Обзор методов и подходов обнаружения отказов и отказоустойчивости системы управления для роботизированных морских подвижных объектов

Использование автономных роботизированных объектов. Программные комплексы, участвующие в заданиях, проходящих в неопределенных условиях. Обнаружение отказов и отказоустойчивости системы управления для роботизированных морских подвижных объектов.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 29.06.2017
Размер файла 89,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

Южный федеральный университет, Таганрог

Обзор методов и подходов обнаружения отказов и отказоустойчивости системы управления для роботизированных морских подвижных объектов

С.А. Копылов

Аннотация

Использование автономных роботизированных морских подвижных объектов значительно увеличилось в последние годы. Такие объекты представляют собой сложные аппаратно-программные комплексы, участвующие в заданиях, проходящих в неопределенных условиях, поэтому степень автономности становится важным вопросом. Поэтому способность обнаруживать и продолжать поддерживать работоспособность при ошибках или отказах оборудования является ключевым фактором для успешного завершения миссии или возобновления прежнего состояния объекта. В этой статье произведен обзор методов обнаружения неисправностей исполнительных механизмов, приборов и алгоритмов отказоустойчивости.

Ключевые слова: моделирование, системы управления, диагностика, отказоустойчивость, нейросети, морские подвижные объекты

Введение

Основными функциями системы обнаружения неисправности является способность диагностировать (возможность определить, какие конкретные подсистемы отказали) обнаруженную ошибку, а также выполнять надежную работу в нештатных ситуациях и определить сложность отказа. В некоторых случаях требуется, чтобы система обнаружения неисправностей также была способна различать некоторые внешние воздействия от действительного отказа.

В данной статье представлен обзор существующих систем обнаружения неисправностей и подходов отказоустойчивости для роботизированных морских подвижных объектов.

Большинство систем обнаружения отказов и неисправностей основаны на моделях, предлагаемых в [1-11], которые основаны на методах использования динамической связи между исполнительными механизмами и поведением всего аппарата и специфической динамики рулевых устройств. Метод, не основанный на модели, предложен в [12, 13]. Этот подход основывается на использовании метода управления данными с использованием статистики Хотеллинга T2 для обнаружения неисправностей в сочетании с использованием нескольких контроллеров, каждый из которых предназначен для различных рабочих состояний. Системы обнаружения неисправностей высокого уровня представлены в [14,15,16,17]. Источники [18-23] имеют отношение к программно-аппаратным аспектам реализации обнаружения неисправности для роботизированных морских подвижных объектов. Методы использования нейронной сети и технологий обучения также были представлены в [24-31].

Основная часть систем отказоустойчивости используют принцип избыточного управления, даже при отказе одного из исполнительных механизмов, подвижный морской объект продолжает выполнять задание. Методы перераспределения действующих сил при рабочих двигателях рассмотрены в [2-4,6,7,11,31-35]. Стратегии и методы переконфигурации системы управления при некорректной работе исполнительных механизмов описывается [36].

Всего в нескольких статьях рассматриваются экспериментальные результаты работы систем диагностики отказов [2-4,6,7,11,15 17,18,20,31,35,36]. Стоит отметить, что все перечисленные методы и подходы получили хорошие результаты, благодаря использованию простых алгоритмов.

1. Перечень возможных отказов

автономный роботизированный морской отказоустойчивость

В данном разделе будет представлен список некоторых возможных отказов роботизированных морских подвижных объектов.

Отказ сенсоров и датчиков. Как подводные, так и надводные аппараты, оснащены некоторым набором сенсоров для получения данных об их местонахождении, скорости, внешней среде и т.д. На самом деле задача обеспечения отказоустойчивости нетривиальная, не существует единого датчика для определения требуемых координат/скорости или получение информации об окружающей среде или данных о препятствиях. Поэтому, для оценки полного внутреннего состояния объекта, в данном случае датчиков, применяется фильтр Калмана. Структурная избыточность может быть использована для обеспечения возможности обнаружения неисправностей в системе. Отказы могут происходить в одном из следующих датчиков: инерциальная измерительная система (IMU), датчик глубины, GPS, компас, акустические приборы и т.д. Для каждого из указанных датчиков, отказ может проявиться в виде обнуленных или некорректных данных на выходе. Это можно расценить как отказ датчика, так и внешнее возмущение, таким образом, нужно правильно обрабатывать ситуацию, после чего считать ошибку обнаруженной.

Блокировка двигателей. Обычно такие отказы вызываются механическим путем. Данный тип отказов может быть идентифицирован с помощью тока, потребляемого двигателем.

Отказ ротора. Причиной данного отказа может являться цепочка различных проблем при запуске, такие как постоянные перепады напряжения и критические остановки двигателя. В результате отказа двигатель может перестать функционировать. По этому вопросу были проведены испытания, которые описываются [3,8,11,31,32].

Программно-аппаратные отказы. Сбои в аппаратном или программном обеспечении, также часто встречаются. Для этих случаев нужно использовать методы с использованием избыточности, которые могут идентифицировать и обработать такие ситуации [18].

2. Основные методы обнаружения отказов

В [2, 3] представлена схема обнаружения отказов для предотвращения сбоев исполнительных механизмов при горизонтальном движении. Моделирование исполнительных механизмов описывается в [37]. Предлагаемый алгоритм реализован с помощью группы расширенных фильтров Калмана (РФК), где на выходе нужно определить поведения системы, не согласованной с динамической моделью. Например, два двигателя и горизонтальное движение подвижного объекта, три расширенных фильтра Калмана могут смоделировать три поведения: номинальное, отказ левого двигателя и отказ правого. Перекрестная проверка выходных данных позволяет эффективно распознать отказ, это было доказано экспериментально в упомянутых выше статьях. Схема данного метода представлена на рис. 1, где u - вектор входных данных, подаваемых на двигатель, ш - курс, получаемый от компаса. В [4], такой же подход исследуется, но с использованием наблюдателя вместо фильтра Калмана. Эффективность данного подхода также подтверждается экспериментально.

Размещено на http: //www. allbest. ru/

Рис. 1 Схема определения отказов одного из двигателей в горизонтальном положении

Работы [6,7] посвящены обнаружению неисправности двигателей посредством мониторинга тока и скорости вращения лопастей. Нелинейная номинальная характеристика была доказана опытным путем, таким образом, если ток и обороты пропорционально будут выходить за пределы каких-либо ограничений, то можно рассматривать данную ситуацию как отказ. Причиной в данном случае может стать попадание воды в двигатель или отказ ротора.

Отказы двигателей также описываются в [11] с использованием датчика Холла, который устанавливается сейчас в большинстве двигателей. Входным значением является желаемое напряжение, которое измеряется контроллером, а выходное напряжение измеряется датчиком Холла. Несовпадение между измеренным и прогнозируемым напряжением считается неисправностью.

В источниках [18, 20] представлена архитектура для АНПА, которая интегрирует возможность нахождения отказов в подсистемы. Аппаратно-программная архитектура, названный КАНПА (контроллер автономного необитаемого подводного аппарата) реализует метод обнаружения неисправностей на основе пяти систем, основанных на правилах, которые проводят мониторинг всех подсистем. К этим пяти системам относятся: навигация, питание/двигатели, управление направлением и связь. Между собой они координируются с помощью глобального диагностического модуля, который предотвращает противоречивые действия. Особое внимание было уделено к надежности оборудования, на самом деле КАНПА распределяется по резервной сети, связывающей восемнадцать процессоров. Над КАНПА также были проведены испытания для подтверждения подхода, который был предложен в [21].

В [9] был использован наблюдатель для генерации разности полученного поведения с датчиков и предсказанного. Также система приминает во внимание возмущения оказываемое волнами при проведении действий у поверхности. Когда результат разности большее заданного порога, система должна изолировать источник этого отказа.

Нейро-символическая гибридная система представлена в [24], здесь описывается выполнение диагностики отказов на подвижном объекте с возможностью обучения. В другой работе [28] представлена математическая модель нейронной сети для настройки самодиагностики системы управления морским подвижным объектом. Программное обеспечение для контроля над состоянием работоспособности и выполнения миссии морского подвижного объекта с возможностями обучения, описано в [29].

В работе [38] рассматривается теория всплесков для обнаружения ошибки в навигационной системе.

И наконец, в [39] описывается программное обеспечение для тестирования интеллектуальных контроллеров для морских подвижных объектов. Это выполняется с использованием методик обучения из теории искусственного интеллекта.

3. Методы отказоустойчивости системы управления

Большинство контроллеров отказоустойчивости, разработанных для двигателей, управляющих морскими подвижными объектами, основаны на соответствующей инверсии модуля управления передачей сигналов (TCM). Если матрица является нижней прямоугольной, то еще возможно, отключить сломанный двигатель и управлять подвижным объектом во всех шести степенях свободы. Когда отказы случаются в обоих двигателях объекта или когда аппарат приводится в движение с помощью рулевых плоскостей, проблема математически становится более сложной. Для данных случаев было разработано всего несколько решений.

В [31-34,35], предлагается задача для решения отказоустойчивости управления для подвижных морских объектов с избыточным управлением двигателями. Модель закона управления обрабатывает избыточность двигателей с помощью псевдообратного подхода модуля управления передачей, который гарантирует минимизацию исполнительного механизма квадратичной нормы. Предлагаемый подход представлен на Рис. 2, где индекс d обозначает заданную траекторию, Vm - входное напряжение, подаваемое на двигатель и Щ - угловая скорость винта. Стоит отметить, что при подаче динамических параметров во время проведения эксперимента были получены хорошие результаты.

Размещено на http: //www. allbest. ru/

Рис. 2 Схема отказоустойчивости на основе избыточного управления двигателями

В работе [11] представлена схема отказоустойчивости системы управления и обнаружения неисправностей датчиков. Глубина подвижного объекта измеряется с помощью датчика давления и нижнего сонара, сюда же добавляется третий, виртуальный сенсор для симуляции динамики подвижного объекта на глубине. Далее сравниваются полученные данные с предсказанными, затем вычисляется разница и если произошел сбой, то неисправный датчик отключается до конца миссии. Схема данного метода представлена на Рис. 3, в номинальном рабочем состоянии три полученных разности Ri близки к нулевым значением. Стоит отметить, что этот подход требует точной информации о глубине.

Размещено на http: //www. allbest. ru/

Рис. 3 Схема отказоустойчивости и обнаружения неисправностей датчиков

Одной из первых работ по управлению реконфигурации для морских подвижных объектов является [40], где лишь поверхностное описание возможной схемы отказоустойчивости. В [41] был предложен метод реконфигурации для приспособления к неисправностям исполнительных механизмов, эта методика основана на смешанной задаче H2/H?. Стоит рассмотреть российские исследования в этой области [17,29]. В [17,30] предлагается несколько подходов. Для нахождения отказа в исполнительных механизмах предлагается использовать рекуррентную нейронную сеть. Также рассматривается структура нейросетевого многорежимного регулятора для управления двигателями с селектированием каналов управления. Что касается алгоритмов отказоустойчивости, в этом источнике предлагают использовать мажоритарную схему резервирования с использованием нейросетевых моделей и алгоритмов нечеткой логики, что позволяет повысить оперативность и достоверность обнаружения отказов. В [29] описывается методология проектирования нейронных сетей для прогнозирования. С помощью пакета Neuro-Pro V 0.25. Разработанная модель нейросети, проверена на правильность функционирования на тестовых примерах.

Заключение

Был проведен обзор существующих систем обнаружения отказов и отказоустойчивости для морских подвижных объектов. На данный момент направление для решения задач обнаружения отказов очень сильно развивается. Сейчас стали широко использоваться нейросетевые подходы.

Задача диагностики отказов является важным аспектом при проектировании и использовании систем управления [42-50], вне зависимости от того где она будет применена на летательном или подводном аппарате. Например, модель [48] была использована для управления беспилотного высотного дирижабля, где так же важно отличать внешние возмущения от отказов. Поэтому разные практические подходы могут оказаться полезными в области создания отказоустойчивых систем управления.

Литература

1. Alekseev Y.K., Kostenko V.V., Shumsky A.Y. Use of Identi?cation and Fault Diagnostic Methods for Underwater Robotics. // Oceans'94, Brest, FR. 1994. pp. 489- 494.

2. Alessandri A., Caccia M., Verruggio G. A Model-Based Approach to Fault Diagnosis in Unmanned Underwater Vehicles. // Oceans'98, Nice, F. 1998. pp. 825- 829.

3. Alessandri A., Caccia M., Verruggio G. Fault Detection of Actuator Faults in Unmanned Underwater Vehicles. // Control Engineering Practice. 1998. №7. pp. 357- 368.

4. Alessandri A., Hawkinson T., Healey A.J., Veruggio G. Robust Model- Based Fault Diagnosis for Unmanned Underwater Vehicles Using Sliding Mode-Observers. // Symposium Unmanned Untethered Submersible Technology. 1999. pp. 3-25.

5. Babcock IV P.S., Zinchuk J.J. Fault Tolerant Design Optimization: Application to an Autonomous Underwater Vechile Navigation System. // Symposium on Autonomous Underwater Vehicle Technology. 1990. pp. 34-43.

6. Bono R., Bruzzone Ga., BruzzoneGi.,Caccia M. ROV Actuator Fault Diagnosis Through Servo-Ampli?ers' Monitoring: an Operational Experience. // MTS/IEEE Oceans'99, Seattle, WH. 1999. №3. pp. 1318-1324.

7. Caccia M., Bono R., Bruzzone Ga., BruzzoneGi., Spirandelli E., Verruggio G. Experiences on Actuator Fault Detection, Diagnosis and Accomodation for ROVs. // Symposium Unmanned Untethered Submersible Technology, Durham, NH . 2001. pp 109-127.

8. Hamilton K., Lane D., Taylor N., Brown K. Fault Diagnosis on Autonomous Robotic Vehicles with RECOVERY: an Integrated Heterogeneous-Knowledge Approach. // Conference on Robotics and Automation, San Francisco, CA. 2001. pp. 1251-1256.

9. Healey A.J. Analytical Redundancy and Fuzzy Inference in AUV Fault Detection and Compensation. // Oceanology 1998, Brighton. 1998. pp. 45-50.

10. Rae G.J.S., Dunn S.E. On-Line Damage Detection for Autonomous Underwater Vehicle. // Symposium on Autonomous Underwater Vehicle Technology. 1994. №34. pp. 383-392.

11. Yang K.C., Yuh J., Choi S.K. Experimental Study of Fault-Tolerant System Design for Underwater Robots. // Conference on Robotics and Automation, Leuven, B. 1998. pp. 1051-1056.

12. Beale G.O., Kim J.H. A Robust Approach to Recon?gurable Control. 5th IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg. // DK. 2000. pp. 197-202.

13. Kim J.H., Beale G.O. Fault Detection and Classi?cation in Underwater Vehicle Using the T2 Statistic. // 9th Mediterranean Conference on Control and Automation, Dubrovnik, Kr . 2001. pp. 29-37.

14. Ferguson J.S. The Theseus Autonomous Underwater Vehicle. Two Successful Missions. // Symposium Underwater Technology. 1998. pp. 109-114.

15. Ferguson J.S., Pope A., Butler B., Verrall R. Theseus AUV - Two Record Breaking Missions. // Sea Technology Magazine. 1999. pp. 65-70.

16. Healey A.J., Marco D.B. Experimental Veri?cation of Mission Planning by Autonomous Mission Execution and Data Visualization Using the NPS AUV II. // 1992 Symposium Autonomous Underwater Vehicle Technology. 1992. pp. 65-72.

17. Zheng X. Layered Control of a Practical AUV. // Symposium on Autonomous Underwater Vehicle Technology. 1992. pp. 142-147.

18. Barnett D., McClaran S. Architecture of the Texas A& M Autonomous Underwater Vehicle Controller. // Symposium on Autonomous Underwater Vehicle Technology. 1996. pp. 231-237.

19. Kirkwood W.J., Shane F., Gashler D., Au D., Thomas H., Sibenac M., O'Reilly T.C., Konvalina T., McEwen R., Bahlavouni A., Tervalon N., Bellingham J.G. Development of a Long Endurance Autonomous Underwater Vehicle for Ocean Science Exploration. // MTS/IEEE Conference and Exhibition Oceans 2001. 2001. pp. 1504-1512.

20. Barnett, D., McClaran, S., Nelson, E., McDermott, M., & Williams, G. Architecture of the Texas A&M autonomous underwater vehicle controller. // Autonomous Underwater Vehicle Technology, 1996. AUV'96., Proceedings of the 1996 Symposium on. 1996, June. pp. 231-237.

21. Orrick, A., McDermott, M., Barnett, D. M., Nelson, E. L., & Williams, G. Failure detection in an autonomous underwater vehicle. // Autonomous Underwater Vehicle Technology, 1994. AUV'94., Proceedings of the 1994 Symposium on. . 1994, July. pp. 377-382.

22. Stokey, R. P. Software design techniques for the man machine interface to a complex underwater vehicle. // In OCEANS'94.'Oceans Engineering for Today's Technology and Tomorrow's Preservation.'Proceedings Vol. 2. 1994, September. №2. pp. 119.

23. Yavnai A. Architecture for an Autonomous Recon?gureable Intelligent Control System (ARICS). // Symposium on Autonomous Underwater Vehicle Technology. 1996. pp. 238-245.

24. Deuker B., Perrier M., Amy B. Fault-Diagnosis of Subsea Robots Using Neuro-Symbolic Hybrid Systems. // Oceans'98, Nice, F. 1998. pp. 830-834.

25. Farrell J., Berger T., Appleby B.D. Using Learning Techniques to Accomodate Unanticipated Faults. // Control Systems Magazine. 1993. №13:(3). pp. 40-49.

26. Healey A.J. A Neural Network Approach to Failure Diagnostics for Underwater Vehicles. // Society Symposium on Autonomous Underwater Vehicles, Washington D.C. 1992. pp. 131-134.

27. Healey A.J., Bahrke F., Navarrete J. Failure Diagnostics for Underwater Vehicles: A Neural Network Approach. // IFAC Conference on Maneuvering and Control of Marine Craft. 1992. pp. 293-306.

28. Takai M., Fujii T.,Ura T. A Model Based Diagnosis System for Autonomous Underwater Vehicles using Arti?cal Neural Networks.// Symposium Unmanned Untethered Submersible Technology, Durham, NH. 1995pp. 243-252.

29. Макаров А. С. Задача обеспечения отказоустойчивости нейросетевых алгоритмов управления и контроля // Актуальные проблемы в науке и технике: сб. тр. шестой Всерос. зимн. шк.- сем. аспирантов и молодых ученых., Уфа. 2011. №1. С. 185-189.

30. Липчанский А.И., Лесовик У.И., Синтез заданной нейронной сети в программируемую логику // Радиоэлектроника. Информатика. Управление. №1, 2004. С.122-127.

31. Podder T.K., Antonelli G., Sarkar N. Fault Tolerant Control of an Au- tonomous Underwater Vehicle Under Thruster Redundancy: Simulations and Experiments. // IEEE Int. Conference on Robotics and Automation, San Francisco, CA. 2000. pp. 1251-1256.

32. Podder T.K., Antonelli G., Sarkar N. An Experimental Investigation into the Fault-Tolerant Control of an Autonomous Underwater Vehicle. // Journal of Advanced Robotics. 2001. №15. pp. 501-520.

33. Podder T.K., Sarkar N. Fault Tolerant Decomposition of Thruster Forces of an Autonomous Underwater Vehicle. // Conference on Robotics and Automation, Leuven, B. 1999.pp. 84-89.

34. Podder T.K. Sarkar N. Fault Tolerant Control of an Autonomous Underwater Vehicle Under Thruster Redundancy. // Robotics and Autonomous Systems. 2001. №34. pp. 39-52.

35. Sarkar N., Podder T.K., Antonelli G. Fault Accommodating Thruster Force Allocation of an AUV Considering Thruster Redundancy and Saturation. // IEEE Transactions on Robotics and Automation. 2002. №18. pp. 223-233.

36. Perrault D., Nahon M. Fault-Tolerant Control of an Autonomous Underwater Vehicle. // Oceans'98, Nice, F. 1998. pp. 820-824.

37. Fossen T. Guidance and Control of Ocean Vehicles. // John Wiley & Sons, Chichester, UK. 1994. 357 p.

38. Dermin, Xu, and Gao Lei. Wavelet transform and its application to autonomous underwater vehicle control system fault detection. // Underwater Technology, 2000. UT 00. Proceedings of the 2000 International Symposium on. 2000. pp. 99-104.

39. Schultz A.C. Adaptive Testing of Controllers for Autonomous Vehicles. // Symposium on Autonomous Underwater Vehicle Technology. 1992. pp. 158-164.

40. Tacconi G., Tiano A. Recon?gurable Control of an Autonomous Underwater Vehicle. // Symposium Unmanned Untethered Submersible Technology. 2001. pp. 486-493.

41. Tong G., Jimao Z. A Rapid Recon?guration Strategy for UUV Control. // Symposium Underwater Technology. 1998. pp. 478-483.

42. Пшихопов В.Х., Медведев М.Ю. Оценивание и управление в сложных динамических системах // М.: Физматлит. 2009. С. 295.

43. Пшихопов В.Х., Медведев М.Ю. Управление подвижными объектами в определенных и неопределенных средах. // М.: Наука. 2011. С. 350.

44. Пшихопов В.Х., Медведев М.Ю. Динамическое управление мобильными роботами с оцениванием состояния и параметров // В сб. Северо-Кавказского научного центра высшей школы «Анализ и моделирование адаптивных, интеллектуальных систем», вып.3, г. Ростов-на-Дону, 2000, с.21-27.

45. Гуренко Б.В. Реализация и экспериментальное исследование авторулевого автономного надводного мини-корабля «Нептун» // Инженерный вестник Дона. 2013. №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1920

46. Пшихопов В.Х., Гуренко Б.В. Разработка и исследование математической модели автономного надводного мини-корабля «Нептун» // Инженерный вестник Дона. 2013. № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1918

47. Пшихопов В.Х., Медведев М.Ю. Структурный синтез автопилотов подвижных объектов с оцениванием возмущений // М., Информационно-измерительные и управляющие системы. 2006. №1. С.103-109.

48. Пшихопов В.Х., Медведев М.Ю., Сиротенко М.Ю., Носко О.Э., Юрченко А.С. Проектирование систем управления роботизированных воздухоплавательных комплексов на базе дирижаблей. // Известия ТРТУ. Тематический выпуск. Перспективные системы и задачи управления. Таганрог: Изд-во ТРТУ, 2006, № 3 (58). С. 160 - 167.

49. Пшихопов В.Х., Медведев М.Ю. Синтез систем управления подводными аппаратами с нелинейными характеристиками исполнительных органов // Извести ЮФУ. Технические науки. 2011. № 3(116). С. 147 - 156.

50. Пшихопов В.Х., Чернухин Ю.В., Федотов А.А., Гузик В.Ф., Медведев М.Ю., Гуренко Б.В., Пьявченко А.О., Сапрыкин Р.В., Переверзев В.А., Приемко А.А. Разработка интеллектуальной системы управления автономного подводного аппарата // Известия ЮФУ. Технические науки. 2014. № 3(152). С. 87 - 101.

References

1. Alekseev Y.K., Kostenko V.V., Shumsky A.Y. Oceans'94, Brest, FR. 1994. pp. 489- 494.

2. Alessandri A., Caccia M., Verruggio G. Oceans'98, Nice, F. 1998. pp. 825-829.

3. Alessandri A., Caccia M., Verruggio G. Control Engineering Practice. 1998. №7. pp. 357- 368.

4. Alessandri A., Hawkinson T., Healey A.J., Veruggio G. Symposium Unmanned Untethered Submersible Technology. 1999. pp. 3-25.

5. Babcock IV P.S., Zinchuk J.J. Symposium on Autonomous Underwater Vehicle Technology. 1990. pp. 34-43.

6. Bono R., Bruzzone Ga., BruzzoneGi., Caccia M. MTS/IEEE Oceans'99, Seattle, WH. 1999. №3. pp. 1318-1324.

7. Caccia M., Bono R., Bruzzone Ga., BruzzoneGi., Spirandelli E., Verruggio G. Durham, NH . 2001. pp 109-127.

8. Hamilton K., Lane D., Taylor N., Brown K. Conference on Robotics and Automation, San Francisco, CA. 2001. pp. 1251-1256.

9. Healey A.J. Oceanology 1998, Brighton. 1998. pp. 45-50.

10. Rae G.J.S., Dunn S.E. Symposium on Autonomous Underwater Vehicle Technology. 1994. №34. pp. 383-392.

11. Yang K.C., Yuh J., Choi S.K. Conference on Robotics and Automation, Leuven, B. 1998. pp. 1051-1056.

12. Beale G.O., Kim J.H. 5th IFAC Conference on Manoeuvring and Control of Marine Craft, Aalborg. DK. 2000. pp. 197-202.

13. Kim J.H., Beale G.O 9th Mediterranean Conference on Control and Automation, Dubrovnik, Kr. 2001. pp. 29-37.

14. Ferguson J.S. Symposium Underwater Technology. 1998. pp. 109-114.

15. Ferguson J.S., Pope A., Butler B., Verrall R. Theseus AUV - Two Record Breaking Missions. Sea Technology Magazine. 1999. pp. 65-70.

16. Healey A.J., Marco D.B. 1992 Symposium Autonomous Underwater Vehicle Technology. 1992. pp. 65-72.

17. Zheng X. Symposium on Autonomous Underwater Vehicle Technology. 1992. pp. 142-147.

18. Barnett D., McClaran S. Symposium on Autonomous Underwater Vehicle Technology. 1996. pp. 231-237.

19. Kirkwood W.J., Shane F., Gashler D., Au D., Thomas H., Sibenac M., O'Reilly T.C., Konvalina T., McEwen R., Bahlavouni A., Tervalon N., Bellingham J.G. MTS/IEEE Conference and Exhibition Oceans 2001. 2001. pp. 1504-1512.

20. Barnett, D., McClaran, S., Nelson, E., McDermott, M., & Williams, G. Architecture of the Texas A&M autonomous underwater vehicle controller. Autonomous Underwater Vehicle Technology, 1996. AUV'96., Proceedings of the 1996 Symposium on. . 1996, June. pp. 231-237.

21. Orrick, A., McDermott, M., Barnett, D. M., Nelson, E. L., & Williams, G. Autonomous Underwater Vehicle Technology, 1994. AUV'94., Proceedings of the 1994 Symposium on. . 1994, July. pp. 377-382.

22. Stokey, R. P. OCEANS'94.'Oceans Engineering for Today's Technology and Tomorrow's Preservation. Proceedings Vol. 2. 1994, September. №2. pp. 119.

23. Yavnai A. Symposium on Autonomous Underwater Ve- hicle Technology. 1996. pp. 238-245.

24. Deuker B., Perrier M., Amy B. Oceans'98, Nice, F. 1998. pp. 830-834.

25. Farrell J., Berger T., Appleby B.D. Control Systems Magazine. 1993. №13:(3). pp. 40-49.

26. Healey A.J. Society Symposium on Autonomous Underwater Vehicles, Washington D.C. 1992. pp. 131-134.

27. Healey A.J., Bahrke F., IFAC Conference on Maneuvering and Control of Marine Craft. 1992. pp. 293-306.

28. Takai M., Fujii T., Ura T. Symposium Unmanned Untethered Submersible Technology, Durham, NH. 1995 pp. 243-252.

29. Makarov A.S. Aktual'nye problemy v nauke i tehnike: sb. tr. shestoj Vseros. zimn. shk.-sem. aspirantov i molodyh uchenyh., Ufa. 2011. №1. pp. 185-189.

30. Lipchanskij A.I., Lesovik U.I., Radiojelektronika. Informatika. Upravlenie. №1, 2004. pp. 122-127.

31. Podder T.K., Antonelli G., Sarkar N. IEEE Int. Conference on Robotics and Automation, San Francisco, CA. 2000. pp. 1251-1256.

32. Podder T.K., Antonelli G., Sarkar N. Journal of Advanced Robotics. 2001. №15. pp. 501-520.

33. Podder T.K., Sarkar N. Conference on Robotics and Automation, Leuven, B. 1999.pp. 84-89.

34. Podder T.K. Sarkar N. Robotics and Autonomous Systems. 2001. №34. pp. 39-52.

35. Sarkar N., Podder T.K., Antonelli G. IEEE Transactions on Robotics and Automation. 2002. №18. pp. 223-233.

36. Perrault D., Nahon M. Oceans'98, Nice, F. 1998. pp. 820-824.

37. Fossen T. Guidance and Control of Ocean Vehicles. John Wiley & Sons, Chichester, UK. 1994. 357 p.

38. Dermin, Xu, and Gao Lei. Underwater Technology, 2000. UT 00. Proceedings of the 2000 International Symposium on. 2000. pp. 99-104.

39. Schultz A.C. Symposium on Autonomous Underwater Vehicle Technology. 1992. pp. 158-164.

40. Tacconi G., Tiano A. Symposium Unmanned Untethered Submersible Technology. 2001. pp. 486-493.

41. Tong G., Jimao Z. Symposium Underwater Technology. 1998. pp. 478-483.

42. Pshikhopov V.Kh., Medvedev M.Yu., Ocenivanie i upravlenie v slozhnyh dinamicheskih sistemah [Estimation and control in complex dynamic systems]. M.: Fizmatlit. 2009. 295 p.

43. Pshikhopov V.Kh., Medvedev M.Yu. Upravlenie podvizhnymi ob#ektami v opredelennyh i neopredelennyh sredah [Mobile vehicle control in formalized and nonformalized environments]. M: Nauka, 2011. 350 p. ISBN 978-5-02-037509-3.

44. Pshikhopov V.Kh., Medvedev M.Yu., V sb. Severo-Kavkazskogo nauchnogo centra vysshej shkoly «Analiz i modelirovanie adaptivnyh, intellektual'nyh sistem», No.3, Rostov-na-Donu, 2000, pp. 21-27.

45. Gurenko B.V. Inћenernyj vestnik Dona (Rus). 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1920

46. Pshikhopov V.Kh., Gurenko B.V. Inћenernyj vestnik Dona (Rus). 2013, № 4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1918

47. Pshikhopov V. Kh., Medvedev M. Y., Informacionno-izmeritel'nye i upravljajushhie sistemy. 2006. №1. pp. 103-109.

48. Pshikhopov V. Kh., Medvedev M. Y., Sirotenko M. Y., Nosko O.E., Yurchenko A.S., Izvestija TRTU. Tematicheskij vypusk. Perspektivnye sistemy i zadachi upravlenija. Taganrog: Izd-vo TRTU, 2006, № 3 (58). pp. 160 - 167.

49. Pshikhopov V. Kh., Medvedev M. Y., Izvesti JuFU. Tehnicheskie nauki. 2011. № 3(116). pp. 147 - 156.

50. Pshikhopov V. Kh., Chernukhin J.V., Fedotov A.A., Guzik V.F., Medvedev M. Y., Gurenko B.V. Pyavchenko A.O. Saprykin R.V., Pereversev V.A., Priemko A.A. Izvestija JuFU. Tehnicheskie nauki.2014. № 3 (152). pp. 87 - 101.

Размещено на Аllbеst.ru

...

Подобные документы

  • Государственные стандарты по проблеме надежности энергетических объектов при эксплуатации. Изменение интенсивности отказов при увеличении наработки объекта. Вероятность безотказной работы. Показатели долговечности и модель гамма-процентного ресурса.

    презентация [900,4 K], добавлен 15.04.2014

  • Понятие отказа. Причины и последствия возникновения отказов. Показатели безотказности для невосстанавливаемых объектов. Статистическая оценка для средней наработки до отказа. Графическая интерпретация вероятности безотказной работы и вероятности отказа.

    реферат [278,4 K], добавлен 06.02.2012

  • Отказ как полное или частичное отсутствие детонации заряда. Заряды, не взорвавшиеся по причинам технического характера. Виды отказов, их классификация по внешним признакам, периодичности проявления. Основные причины отказов, особенности их предупреждения.

    презентация [34,1 K], добавлен 23.07.2013

  • Исследование основных целей создания Автоматизированной системы управления технологическим процессом. Обзор этапов цикла работы адсорбера. Описание процесса осушки. Комплексная автоматизация объектов КС. Функциональные особенности погружного уровнемера.

    курсовая работа [46,6 K], добавлен 04.12.2012

  • Многообразие объектов управления, их функций, форм и методов управления. Определение понятия организации производства технического обслуживания и ремонта машин. Разработка и внедрение автоматизированной системы управления производственным процессом.

    курсовая работа [544,5 K], добавлен 23.04.2013

  • Методология анализа и оценки техногенного риска, математические формулировки, используемые при оценке основных свойств и параметров надежности технических объектов, элементы физики отказов, структурные схемы надежности технических систем и их расчет.

    курсовая работа [130,7 K], добавлен 15.02.2017

  • Описание системы стабилизации температуры электропечи. Методы математического описания объектов управления. Нахождение коэффициента усиления. Выбор лучшей аппроксимирующей модели. Синтез регулятора методом ЛАЧХ. Переходная характеристика замкнутой системы

    курсовая работа [483,6 K], добавлен 09.03.2009

  • Особенности безмашинного проектирования. Основы проектирования плавильных отделений литейных цехов. Автоматизированные системы проектирования смежных объектов. Методы и алгоритмы выбора и размещения объектов при проектировании; конфигурации соединений.

    курсовая работа [125,4 K], добавлен 20.05.2013

  • Характеристика промышленных роботов для обслуживания металлорежущих станков, их функциональные особенности и назначение, разновидности и отличия. Типовые схемы компоновок РТК механообработки. Состав оборудования и номенклатуры обрабатываемых деталей.

    реферат [1,0 M], добавлен 20.05.2010

  • Автоматизация различных стадий производственного процесса, как необходимое условие для комплексной автоматизации производственного процесса. Автоматическая линия. Создание роботизированных технологических комплексов. Виды вспомогательного оборудования.

    презентация [83,8 K], добавлен 12.03.2015

  • Автоматизация производственных процессов на основе внедрения роботизированных технологических комплексов и гибких модулей. Технологический маршрут обработки детали, элементы режимов резания, нормирование операций, расчет привода крана-штабелера.

    курсовая работа [301,2 K], добавлен 13.11.2009

  • Роботизированный технологический комплекс как автономно действующая автоматическая станочная система. Применение РТК в кузнечно-прессовом производстве, виды роботизированных комплексов, требования к ним. Способы крепления оборудования на фундаменте.

    контрольная работа [1,7 M], добавлен 07.09.2012

  • Классификация моделей по типу отражаемых свойств средств управления. Этапы математического моделирования. Уровни и формы математического описания для системы управления летательного аппарата. Линейная модель многомерных систем в пространстве состояний.

    презентация [600,0 K], добавлен 27.10.2013

  • Структурная схема автоматической системы стабилизации крена. Определение передаточной функции корректирующего звена. Построение переходного процесса скорректированной системы. Анализ причин неисправностей и отказов в системах автоматического управления.

    курсовая работа [1,2 M], добавлен 16.01.2014

  • Обогащение молочных продуктов гидробионтами - организмами, постоянно обитающими в водной среде. Использование в молочной промышленности водорослей, ламинарии, различных органов морских обитателей. Пищевые продукты с полисахаридами морских водорослей.

    статья [11,4 K], добавлен 07.08.2014

  • Функциональная схема системы автоматической стабилизации скорости электродвигателя постоянного тока. Принцип и описание динамического режима работы системы. Функция и объект регулирования. Придаточная функция двигателя и анализ устойчивости системы.

    контрольная работа [254,6 K], добавлен 12.01.2011

  • Обзор специфических особенностей металлургических агрегатов как объектов автоматического управления. Техническая характеристика доменной печи. Разработка математической модели объекта и аппроксимация кривой разгона. Расчет параметров настройки регулятора.

    курсовая работа [989,6 K], добавлен 05.12.2013

  • Общие сведения о топливной системе вертолёта Ми-8Т, ее основные технические данные. Назначение и размещение агрегатов топливной системы. Приборы контроля и арматура управления. Эксплуатация топливной системы. Аварийные случаи отказов топливной системы.

    курсовая работа [5,1 M], добавлен 28.04.2011

  • Моделирование автоматизированной системы регулирования. Методики разработки моделей систем управления и их исследования средствами пакета Simulink. Реализация численного анализа математических моделей объектов управления. Вычислительные эксперименты.

    курсовая работа [1,6 M], добавлен 30.12.2016

  • Автоматическое регулирование загрузкой руды в дробилку (работа в оптимальном режиме загрузки главного привода) за счет управления подачей материала в функции тока двигателя главного привода. Характеристика грохота, питателя как управляемых объектов.

    курсовая работа [2,4 M], добавлен 15.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.