Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов

Способы получения монолитных соединений, образование монолитного соединения при сварке плавлением или давлением. Классификация методов сварки магистральных трубопроводов. Физическо-металлургические явления при дуговой сварке плавящимся электродом.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 04.06.2017
Размер файла 539,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Теория технологической прочности, разработанная Н.Н. Прохоровым, гласит, что сопротивляемость сварного соединения образованию горячих трещин определяется тремя основными факторами:

1) пластичностью металла в ТИХ;

2) значением интервала ТИХ;

3) характером нарастания деформации при охлаждении (темпом нарастания деформации сварного соединения.

Рассматривая графическое изображение вышеприведенных зависимостей, можно увидеть, что:

1) на рис. 30, а, показано влияние минимальной величины пластичности в ТИХ на сопротивляемость сварного соединения образованию горячих трещин. При этом принято, что деформационная способность сплава определяется его пластичностью, т.к. при температурах в области Тс упругой деформацией можно пренебречь ввиду ее незначительности. При тех значениях ТИХ и темпа деформации, сплав, обладающий большей пластичностью (П 3) трещины не даст, т.к. возникающий темп деформаций (кривая е) недостаточен для исчерпания его пластичности. У сплава, пластичность которого характеризуется кривой 2, в момент, определяемый точкой А, значения пластичности и возникающей деформации равны - кривые касаются. Это критический случай. В сплаве, обладающем пластичностью в ТИХ, характеризуемой кривой 1, при том же темпе деформаций е и температуре, соответствующей точке Б произойдет исчерпание пластических свойств и образуется трещина. Таким образом, чем больше пластичность в ТИХ, тем при прочих равных условиях меньше вероятность образования горячей трещины;

2) на рис. 30, б) представлен случай, когда сплавы при одинаковой минимальной пластичности отличаются протяженностью ТИХ. При этом принято, что характер изменения пластичности в ТИХ у всех трех сплавов одинаков и пластичность остается неизменной на всем протяжении ТИХ. В этом случае, чем больше протяженность ТИХ, тем больше вероятность возникновения трещины;

3) на рис. 30, в) рассмотрено влияние темпа деформации при одинаковых значениях пластичности П и ТИХ. В сварном шве, при кристаллизации которого возникает темп деформации, характеризуемый кривой 1, при температуре Т1 появится трещина, т.к. в этот момент значение деформации превысит значение пластичности соединения в ТИХ. Для соединения, темп деформаций которого обозначен кривой 2, точка касания при температуре Т2 будет критической. Сплав, характеризуемый кривой 3, трещины не образует; более того он имеет еще некоторый запас пластичности ДП. Т.о., чем меньше темп деформации в ТИХ, тем меньше вероятность образования горячих трещин.

Значения пластичности П и характер ее изменения в ТИХ зависят от химического состава сплава, схемы кристаллизации сварного шва, развития физической и химической неоднородности и др. факторов, значение и степень влияния которых существенно зависят от методов, приемов сварки, применяемых режимов и т.п. Значения ТИХ, так же, как и значение минимальной пластичности, зависят от многих факторов, поддающихся управлению. Главные из них - химический состав свариваемых материалов и применяемых присадочных проволок, покрытия электродов, флюсы, режим сварки, определяющий форму шва, схему кристаллизации и процессы структурообразования в металле шва и околошовной зоне, размер зерна, характер и интенсивность протекания ликвационных и сегрегационных процессов и др. Темп деформации, характеризуемый наклоном кривой е к оси температур и кривизной самой кривой, зависят от усадки сплава и деформации в околошовной зоне. Деформация в сварном шве, обусловленная кристаллизационными и структурными процессами при остывании, распределяется по сечению весьма неравномерно: участки шва с более высокими температурами и, вследствие этого, менее прочные деформируются сильнее, чем участки, прилегающие к зоне сплавления и охлаждающиеся более интенсивно. Такое неравномерное распределение деформаций в сварном шве и ТИХ иногда называют концентрацией деформаций.

Горячие трещины по температуре возникновения, подразделяют на:

1) кристаллизационные, возникающие в области температур солидуса;

2) подсолидусные, температура образования которых ниже температуры процесса окончания затвердевания.

По расположению в сварном соединении различают:

1) горячие трещины в шве;

2) в зоне сплавления;

3) в околошовной зоне.

Также в зависимости от ориентации трещин относительно направления сварки их делят на:

1) продольные;

2) поперечные.

Во всех случаях вероятность образования горячих трещин определяется соотношением пластических свойств соединений в ТИХ и темпом деформаций. Однако степень влияния отдельных технологических и металлургических факторов для каждого вида может существенно различаться вследствие неодинаковости условий формирования физической и химической неоднородности в различных зонах сварного соединения. Особенно следует отметить трещины повторного нагрева, образующиеся при многослойной сварке в ранее наложенных валиках в результате термодеформационного воздействия от сварки последующих слоев.

Кристаллизационные трещины образуются, как правило, в сварном шве и реже в зоне полуоплавленных зерен. Подсолидусные трещины возникают в интервале температур второго минимума пластичности, расположенного ниже температуры солидуса. Сварной шов из-за неравновесного процесса кристаллизации пересыщен дефектами кристаллической решетки, в т.ч. и вакансиями, которые при растяжении активно перемещаются к границам, расположенным перпендикулярно действующим усилиям. Такие скопления вакансий обычно сильно ослабляют границы и создают предпосылки для возникновения зародышей разрушения. Необходимые условия для возникновения разрушения - межзеренная деформация или проскальзывание, возникающие как следствие воздействия термодеформационного цикла сварки. О наличии такого вида деформации свидетельствует смещение кристаллизационных слоев, наблюдаемое на поверхности сварных швов. Смещения нередко сопровождаются значительной пластической деформацией в пограничных областях. Если по границам зерен существует скопление вакансий, микропор, примесей (особенно примесей внедрения), поверхностная энергия, необходимая для зарождения трещины, при межзеренном проскальзывании уменьшается. В том случае, если граничная диффузия проходит энергично, то полости, образующиеся по границам зерен, быстро заполняются и межзеренного разрушения не происходит.

Преимущественные места зарождения подсолидусных трещин - ослабленные включениями и несовершенствами строения границы кристаллитов, где межзеренные проскальзывания наиболее ярко выражены. Чаще всего это участки, примыкающие к зоне сплавления, и поперечные границы зерен в центре шва. С увеличением размеров зерна увеличивается и проскальзывание, а следовательно, вероятность образования горячей трещины. Добавки в металл легирующих элементов, как правило, увеличивают сопротивление движению вакансий и дислокаций к границам зерен и снижают вероятность образования горячих трещин.

Случаи возникновения горячих трещин в процессе изготовления сварных конструкций привели к появлению множества методов оценки сопротивляемости применяемых сварочных материалов их образованию. Их можно разделить на следующие основные группы:

1) методы, позволяющие получать сравнительную количественную оценку применяемых сварочных материалов. Как правило, они предусматривают принудительное деформирование сварных соединений по заданной программе в процессе их формирования;

2) технологические пробы различной жесткости. В этом случае величина деформации в ТИХ задается типом опытной свариваемой конструкции, ее размерами, последовательностью выполнения швов и т.п.;

3) косвенные методы оценки технологической прочности по результатам механических испытаний образцов, проводимых при нагреве или охлаждении их по заданной программе, имитирующей сварочный термический цикл.

Для повышения сопротивляемости сварных соединений образованию горячих трещин необходимо в процессе производства стремиться к такому их сочетанию свойств в ТИХ, технологических приемов и способов сварки, а также такому конструктивному оформлению узлов, которое обеспечивали бы при минимальных значениях деформации формоизменения максимальный уровень показателя бп-бсв (бп - предельный темп деформации, характеризующий пластичность систем в ТИХ, бсв = ). Для этого необходимо стремиться к уменьшению интервала хрупкости, увеличению пластичности в ТИХ и снижению темпа деформации.

Все известные способы повышения технологической прочности в конечном итоге сводятся к следующим основным:

1) изменение химического состава металла шва;

2) выбор оптимального режима сварки;

3) применение рационального типа конструкции и порядка наложения сварных швов.

Химический состав металла шва - один из главных факторов, в значительной мере определяющих значения ТИХ, дmin и в значительной степени интенсивность нарастания деформации усадки. Сварка плавлением представляет большие возможности регулирования состава шва, а в некоторой части - и состава зоны сплавления. При сварке с применением присадочного материала (РДС, сварке под слоем флюса, в аргоне и др.) химический состав металла шва и особенности его кристаллизации определяются долей участия основного и присадочного металла и схемой кристаллизации, зависящей как от условий затвердевания и химического состава, так и от структуры основного металла, служащего подложкой, на которой кристаллизуется шов.

Эффективным средством повышения технологической прочности является снижение содержания вредных примесей (серы, фосфора, по возможности углерода), а также дополнительное легирование, способствующее связыванию серы и фосфора в тугоплавкие соединения.

Большое влияние оказывает характер структуры, образующейся при кристаллизации. Благоприятной, например, считается дендритная равноосная. Для ее получения прибегают к модифицированию сварных швов редкоземельными, тугоплавкими или поверхностно-активными элементами. Иногда применяется внешнее воздействие на кристаллизующийся металл шва - электромагнитное или ультразвуковое перемешивание, механические колебания ванны в процессе кристаллизации и др. для создания условий, способствующих переходу от плоской схемы кристаллизации к объемной иногда прибегают ко введению в сварочную ванну дополнительного холодного металла в виде проволоки или металлической крупки того же состава, что и свариваемый металл. Введение охлаждающей присадки создает в ванне зону термического переохлаждения и способствует получению объемной схемы кристаллизации. Высокопрочные, высоколегированные стали больше подвержены образованию горячих трещин, чем обычные конструктивные. Это можно объяснить большей направленностью кристаллитной структуры в шве, увеличенной осадкой, многокомпонентным легированием, способствующим образованию эвтектических составляющих по границам зерен. Для повышения технологической прочности таких сплавов, кроме очень жесткого ограничения содержания вредных примесей часто прибегают к дополнительному легированию молибденом, марганцем, вольфрамом, а также внедрением в шов некоторого количества модификаторов, способствующих измельчению структуры. В отдельных случаях технологическую прочность можно повысить изменением фазового состава металла шва.

Влияние режима сварки на сопротивляемость образованию горячих трещин весьма велико вследствие следующих причин: режим сварки представляет собой главный фактор, определяющий форму шва, характер и схему кристаллизации и, кроме того, в значительной мере определяет время пребывания металла шва и околошовной зоны в области высоких температур, при которых происходит не только формирование структуры, но и протекание процессов, приводящих к появлению физической и химической неоднородности. Мягкие режимы способствуют протеканию равновесной кристаллизации, зона столкновения противоположных фронтов кристаллизации выражена слабее, уменьшается концентрация деформаций. В то же время более равновесные условия кристаллизации обеспечивают протекание диффузионных процессов в околошовной зоне и шве, благоприятствуют развитию межзеренной и зональной ликвации. В целом, возникающие деформации воспринимаются кристаллизующимся швом более равномерно. В реальных условиях для уменьшения вероятности образования трещин часто применяют режимы, отличающиеся малыми скоростями и большим током. Иногда рекомендуется предварительный подогрев, однако результаты в этом случае не всегда оказываются положительными, т.к. большое тепловложение при незначительной жесткости конструкции может вызвать дополнительные деформации формоизменения. Из всех параметров режима особенно заметное влияние оказывает скорость сварки. С ее увеличением возрастает длина сварочной ванны, фронт кристаллизации приобретает плоский характер, образуя на оси шва зону срастания кристаллитов. Такой шов малопластичен в ТИХ и, вследствие этого, подвержен образованию продольных трещин в осевой зоне. Также важным является правильное конструирование сварных узлов и грамотно назначенный порядок наложения сварных швов. Все эти факторы определяют значение деформации в ТИХ и поэтому влияют на сопротивляемость сварных соединений образованию горячих трещин, оказывая комплексное влияние как на формирование структуры, ее макро- и микронеоднородность, так и на развитие термодеформационных процессов при сварке.

1.3.3.3 Превращения в металлах при сварке

1.3.3.3.1 Характерные зоны сварных соединений

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон (рис. 32), отличающихся химическим составом, макро- и микроструктурой и другими признаками:

1) сварной шов;

2) зону сплавления;

3) зону термического влияния;

4) основной металл.

Сварным швом называется закристаллизовавшийся металл сварочной ванны. Он характеризуется литой микроструктурой металла. Ему присуща первичная микроструктура кристаллизации, тип которой зависит от условий кристаллизации металла шва.

Зона термического влияния (ЗТВ) - участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения. Это часто приводит к тому, что ЗТВ имеет отличную от основного металла вторичную микроструктуру и величину зерна. В зоне термического влияния выделяют околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и состоит из нескольких рядов крупных зерен, в т.ч. оплавленных. Поверхность сплавления отделяет металл шва, имеющий литую макроструктуру, от ЗТВ в основном металле, имеющем макроструктуру проката или рекристаллизованную структуру литой или кованой заготовки. На поверхности шлифов, вырезанных из сварного соединения и подвергнутых травлению, она при небольших увеличениях наблюдается как граница, или линия сплавления (ЛС). Зона сплавления (ЗС) - это зона сварного соединения, где происходит сплавление наплавленного и основного металла. В нее входит узкий участок сварного шва, расположенный непосредственно у линии сплавления, а также оплавленный участок околошовной зоны. Первый из этих двух участков образуется вследствие недостаточно эффективного переноса расплавленного основного металла в центральные части сварочной ванны. В случае применения разнородных наплавленного и основного металла этот участок отчетливо наблюдается в виде переходной прослойки, которая имеет существенно отличающиеся от металла шва и ЗТВ химический состав, вторичную микроструктуру и механические свойства. На оплавленном участке ОШЗ возможно появление жидких прослоек между зернами, имеющих смешанный состав в результате перемешивания основного и наплавленного металлов. Распределение элементов по ширине ЗС имеет сложный характер, определяемый процессами перемешивания наплавленного и основного металлов, диффузионного перераспределения элементов между твердой и жидкой фазами и в твердой фазе на этапе охлаждения.

Основной металл, не претерпевающий изменений в процессе сварки, может влиять на превращения в ЗТВ в зависимости от его макро- и микроструктуры, определяемых способом первичной обработки металла (прокатка, литье, ковка, дефомирование в холодном состоянии) и последующей термической обработкой (отжиг, нормализация, закалка с отпуском и др.).

1.3.3.3.2 Виды превращений в металле сварных соединений

В зоне термического влияния в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получает развитие целый ряд фазовых и структурных превращений.

Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяется энтропия, теплосодержание, и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение происходит с поглощением или выделением теплоты.

При структурных превращениях (переходах II рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным - теплоемкости. Они не сопровождаются выделением теплоты.

Особенность фазовых и структурных превращении при сварке по сравнению с термической обработкой заключается в том, что они протекают в неравновесных условиях сварочного термодеформационного цикла (СТДЦ), т. е. в условиях быстрого нагрева и охлаждения и одновременного развития сварочных деформаций и напряжений. Характер превращений зависит от состава сплава, максимальных температур нагрева, а их завершенность - от скоростных и деформационных параметров сварочного цикла.

1.3.3.3.2.1.Фазовые превращения. Кинетика диффузионного превращения

В металлах и сплавах в твердом состоянии фазовые превращения вызываются полиморфными превращениями, растворением или выделением фаз из твердых растворов в связи с изменением взаимной растворимости компонентов. Движущей силой превращений служит разность свободных энергий (термодинамических потенциалов в случае, если при превращении возникают высокие внутренние давления) исходной и образующихся фаз. При этом могут происходить два отличающихся своим механизмом типа превращений: диффузионное и бездиффузионное (мартенситное).

Диффузионное превращение происходит по механизму "образование зародыша и рост новой фазы". Этот тип превращения подчиняется тем же общим закономерностям, что и процессы кристаллизации жидкости. Существуют некоторые особенности, связанные с твердым состоянием исходной и образующейся фаз и относительно низкой температурой превращений. Образование зародышей критических размеров сопровождается увеличением свободной энергии системы, равным 1/3 поверхностной энергии зародышей (остальные две трети компенсируются уменьшением объемной свободной энергии). Возникновение зародышей обеспечивается в результате флуктуационного повышения энергии в отдельных группах атомов. При превращении в сплавах образуются фазы, отличающиеся по составу от исходной, поэтому для образования зародыша необходимо также наличие флуктуации концентрации. Последнее затрудняет образование зародышей новой фазы, особенно если ее состав сильно отличается от исходной. Другой фактор, затрудняющий образование зародыша новой фазы, связан с упругой деформацией фаз, которая обусловлена различием удельных объемов исходной и образующейся фаз. Энергия упругой деформации увеличивает свободную энергию и, подобно поверхностной энергии, вносит положительный вклад в баланс энергии. Критический размер зародышей и работа их образования уменьшаются с увеличением степени переохлаждения (или перегрева) по отношению к равновесной температуре, а также при уменьшении поверхностной энергии зародыша.

С понижением температуры уменьшается подвижность атомов, что затрудняет присоединение атомов друг к другу в процессе образования зародышей критического размера. Таким образом, зависимость скорости образования зародышей от степени переохлаждения будет иметь максимум. С повышением температуры при нагреве выше равновесной подвижность атомов будет возрастать, что обусловливает монотонное нарастание скорости образования зародышей с увеличением степени перегрева. Рост новой фазы происходит за счет исходной путем относительно медленной миграции межфазной границы в результате последовательного перехода атомов через эту границу. Изменение составляющих энергии при росте фазы, аналогичное ее изменениям при образовании зародышей, также обусловливает зависимость скорости линейного роста от степени переохлаждения, имеющую максимум. При этом максимум скорости линейного роста сдвинут в сторону меньших значений переохлаждения по сравнению с максимумом скорости образования зародышей. При данной постоянной температуре процесс протекает изотермически и относительный объем образующейся новой фазы V увеличивается со временем. Общая скорость фазового превращения определяется суммой скоростей зарождения и роста новой фазы. Кинетика фазовых превращений при различных степенях переохлаждения описывается изотермической диаграммой превращения, называемой также С-образной диаграммой превращения (рис. 33).

Фазовое превращение в условиях непрерывного охлаждения или нагрева подчиняется тем же основным закономерностям, что и изотермическое превращение. Условно превращение при непрерывном изменении температуры можно рассматривать как серию многочисленных изотермических превращений при последовательно меняющихся температурах. Чем быстрее меняется температура, тем меньше успевает образовываться новой фазы при каждой степени переохлаждения. В результате превращение протекает в диапазоне непрерывно изменяющихся температур при большей степени переохлаждения или перегрева, чем изотермическое превращение. В этом случае кинетика фазового превращения описывается анизотермической диаграммой превращения (рис. 34).

При высоких скоростях охлаждения (w'') исходная фаза может претерпевать только частичное фазовое превращение диффузионного типа. При очень высоких скоростях, превышающих критическую (w'>wкр), фазовое превращение диффузионного типа не успевает начаться, и сплав переохлаждается в область температур, где оно не может развиваться из-за чрезвычайно низкой скорости диффузионных процессов.

1.3.3.3.2.2 Кинетика мартенситного превращения

Мартенситное превращение происходит путем совместного (кооперативного) перемещения многих атомов. Результирующее перемещение сводится к тому, что ряд элементарных ячеек исходной фазы как бы однородно деформируются, переходя в ряд элементарных ячеек новой фазы. Мартенситное превращение называют бездиффузионным или сдвиговым.

Превращение начинается и заканчивается при достижении определенных фиксируемых температур Тм.н. и Тм.к.. При мартенситном превращении, в отличие от диффузионных, Тм.н. и Тм.к. не зависят от скорости охлаждения. При этом превращение начинается сразу после достижения Тм.н., т.е. без инкубационного периода. После мартенситного превращения всегда остается некоторое количество исходной фазы, несмотря на охлаждение ниже Тм.к.. При постоянной температуре в интервале Тм.н.-Тм.к. происходит быстрое превращение определенной доли исходной фазы, после чего превращение прекращается. При снижении температуры образовавшиеся ранее участки мартенситной фазы обычно не растут, а образуются ее новые участки. Превращение начинается внезапно и происходит с очень большой скоростью, которая практически не зависит от температуры. Степень превращения зависит от температуры и не увеличивается со временем пребывания при данной температуре.

Мартенсит - метастабильная фаза, для которой характерна высокая плотность дефектов кристаллической решетки, особенно дислокаций. Практически сразу после образования мартенсит начинает претерпевать превращения в направлении достижения более равновесного состояния. Этот процесс называется отпуском. Отпуск представляет собой совокупность фазовых и структурных превращений, которая включает перераспределение растворенных компонентов, распад с выделением метастабильных и стабильных фаз и перегруппировку дефектов кристаллической решетки. В зависимости от диффузионной подвижности атомов растворенного компонента отпуск может протекать при комнатной температуре и особенно ускоряется при нагреве. Отпуск возможен также в период завершения охлаждения в случае, когда скорость охлаждения замедляется. Этот процесс называется самоотпуском.

1.3.3.3.3 Фазовые и структурные превращения при сварке сталей. Превращения в основном металле при нагреве

Фазовые и структурные превращения при сварке конструкционных сталей нередко вызывают понижение технологической прочности, механических и эксплуатационных свойств металла сварных соединений. Под технологической прочностью понимают способность материалов без разрушения выдерживать термомеханические воздействия в процессе сварки. В условиях указанных воздействий часто существенно понижаются механические свойства металла, что вместе с довольно высокими сварочными деформациями и напряжениями может служить причиной образования трещин.

Ориентируясь на максимальную температуру нагрева, в сварном соединении сталей можно выделить несколько характерных зон, в пределах которых происходят или могут произойти определенные фазовые и структурные превращения (рис. 35).

При нагреве по мере повышения температуры металл претерпевает последовательно целый ряд превращений.

На участке полной перекристаллизации (рис. 35, 1б) в металле проходят процессы аустенитизации, роста зерна и перераспределения легирующих элементов и примесей. Аустенитизация - переход Feб>Feг. При нагреве до температур начала аустенитизации сталь получает структуру феррито-перлито-карбидной смеси. Переход в аустенитное состояние представляет собой фазовое превращение диффузионного типа. Превращение начинается на участках перлита. Зародыши аустенита образуются на межфазных поверхностях феррит-цементит. Поскольку на каждом участке перлита возникает несколько зародышей аустенита, превращение Feб>Feг приводит к измельчению зерна. При росте зародышей зерен аустенита вместе с перестройкой ОЦК решетки в ГЦК решетку возникает новая кристаллографическая ориентация последней. В результате исчезают границы бывших аустенитных зерен (образовавшихся при предшествующей сварке термической обработке) и образуются новые границы при стыковке растущих зерен. После завершения этого процесса образуются так называемые начальные зерна аустенита. Чем дисперснее исходная структура стали, т.е., чем больше межфазная поверхность, на которой образуются зародыши зерен аустенита, тем меньше размер начального аустенитного зерна.

Рост зерна аустенита характерен для ОШЗ, нагреваемой до наибольших максимальных температур. Интенсивный рост начинается после достижения некоторой критической температуры Ти.р.з., значение которой зависит от состава стали, наличия примесей и метода раскисления. Элементы, образующие труднорастворимые карбиды (Ti, V, Mo, W и др.), оксиды, сульфиды и нитриды (О2, S, N2, Al), а также поверхностно-активные (В), концентрирующиеся на границах зерен, повышают Ти.р.з.. Рост зерна происходит в результате собирательной рекристаллизации, ведущим процессом которой является миграция границ зерен. Мелкодисперсные частицы карбидов и неметаллических включений замедляют миграцию границ и препятствуют росту зерна. Для каждой стали характерен определенный предельный размер зерна.

При сварочном нагреве высокие максимальные температуры способствуют растворению карбидов и оксидов и обусловливают высокую скорость самодиффузионных процессов. В то же время большие скорости нагрева и относительно высокие скорости охлаждения ограничивают пребывание металла при высоких температурах. В этих условиях в углеродистых и большинстве низколегированных сталей в процессе сварки дуговыми способами аустенитное зерно в ОШЗ успевает вырасти практически до своих максимальных размеров, при этом рост зерна происходит как на этапе нагрева, так и на этапе охлаждения. Соотношение приращения размера зерна на этих этапах зависит от состава стали и теплового режима сварки q /(vд) и температуры подогрева.

В сварных соединениях зону перекристаллизации разделяют на два участка: зону перегрева с относительно крупным зерном (Фmax 1273 К) и зону нормализации с мелким зерном (Фmax < 1273 К).

Следует отметить, что на участке ОШЗ, непосредственно примыкающем к линии сплавления, наблюдаются аномалии в росте зерна. Это, по-видимому, связано с оплавлением данного участка при нагреве до температур в интервале Тсл (температуры солидуса и ликвидуса соответственно). Оплавление происходит как при нагреве непосредственно источником теплоты, так и при кристаллизации металла шва. При кристаллизации шва выделяющаяся теплота затвердевания может привести к дополнительному оплавлению ОШЗ, если температура солидуса металла шва больше температуры ликвидуса основного металла. В этом случае происходит полное расплавление части рассматриваемого участка ОШЗ, которая фиксируется в ОШЗ как зона "расплавленного и неперемешанного со швом основного металла". В результате оплавления участка ОШЗ исчезает зеренная структура, сформировавшаяся на этапе сварочного нагрева. Новые границы аустенитных зерен образуются при затвердевании расплавленного металла на оплавленном участке ОШЗ. Конечные размеры зерна зависят от степени оплавления ОШЗ. При наличии полностью расплавленной прослойки, затвердевание которой происходит после начала кристаллизации шва, границы зерен на этом участке ОШЗ представляют собой продолжение границ относительно крупных зерен в металле шва. В этом случае на участке ОШЗ, примыкающем к линии сплавления, наблюдается наиболее крупное зерно в ОШЗ. При частичном оплавлении границы зерен образуются по затвердевшим расплавленным прослойкам между частями оплавленных зерен, причем в зависимости от степени дробления ранее существовавших до оплавления зерен конечные размеры зерен могут быть соизмеримы с остальными зернами в ОШЗ или более мелкими. Во всех рассмотренных случаях возможно подрастание аустенитных зерен на этапе охлаждения.

Перераспределение легирующих элементов и примесей в сталях при высокотемпературном сварочном нагреве - сложный диффузионный процесс, который может приводить как к снижению, так и повышению микрохимической неоднородности (МХН). После завершения аустенитизации внутри зерен аустенита существует неравномерное распределение легирующих элементов и примесей, особенно углерода и карбидообразующих. Углерод концентрируется в местах, где ранее располагались частицы цементита, а также на участках зерна, где находятся еще не полностью растворившиеся специальные карбиды. Для сталей обыкновенного качества и качественных после горячей обработки давлением (прокатки, ковки) характерна начальная химическая неоднородность, связанная с волокнистой макроструктурой и полосчатой микроструктурой. Волокнистая макроструктура образована строчками раздробленных и вытянутых вдоль направления деформации неметаллических включений (сульфидов, оксидов, фосфидов). В зоне строчек имеет место повышенное содержание S, Mn, O2, Si, Р, Аl. Полосчатая микроструктура вызвана более высокой концентрацией углерода в осях дендритов по сравнению с зонами их срастания в исходных слитках стали.

При нагреве после завершения аустенитизации в металле ОШЗ внутри зерен развивается процесс гомогенизации по углероду и другим элементам. Перераспределение элементов происходит в соответствии со значениями градиента химического потенциала в разных участках зерен. При этом вначале возможно временное усиление МХН. Углерод перераспределяется из зон, обогащенных некарбидообразующими элементами, в зоны, обогащенные карбидообразующими, поскольку первые повышают, а вторые понижают термодинамическую активность углерода. При повышении содержания углерода его активность увеличивается, в результате направление перераспределения углерода изменяется, чему также способствует произошедшее к этому моменту перераспределение других элементов. При нагреве до температур свыше 1370-1470 К развивается процесс гомогенизации в направлении равномерного распределения элементов по телу зерен. Гомогенизация продолжается также на ветви охлаждения до температур сохранения диффузионной подвижности элементов или температур начала фазовых выделений, например, карбидов в высоколегированных мартенситно-стареющих сталях. Степень завершения гомогенизации при сварке зависит от максимальной температуры, диффузионной подвижности элементов, времени пребывания при температурах гомогенизации и исходной макро- и микрохимической неоднородности. Максимальная степень гомогенизации соответствует участкам ОШЗ, нагреваемым до Tc, учитывая, что коэффициенты диффузии элементов увеличиваются с повышением температуры в экспоненциальной зависимости. С наибольшей скоростью гомогенизация происходит по углероду, с меньшей - по S, Р, Cr, Mo, Mn, Ni, W в приведенной последовательности. Время пребывания при температурах гомогенизации зависит от теплового режима сварки, а также от класса применяемых сварочных материалов. Последнее связано с дополнительным нагревом ОШЗ выделяющейся теплотой затвердевания шва (аналогично их влиянию на степень оплавления ОШЗ). Степень влияния металла шва определяется температурой солидуса металла шва. Чем она выше, тем при более высоких гомологических температурах происходит дополнительный нагрев ОШЗ. При переходе от сравнительно тугоплавких ферритно-перлитных сварочных материалов к более легкоплавким аустенитным время пребывания ОШЗ свыше 1370 К уменьшается примерно в 1,5 раза. Весьма существенно влияет исходное состояние стали. Наличие труднорастворимых крупных скоагулированных частиц легированного цементита и специальных карбидов, например, после отжига стали на зернистый перлит, заметно снижает степень гомогенизации.

Одновременно с перераспределением элементов по телу зерен возможна их сегрегация на границах зерен. Однако, учитывая высокую скорость сварочного нагрева и снижение степени равновесной сегрегации с повышением температуры, по-видимому, этот процесс не приведет к значительному накоплению примесей на границах при нагреве. В процессе охлаждения, когда упомянутые условия изменяются, сегрегация может привести к обогащению границ примесями. Развитие сегрегации на границах также возможно при последующих нагревах в процессе многослойной сварки и повторном нагреве при отпуске сварных конструкций. Обогащение границ примесями - одна из причин хрупкого межкристаллического разрушения в ОШЗ.

На участке неполной перекристаллизации происходит полное или частичное превращение перлитных участков в аустенит и коагуляция цементита и специальных карбидов при сохранении феррита. Конечная структура после охлаждения будет характеризоваться неравномерным размером зерна и неоднородностью структурных составляющих. Если свариваемая сталь находилась в исходном состоянии закалки и отпуска, то в этой зоне происходит разупрочнение, т. е. снижение прочности и твердости.

При нагреве до Тmax ниже неравновесной Ac3 фазовые и структурные превращения происходят в том случае, если сталь перед сваркой находилась в метастабильном состоянии для этого диапазона температур. Метастабильны исходные состояния стали после холодной пластической деформации, закалки и низкого отпуска, закалки и старения. В холоднодеформированной стали развиваются процессы возврата и рекристаллизации обработки. Последний процесс приводит к разупрочнению соответствующей зоны сварного соединения. В низкоуглеродистой стали при нагреве свыше 470 К возможно деформационное старение, приводящее к снижению пластичности стали. Степень завершенности процессов, развивающихся при нагреве метастабильного металла, и изменений свойств сварного соединения зависит от состава стали и времени пребывания в диапазоне определенных максимальных температур. Последнее зависит от теплового режима сварки. Кроме того, режим определяет ширину зон, в которых развивается тот или иной процесс, а следовательно, и ширину зон разупрочнения или пониженной пластичности. При применении мощных концентрированных источников теплоты эти зоны могут стать настолько узкими, что не будут оказывать заметного влияния на прочность сварного соединения в целом.

1.3.3.3.4 Превращения в шве и основном металле при охлаждении

При охлаждении в области высоких температур в шве и в ЗТВ, находящихся в аустенитном состоянии, продолжают развиваться ряд процессов, начавшихся на этапе нагрева: гомогенизация, рост зерна и др. Некоторые процессы изменяют свое направление. Так, по мере охлаждения усиливается сегрегация примесей на границах зерен, а у мартенситно-стареющих сталей при условии медленного охлаждения возможно выпадение карбо-нитридов и карбидов хрома при температурах ниже 1320-1220 К. Основной процесс в сталях при охлаждении, окончательно определяющий микроструктуру и свойства металла сварных соединений, - превращение аустенита.

Анализ превращений в сталях при охлаждении в процессе сварки выполняют с помощью так называемых "анизотермических диаграмм превращения (распада) аустенита" (АРА) применительно к термическим условиям сварки. Их строят на основе экспериментальных данных, получаемых с помощью дилатометрического или термического метода анализа. Дилатометрический метод основан на регистрации изменений размера определенным образом выбранной базы на свободном незакрепленном образце в процессе его нагрева и охлаждения. Термический анализ основан на регистрации эффекта выделения теплоты, сопровождающего фазовые превращения аустенита. Для термического анализа используют как образцы основного металла, подобные дилатометрическим, в которых воспроизводится СТЦ, так и сварные образцы.

В зависимости от состава стали и СТЦ в околошовной зоне и шве при охлаждении возможны фазовые превращения аустенита: ферритное, перлитное, мартенситное и бейнитное. Часто имеет место смешанное превращение, т.е. несколько последовательно следующих друг за другом видов превращений, например бейнитное и мартенситное; ферритное, перлитное и бейнитное.

Ферритное превращение характерно при сварке низкоуглеродистых сталей и относительно малых скоростях охлаждения. Оно представляет собой превращение диффузионного типа. Зародыши ферритной фазы возникают на границах аустенитных зерен (нормальный механизм превращения). Этому процессу предшествует диффузионный отвод углерода во внутренние части зерна аустенита. Содержание углерода в образующемся феррите не превышает 0,02%. Твердость феррита составляет НВ 80-100. При непрерывном охлаждении количество ферритной фазы, как правило, не достигает равновесного значения. В сталях с крупным аустенитным зерном (сварной шов, перегретая околошовная зона) при относительно высоких скоростях охлаждения возможно выделение феррита в виде ориентированных пластин внутри зерна аустенита (видманштеттова структура). Ферритные пластины выделяются вдоль плотноупакованных октаэдрических плоскостей решетки аустенита. Предполагают, что механизм их образования такой же, как и у мартенсита. Возможны случаи одновременного образования сетки феррита по границам зерен и видманштеттова феррита, причем по мере увеличения содержания углерода и уменьшения размера зерна доля последнего уменьшается. Образованию видманшттетовой структуры способствуют Mn, Cr и Мо. Выделения феррита могут приводить к уменьшению прочности, а тонкопластинчатая видманштеттова структура - к снижению пластичности.

Перлитное превращение характерно при сварке среднеуглеродистых сталей и как дополнительное при сварке низкоуглеродистых. Оно происходит при сравнительно невысоких скоростях охлаждения. Перлитное превращение имеет диффузионный механизм и начинается с образования зародышей в виде перлитных колоний на границах аустенитного зерна. Вначале вследствие флуктуации концентрации углерода образуется тонкая цементитная (или ферритная) пластина. При ее утолщении окружающий аустенит обедняется (или обогащается) углеродом и создаются условия для возникновения примыкающих к ней пластин феррита (или цементита). Попеременное многократное возникновение пластин цементита и феррита приводит к образованию перлитной колонии, которая начинает расти не только в боковом, но и торцовом направлении. Кооперативный рост двухфазной колонии в торцовом направлении контролируется диффузионным перераспределением углерода в объеме аустенита перпендикулярно фронту превращения и вдоль фронта между составляющими перлитной колонии. Скорость роста перлитных колоний и межпластиночное расстояние (между одноименными пластинами) зависит от степени переохлаждения. Для стали с 0,8% С по признаку дисперсности различают следующие разновидности перлитных структур:

1) собственно перлит, температуры образования 940…920 К, межпластиночное расстояние 0,5-1,0 мкм, твердость НВ 170-230;

2) сорбит - соответственно 920-870 К, 0,2-0,4 мкм, НВ 230-330;

3) троостит - соответственно 870-770 К, 0,1 мкм, НВ 330-400.

Разделение условно, так как по мере понижения температур превращения монотонно увеличивается дисперсность структур. Наиболее высокую пластичность и ударную вязкость имеет сорбит. Характеристикой перлитной структуры служит также окончательный размер колоний (перлитных зерен). Чем меньше размер аустенитных зерен и ниже температура превращения, тем меньше размер перлитных зерен. С уменьшением их размера повышаются механические свойства структуры.

Мартенситное превращение при типичных сварочных скоростях охлаждения характерно для среднеуглеродистых легированных сталей. Превращение может быть полным или частичным в зависимости от скорости охлаждения. Оно бездиффузионно и происходит при переохлаждении аустенита до температур, при которых диффузионные перемещения атомов железа практически прекращаются, а углерода существенно замедляются. Оно начинается и заканчивается при постоянных для сталей данного состава температурах, не зависящих от скорости охлаждения. Превращение протекает по сдвиговому механизму. Мартенситные пластины образуются вдоль плотноупакованных октаэдрических плоскостей ГЦК решетки аустенита, которые наиболее близки по атомному строению к плоскостям с максимальной упаковкой в ОЦК решетке мартенсита. В результате кратчайших кооперативных атомных смешений (эквивалентных сдвиговой деформации) ГЦК решетки аустенита превращаются в объемно-центрированные тетрагональные решетки мартенсита. Превращение мартенсита не сопровождается выделением углерода из твердого раствора, который после превращения становится пересыщенным. Атомы углерода, расположенные в аустените в сравнительно свободных пустотах вдоль ребер ГЦК решетки, оказываются на гранях ОЦК решетки. Они препятствуют сдвиговой деформации при превращении, в результате чего тетрагональная решетка мартенсита искажается. Чем выше содержание углерода, тем больше тетрагональность решетки. Твердость мартенсита определяется содержанием углерода в стали и практически не зависит от содержания легирующих элементов. Мартенситное превращение аустенита не бывает полным - в структуре всегда остается от 2 до 10% остаточного аустенита.

В зависимости от внутреннего строения различает следующие типы мартенсита: пластинчатый и пакетный. Пластинчатый мартенсит также называют игольчатым, низкотемпературным и двойниковым. Он образуется в высоко- и среднеуглеродистых легированных сталях и имеет форму тонких линзообразных пластин с двойниковыми прослойками в средней части. В начальный момент превращения, когда образуется средняя часть пластины (так называемый "мидриб"), пластическая деформация аустенита, обусловливающая перестройку решетки, происходит путем двойникования. Периферийные области мартенситных пластин имеют дислокационное строение с плотностью дислокаций 109-1010 см-2. По мере снижения температуры превращения доля двойниковых участков увеличивается. Пластины мартенсита, образующиеся в первую очередь при температуре начала мартенситного превращения проходят через все зерно аустенита, расчленяя его на отсеки. Следующие пластины располагаются под углом к ранее образовавшимся и по длине соизмеримы с размерами отсеков. В зависимости от размеров зерна аустенита пластинчатый мартенсит может быть крупноигольчатым, мелкоигольчатым или бесструктурным. Пакетный мартенсит, также называемый реечным, массивным, высокотемпературным и недвойниковым (дислокационным) имеет форму примерно одинаково ориентированных тонких пластин (реек). Они образуют плотный более или менее равноосный пакет. Ширина реек 0,1-1,0 мкм, поэтому оптической металлографией выявляются только их пакеты. По этой причине пакетный мартенсит получил название массивного. Пакетный мартенсит образуется в большинстве низкоуглеродистых легированных сталей. Он характеризуется сложным дислокационным строением с высокой плотностью дислокаций (до 1011-1012 см-2). Его образование обусловлено пластической деформацией исходной решетки аустенита путем скольжения. Тип мартенсита определяет его механические и технологические свойства. Например, пластинчатый мартенсит в околошовной зоне более склонен к образованию холодных трещин, чем пакетный. Это связано с тем, что у вершины двойниковой пластины создаются высокие плотность дислокаций и уровень микронапряжений.

Бейнитное превращение, называемое также промежуточным, характерно при сварке большинства углеродистых и легированных сталей. Оно происходит в интервале температур от 770 К до температуры начала мартенситного превращения, когда самодиффузия железа и диффузия легирующих элементов практически отсутствуют, а диффузия углерода еще достаточно существенна. Различают верхний (Бв) и нижний (Бн) бейнит, образующиеся соответственно в верхней и нижней части температурного интервала превращения.

Бейнитное превращение сочетает элементы перлитного и мартенситного превращений. Ему предшествует диффузионное перераспределение углерода в аустените, в результате чего образуются участки, обедненные и обогащенные углеродом. Дифференциация участков по содержанию углерода тем больше, чем выше температура превращения. При образовании Бв в обедненных участках возникает пересыщенная углеродом ферритная фаза по мартенситному механизму (низкоуглеродистый мартенсит). В обогащенных участках аустенита выделяются карбиды Окружающий карбиды аустенит с уже пониженным содержанием углерода претерпевает (г>б)-превращение. Отдельные обогащенные участки не претерпевают бейнитного превращения, а при дальнейшем охлаждении превращаются в мартенсит или остаются в виде аустенита. Бейнит Бв имеет перистое строение. В нем мелкие карбидные образования (в виде коротких палочек) располагаются главным образом между сравнительно крупными пластинками феррита. При образовании Бн из-за меньшей подвижности углерода ферритная фаза в большей степени пересыщена углеродом, поэтому карбиды выделяются главным образом внутри ферритной фазы сразу после ее образования, подобно отпуску мартенсита. По этой причине иногда Бн по структуре и свойствам считают аналогичным отпущенному мартенситу. Строение Бн - игольчатое с мельчайшими карбидными частицами, расположенными в объеме ферритных пластин. Верхний бейнит имеет пониженную прочность и невысокие пластичность и вязкость из-за относительно больших размеров составляющих структуры и повышенного количества нераспавшегося аустенита. Нижний бейнит, особенно образовавшийся при температурах на 50-100 К выше температуры начала мартенситного превращения, наоборот, обладает благоприятным сочетанием указанных свойств.

При непрерывном охлаждении в условиях сварки часто ни один вид превращения аустенита не успевает завершиться полностью, а по мере снижения температуры виды превращений сменяют друг друга. Химический состав стали, макро- и микроструктура и размеры аустенитного зерна в шве и ЗТВ - главные факторы, определяющие механические свойства, склонность к образованию холодных трещин и сопротивляемость хрупким разрушениям этих зон сварного соединения.

1.3.3.3.5 Способы регулирования структуры сварных соединений

Регулирование структуры ставит целью уменьшение содержания закалочных составляющих - мартенсита и нижнего бейнита, повышения температуры их образования и получения наиболее благоприятной их внутренней тонкой структуры, уменьшения размера действительного аустенитного зерна. Регулирование структуры ЗТВ и шва возможно путем выбора рациональной системы легирования и состава стали и сварочных проволок и термического цикла сварки. Выбор состава стали возможен на этапах конструкторско-технологической проработки сварных узлов или разработки сталей для вновь создаваемых конструкций. Выбор оптимального теплового режима сварки (q/v, температур предварительного, сопутствующего и последующего подогрева) - весьма эффективный технологический способ регулирования структуры металла сварных соединений. Его воздействие на структуру проявляется через параметры сварочного термического цикла.

Для углеродистых и низколегированных сталей, не содержащих карбидообразующих элементов, наиболее важный параметр - скорость остывания в диапазоне 873-773 К. Для них в пределах практически всех способов сварки можно обеспечить такую скорость, чтобы получить ферритоперлитную или перлитно-бейнитную структуру, не склонную к холодным трещинам. Поэтому для повышения сопротивляемости сварных соединений этих сталей образованию трещин эффективны повышение q/v и применение предварительного подогрева до температуры Тп = 370-570 К.

Для среднеуглеродистых, среднелегированных, содержащих карбидообразующие элементы сталей при сварке в широком диапазоне режимов характерно мартенситное превращение. Для получения благоприятной структуры при сварке этих сталей эффективно снижение q/v, применение концентрированных источников теплоты (плазменной, электронно-лучевой и лазерной сварки). Также полезен сопутствующий подогрев, обеспечивающий замедление охлаждения при температуре несколько выше температуры начала мартенситного превращения и приводящий к самоотпуску мартенсита.

...

Подобные документы

  • Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

    лабораторная работа [1,1 M], добавлен 22.12.2009

  • Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.

    курсовая работа [4,6 M], добавлен 22.03.2012

  • Состав и свойства стали. Сведения о ее свариваемости. Технология получения сварного соединения внахлёст двух листов сваркой ручной дуговой и в среде защитных газов плавящимся электродом. Выбор сварочных материалов и источников питания сварочной дуги.

    курсовая работа [201,9 K], добавлен 28.05.2015

  • Разработка технологии дуговой и газовой сварки, составление технологической карты на изготовление сварного соединения. Трудности при сварке, горячие и холодные трещины. Траектории движения конца электрода при дуговой сварке. Удаление сварочных шлаков.

    контрольная работа [774,0 K], добавлен 20.12.2011

  • Описание способа сварки неплавящимся электродом в защитных газах корневых слоев сварных соединений. Анализ изобретений в области сварки. Изучение основных приемов и методов теории решения изобретательских задач, позволяющих устанавливать системные связи.

    курсовая работа [41,5 K], добавлен 26.10.2013

  • Химический состав стали 10ХСНД. Механические свойства металла шва. Расчет режимов ручной дуговой сварки. Параметры сварки в углекислом газе плавящимся электродом. Оценка экономической эффективности вариантов технологии, затраты на электроэнергию.

    курсовая работа [199,1 K], добавлен 12.11.2012

  • Основные понятия и способы сварки трубопроводов. Выбор стали для газопровода. Подготовка кромок труб под сварку. Выбор сварочного материала. Требования к сборке труб. Квалификационные испытания сварщиков. Технология и техника ручной дуговой сварки.

    дипломная работа [2,9 M], добавлен 25.01.2015

  • Процесс лазерно-дуговой сварки с использованием дуги, горящей на плавящемся электроде. Экспериментальное исследование изменения металла при сварке и микроструктуры сварных швов. Сравнительная оценка экономической выгоды различных процессов сварки.

    дипломная работа [4,6 M], добавлен 16.06.2011

  • Описание физической сущности ручной дуговой сварки покрытым электродом. Физическая сущность процесса сварки. Основные и вспомогательные материалы, вредные факторы. Влияние химических элементов на свариваемость. Расчет параметров режима процесса сварки.

    курсовая работа [530,4 K], добавлен 05.12.2011

  • Методика расчета ручной дуговой сварки при стыковом соединении стали 3ВС3пс. Определение химического состава и свойств данного металла, времени горения дуги и скорости сварки. Выбор светофильтра для сварочного тока и соответствующего трансформатора.

    реферат [27,1 K], добавлен 04.06.2009

  • Сущность, особенности и области применения сварки под флюсом. Оборудование и материалы для сварки под флюсом. Технология автоматической дуговой сварки, ее главные достоинства и недостатки. Техника безопасности при выполнении работ по дуговой сварке.

    реферат [897,7 K], добавлен 30.01.2011

  • Классификация электрической сварки плавлением в зависимости от степени механизации процесса сварки, рода тока, полярности, свойств электрода, вида защиты зоны сварки от атмосферного воздуха. Особенности дуговой сварки под флюсом и в среде защитных газов.

    презентация [524,2 K], добавлен 09.01.2015

  • Основные сварочные материалы, применяемые при сварке распространенных алюминиевых сплавов. Оборудование для аргонно-дуговой сварки алюминиевых сплавов. Схема аргонно-дуговой сварки неплавящимся электродом. Электросварочные генераторы постоянного тока.

    курсовая работа [1,2 M], добавлен 20.05.2015

  • Характеристика и область применения алюминия марки АД1. Выбор сварочной проволоки, полуавтомата для сварки металла и защитного газа. Мероприятия по технике безопасности и охране труда при полуавтоматической сварке неплавящимся электродом в среде аргона.

    курсовая работа [1,1 M], добавлен 26.06.2014

  • Краткое сведение о металле и свариваемости стали марки 09Г2С. Оборудование сварочного поста для ручной дуговой сварки колонны. Основные достоинства металлоконструкций. Технология ручной дуговой сварки. Дефекты сварных швов. Контроль качества соединения.

    дипломная работа [1,8 M], добавлен 08.12.2014

  • История возникновения сварки, ее классификация и виды. Характеристика высокопроизводительных видов ручной дуговой сварки. Назначение и описание конструкции трубопровода. Особенности организации контроля качества и безопасности при сварочных работах.

    дипломная работа [30,6 K], добавлен 24.07.2010

  • Подготовка металла к сварке, выбор сварочного материала. Выбор источника питания для ручной дуговой сварки. Техника безопасности при выполнении технологического процесса: охрана окружающей среды, пожарная безопасность. Опасность поражения электротоком.

    курсовая работа [2,5 M], добавлен 20.06.2012

  • Низкоуглеродистые и низколегированные стали: их состав и свойства, особенности свариваемости. Общие сведения об электродуговой, ручной дуговой, под флюсом и сварке сталей в защитных газах. Классификация и характеристика высоколегированных сталей.

    курсовая работа [101,4 K], добавлен 18.10.2011

  • Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

    курсовая работа [167,8 K], добавлен 18.05.2014

  • Возникновение и развитие сварки и резки металлов. Понятие, сущность и классификация способов дуговой резки. Рабочие инструменты, используемые при резке металлов. Организация рабочего места сварщика. Техника безопасности труда при дуговой сварке и резке.

    курсовая работа [508,4 K], добавлен 25.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.