Nanotechnology. 2005. V. 16 P. 1069-1072.

Размещено на Allbest.ru

...

Подобные документы

  • Руды и минералы цинка. Дистилляция цинка в горизонтальных и вертикальных ретортах, в электропечах и шахтных печах. Рафинирование чернового цинка. Обжиг концентратов и выщелачивание огарка. Очистка сульфатных растворов и электролитическое осаждение цинка.

    контрольная работа [2,9 M], добавлен 12.03.2015

  • Высокопрочные керамики на основе оксидов - перспективные материалы конструкционного и инструментального назначения. Свойства оксидов цинка и меди. Допированные керамики. Основы порошковой металлургии. Технология спекания. Характеристика оборудования.

    курсовая работа [923,2 K], добавлен 19.09.2012

  • Современная тенденция к миниатюризации, применение нанотехнологий. Материалы на основе наночастиц. Обеззараживающие и самодезинфицирующие свойства наночастиц серебра. Принцип действия самоочищающихся нанопокрытий. Свойства наночастиц оксида цинка.

    курсовая работа [1,0 M], добавлен 18.11.2009

  • Влияние технологических факторов на процесс электролитического осаждения цинка на стальной подложке, органических добавок на качество и пористость цинковых покрытий. Зависимость толщины осаждаемых цинковых покрытий от продолжительности электролиза.

    презентация [1,1 M], добавлен 22.11.2015

  • Описание шлаков, фосфорной кислоты и побочных продуктов, которые являются отходами цветной металлургии. Влияние температуры и продолжительности на степень превращения хлорида цинка. Характеристика оптимального режима при использовании хлорида железа.

    курсовая работа [1,2 M], добавлен 20.12.2017

  • Два способа получения металлического цинка: пирометаллургический и гидрометаллургический. Обжиг и классификация продуктов. Выщелачивание огарка для полного извлечения цинка. Аппараты для выщелачивания. Группы примесей и завершающая стадия – электролиз.

    курсовая работа [24,4 K], добавлен 19.02.2009

  • Технологический процесс замкнутого противоточного двухстадийного выщелачивания цинкового огарка, выделение его компонентов; сгущение пульпы, отделение жидкой фракции от твердой, фильтрация. Расчет состава остатков, определение выхода катодного цинка.

    курсовая работа [2,1 M], добавлен 19.01.2011

  • Технологические этапы процесса извлечения кадмия из колошниковой пыли: рафинирование цинка, плавка цинковых и легкоплавких цинков и извлечение кадмия из установок для рафинирования цинка. Метод вакуумный дистилляции получения кадмия высокой частоты.

    реферат [102,0 K], добавлен 11.10.2010

  • Плавка цинка и сплавов. Промышленные выбросы пыли при плавке, предельно допустимые концентрации. Классификация систем очистки воздуха и их параметры. Сухие и мокрые пылеуловители. Электрофильтры, фильтры, туманоуловители. Метод абсорбции, хемосорбции.

    дипломная работа [5,2 M], добавлен 16.11.2013

  • Классификация печей литейного производства, общая характеристика индукционной канальной печи. Расчет индукционной канальной печи для плавки цветных сплавов (а именно, цинка и его сплавов). Описание работы спроектированного агрегата, техника безопасности.

    курсовая работа [441,8 K], добавлен 02.01.2011

  • Классификация углеродных наноструктур. Модели образования фуллеренов. Сборка фуллеренов из фрагментов графита. Механизм образования углеродных наночастиц кристаллизацией жидкого кластера. Методы получения, структура и свойства углеродных нанотрубок.

    курсовая работа [803,5 K], добавлен 25.09.2009

  • Понятие и общая характеристика легкоплавких металов на основе пяти наиболее распространенных их представителей: свинца, цинка, ртути, олова и лития. Основные физические и химические свойства данных металлов, сферы их практического применения на сегодня.

    реферат [704,1 K], добавлен 21.05.2013

  • Описание абсорбционных, каталитических, термических методов очистки отходящих газов. Физико-химические свойства Н-бутанола и бензола. Расчет адсорбера системы ВТР периодического действия с неподвижным слоем адсорбента для улавливания паров н-бутанола.

    курсовая работа [174,5 K], добавлен 16.12.2012

  • Химико-физические свойства медных сплавов. Особенности деформируемых и литейных латуней - сплавов с добавлением цинка. Виды бронзы - сплавов меди с разными химическими элементами, главным образом металлами (олово, алюминий, бериллий, свинец, кадмий).

    реферат [989,4 K], добавлен 10.03.2011

  • Производство и применение катализаторов синтеза аммиака. Строение оксидного катализатора, влияние на активность условий его восстановления. Механизм и кинетика восстановления. Термогравиметрическая установка восстановления катализаторов синтеза аммиака.

    дипломная работа [822,5 K], добавлен 16.05.2011

  • Производственные сферы, в которых применяются сплавы свинца. Извлечение оксида свинца из колошниковой пыли. Процесс рафинирования цинка для обработки остатков. Комплексная переработка содержащих свинец техногенных отходов медеплавильных предприятий Урала.

    курсовая работа [95,0 K], добавлен 11.10.2010

  • Характеристика, электронная и кристаллическая структура, физические и технологические свойства металла, формы нахождения в рудах, способы получения, применение. Примеси в платине и их влияние на свойства. Легирование и термическая обработка ее сплавов.

    курсовая работа [425,0 K], добавлен 14.03.2015

  • Адсорбция как поглощение газов или паров поверхностью твёрдых тел, называемых адсорбентами. Понятия поглощения паров и газообразных компонентов жидкими поглотителями (абсорбентами). Характеристика закона Генри. Принципы применения абсорбционной очистки.

    реферат [47,0 K], добавлен 24.03.2015

  • Изучение свойств руды - сырьевого материала металлургического производства. Характеристика основных способов обогащения руды магнетитом, безводной окисью железа и красным железняком. Методы удаления цинка, серы и мышьяка из состава горной породы.

    реферат [13,9 K], добавлен 21.01.2012

  • Производство, строение и синтез полиимидных пленок. Диэлектрические и электрические свойства, влияние повышенной температуры и радиационного облучения. Энергетические характеристики разрушения изоляционных материалов под воздействием частичных разрядов.

    дипломная работа [3,6 M], добавлен 18.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.