Интенсификация процесса сушки жидкой послеспиртовой барды в аппарате с кипящим слоем инертных тел
Описание подходов для интенсификации процесса сушки жидкой послеспиртовой барды в аппаратах с кипящим слоем инертных тел. Неоднородности, возникающие при исследовании процесса сушки в кипящем слое. Взаимодействие потока сушильного агента и частиц инерта.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 29.06.2017 |
Размер файла | 92,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Интенсификация процесса сушки жидкой послеспиртовой барды в аппарате с кипящим слоем инертных тел
А.Н. Пахомов,
Н.С. Сорокина,
А.В. Баландина
Аннотация
В статье представлено описание возможных подходов для интенсификации процесса сушки жидкой послеспиртовой барды в аппаратах с кипящим слоем инертных тел. Дано описание некоторых неоднородностей, возникающих при исследовании процесса сушки в кипящем слое. Показана возможность интенсификации процесса сушки за счет определенной организации взаимодействия потока сушильного агента и частиц инерта.
Ключевые слова: инерт, барда, сушка, аппарат, форма, кинетика, интенсификация, слой, поток, направление, неоднородность.
Жидкая послеспиртовая барда является продуктом, утилизация которого является законодательно необходимой для любого спиртового предприятия (Федеральный закон от 21 июля 2005 года N 102-ФЗ с дополнением от декабря 2007 г). Как правило, на заводах с производительностью более 3000 дал/сут., реализуется схема утилизации жидкой барды с использованием центрифуг, выпарных установок и сушилок (это т.н. классическая схема известная с 30-х годов 20 века). Сухая барда получается в виде порошка или гранул и должна удовлетворять ГОСТ Р 53098-2008 "Барда кормовая. Технические условия". У классической схемы имеются свои достоинства и недостатки. Основным недостатком является высокое удельное энергопотребление и необходимость частой остановки оборудования на очистку.
Существует практика применения для утилизации жидкой барды различных схем с использованием различных сушилок [1, 8]. Как показывают наши исследования, эффективность применения традиционных распылительных сушилок или сушилок с кипящим слоем инертных тел для утилизации жидкой послеспиртовой барды, ограничивается производительностью завода в 2-3 тыс. дал/сут [2, 6, 8]. В основном это связано с особенностями механизма и кинетики сушки непосредственно жидкой барды, представляющей собой весьма сложную дисперсную систему [3 - 5]. сушка барда послеспиртовый инертный
Для возможности применения на производстве мощностью более 3000 дал/сут только сушилок, для утилизации жидкой послеспиртовой барды, необходим поиск решений, направленный на повышение интенсивности процесса сушки с получением продукта заданного качества. В результате наших исследований основным аппаратом для сушки непосредственно жидкой барды был выбран аппарат с кипящим слоем инертных тел.
На сегодняшний день основными путями повышения интенсивности процесса сушки в кипящем слое инертных тел являются:
- поиск/разработка оригинальных по форме и свойствам инертных тел
- внесение внутрь кипящего слоя определенного механического воздействия (перемешивание, вибрация и т.п.)
- организация определенных траекторий взаимодействия частиц инерта, высушиваемого материала и потока сушильного агента.
Например, на опытном производстве ОАО завод "Пигмент" (г. Тамбов) с целью улучшения отслаивания высушиваемого материала с поверхности инертного носителя внутрь частицы инертного носителя устанавливался термобиметаллический элемент. Наши испытания подобного элемента показали достаточно высокую степень скола высушиаемого продукта с поверхности частицы, однако очевидным недостатком этого способа является его дороговизна и сложность изготовления частиц инерта [1, 7, 8].
Установка внутрь кипящего слоя различного рода перемешивающих устройств [1, 4] интенсифицирует процесс сушки, однако существенно повышает удельное энергопотребление. Также наличие контакта перемешивающих устройств с частицами инерта, ускоряет процесс износа как частиц инерта так и лопаток и валов мешалок.
Наиболее привлекательным путем повышения интенсивности процесса сушки в аппаратах с кипящим слоем инерта является организация определенных траекторий взаимодействия частиц инерта, высушиваемого материала и потока сушильного агента [3, 7, 8].
Исходя из представлений о тепло-массообмене потока сушильного агента и высыхающего на поверхности инертной частицы жидкого дисперсного продукта, можно утверждать, что движение инерта по определенным траекториям с повышенными скоростями будет приводить к локальному увеличению коэффициентов тепломассопереноса [4, 9 - 11]. Поэтому нами, в качестве основной цели исследования ставилась задача выяснения влияния способов организации взаимодействия потока сушильного агента и частиц инерта на механизм и кинетику процесса сушки, с целью возможного повышения интенсивности процесса и как следствие увеличение производительности аппарата. На начальном этапе определялось влияние формы аппарата.
Исходя из литературно-патентного обзора существующих форм аппаратов и их особенностей и предлагая собственные формы, нами в рамках разработки экспериментальной установки для исследования процесса сушки во взвешенном состоянии на инерте были исследованы различные формы корпуса сушилки и соотношения геометрических размеров аппарата.
Цилиндрические колонки изготавливались широкими (H/D <1), высокими (H/D >10) и нормальными (1< H/D <10). Конические колонки имели угол у вершины от 30 до 90о. Цилиндро-сферические колонки изготавливались широкими (H/D <1), высокими (H/D >10) и нормальными (1< H/D <10) с высотой сферической части равной радиусу аппарата. Исходя из проведенных исследований, диаметр колонок варьировался от 80 до 150 мм.
Основной проблемой в нашем исследовании была сложность контроля температуры слоя и сушильного агента в различных точках слоя. В основном это происходило из-за того, что: во-первых, частицы инерта соударяясь со спаем "незащищенной" термопары приводили к его значительной эрозии, во-вторых, учитывая используемый диаметр колонок слоя (от 100 до 250мм), внесение в слой посторонних макроскопических объектов приводило к формированию определенных неоднородностей слоя, что влияло на качественные показатели процесса [9].
Нами наблюдалось формирование значительных неоднородностей слоя в виде каналообразования (при установке "защищенных" термопар в районе газораспределительной решетки) и пузыреобразование в районе установки "защищенных" термопар [2, 8].
Необходимо отметить, что для аппаратов значительного диаметра подобный эффект должен быть незначительным.
Как показали наши исследования, уменьшение неоднородностей слоя и повышение производительности аппарата заданной формы сильно зависит от способа, места и направления подачи сушильного агента (при фиксированной температуре).
Было обнаружено, что максимальная производительность при сушке жидкой барды в аппарате с конической формой сушильной колонки достигается при подаче двух потоков сушильного агента в слой: один под газораспределительную решетку, второй - тангенциально на определенном расстоянии от решетки.
Характер влияния направления потока на средний размер полученных сухих частиц послеспиртовой барды представлен на рис. 1.
Рис. 1. - Влияние направления потоков сушильного агента на средний размер высушиваемых частиц
(1 - весь поток идет под решетку, 2 - поток разделяется на два равных по расходу и направлен навстречу друг другу, 3 - поток разделен на два (30/70 по объемному расходу): под решетку и тангенциально)
Таким образом, поиск определенных схем взаимодействия потоков сушильного агента, частиц инертных тел и высушиваемого материала является весьма перспективным, с точки зрения интенсификации процесса сушки жидкой послеспиртовой барды в аппаратах с кипящим слоем инертных тел.
Литература
1. Гатапова, Н.Ц. Кинетика и моделирование процессов сушки растворителей, покрытий, дисперсий, растворов и волокнистых материалов: единый подход: дис. … д-ра техн. наук: 05.17.08: защищена 10.06.2005 /Гатапова Наталья Цибиковна. Тамбов, 2005. 554 с.
2. Pakhomov A.N. Method of determination of adhesion of the film dries distillery grains on the substrate / R.Y. Banin, E.A. Chernikh, E.Y. Loviagina, N.S. Sorokina // Applied and Fundamental Studies : Proceedings of the 5th International Academic Conference. - St. Louis, USA: Publishing House Science and Innovation Center, 2014. - pp. 71-72.
3. Пахомов, А.Н. Возможности самоорганизации дисперсных систем при сушке на подложке / А.Н. Пахомов, Ю.В. Пахомова, Е.А. Ильин // Вестник Тамбовского государственного технического университета. 2012. Т. 18, №3. - С.633 - 637.
4. Пахомов, А.Н. Возможности повышения энергоэффективности утилизации жидкой послеспиртовой барды/ А.Н. Пахомов, Е.А. Ильин, А.В. Баландина, Л.А. Козлова, Е.А. Хатунцева//Наука в центральной России. 2013. № 5S. С. 14-17.
5. Пахомова, Ю.В. Особенности механизма и кинетики сушки капель дисперсий (на примере сушки послеспиртовой барды) / Ю.В. Пахомова, В.И. Коновалов, А.Н. Пахомов // Вестник Тамбовского государственного технического университета. 2011. Т. 17, № 1. С. 70-82.
6. Пахомова, Ю.В. Оценка качества готового продукта при сушке жидких дисперсных веществ / Ю.В. Пахомова, В.И. Коновалов // Вопросы современной науки и практики. Университет им. В.И. Вернадского. 2011. № 2(33). С. 407-412.
7. Konovalov V.I. Modeling of drying of dispersed systems held on solid supports / V.I. Konovalov, A.N. Pakhomov, N.Z. Gatapova, T. Kudra // Proc. of 4th Minsk International Heat and Mass Transfer Forum (MIF'2000). - Minsk, Belarus: ITMO, 22-26 May, 2000. С. Vol. 9, Pp. 20-29.
8. Пахомова, Ю.В. Кинетика сушки капель жидких дисперсий на диффузионно-непроницаемых подложках: дис. ... канд. техн. наук: 05.17.08: защищена 23.12.2011: утв. 23.12.2012 /Пахомова Юлия Владимировна. - Тамбов, 2011. 283 с.
9. Пахомов А.Н. Типы кинетических кривых, получаемых при сушке капель жидких дисперсных продуктов/А.Н. Пахомов, Ю.В. Пахомова// Химическая технология. 2014, №10. С. 620-623.
10. Савушкин, А.В. Электроаэрозольное увлажнение воздуха. Особенности подбора параметров работы генератора / А.В. Савушкин, П.Л. Лекомцев, Е.В. Дресвянникова, А.М. Ниязов// Инженерный вестник Дона, 2012, № 2. URL:ivdon.ru/magazine/archive/n2y2012/857
11. Богомягких, В.А. К определению условного диаметра реальной частицы дискретного сыпучего тела / В.А. Богомягких, А.Л. Климович, А.С. Ляшенко // Инженерный вестник Дона, 2014, №3. URL: ivdon.ru/ru/magazine/archive/n3y2014/2468
References
1. Gatapova, N.C. Kinetika i modelirovanie processov sushki rastvoritelej, pokrytij, dispersij, rastvorov i voloknistyh materialov: edinyj podhod: dis. … d-ra tehn. nauk: 05.17.08: zashhishhena 10.06.2005 /Gatapova Natal'ja Cibikovna. - Tambov, 2005. 554 p.
2. A.N. Pakhomov, R.Y. Banin, E.A. Chernikh, E.Y. Loviagina, N.S. Sorokina Applied and Fundamental Studies : Proceedings of the 5th International Academic Conference. St. Louis, USA: Publishing House Science and Innovation Center, 2014. pp. 71-72.
3. A.N. Pahomov, Ju.V. Pahomova, E.A. Ilin Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta. 2012. V. 18, №3. pp.633 - 637.
4. A.N. Pahomov, E.A. Ilin, A.V. Balandina, L.A. Kozlova, E.A. Hatunceva Nauka v central'noj Rossii. 2013. - № 5S. pp. 14-17.
5. Ju.V. Pahomova, V.I. Konovalov, A.N. Pahomov Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta. 2011. V. 17, № 1. pp. 70-82.
6. Ju.V. Pahomova, V.I. Konovalov Voprosy sovremennoj nauki i praktiki. Universitet im. V.I. Vernadskogo. 2011. № 2(33). pp. 407-412.
7. V.I. Konovalov, A.N. Pakhomov, N.Z. Gatapova, T. Kudra Proceedings. of 4th Minsk International Heat and Mass Transfer Forum (MIF'2000). Minsk, Belarus: ITMO, 22-26 May, 2000. S. Vol. 9, pp. 20-29.
8. Pahomova, Ju.V. Kinetika sushki kapel' zhidkih dispersij na diffuzionno-nepronicaemyh podlozhkah: dis. ... kand. tehn. nauk: 05.17.08: zashhishhena 23.12.2011 : utv. 23.12.2012 /Pahomova Julija Vladimirovna. - Tambov, 2011. 283 p.
9. A.N. Pahomov, Ju.V. Pahomova Himicheskaja tehnologija. 2014. №10. pp. 620-623.
10. Savushkin A.V., Lekomtsev P.L., Dresvyannikova E.V., Niyazov A.M. Inћenernyj vestnik Dona (Rus), 2012, № 2, URL: ivdon.ru/magazine/archive/n2y2012/857
11. Bogomyagkikh V.A., Klimovich A.L., Lyashenko A.S. Inћenernyj vestnik Dona (Rus), 2014, №3, URL: ivdon.ru/ru/magazine/archive/n3y2014/2468
Размещено на Allbest.ru
...Подобные документы
Сущность процесса сушки. Расчет сушильной установки. Аппаратное обеспечение процесса сушки. Технологические основы регулирования сушилок с кипящим слоем. Определение момента окончания сушки по разности температур. Автоматизация сушильных установок.
дипломная работа [2,7 M], добавлен 25.01.2011Установки для сушки сыпучих материалов. Барабанные сушила, сушила для сушки в пневмопотоке и кипящем слое. Установки для сушки литейных форм, стержней. Действие устройств сушильных установок. Сушила с конвективным режимом работы. Расчет процессов сушки.
курсовая работа [2,9 M], добавлен 29.10.2008Описание сушильной камеры и выбор параметров режима сушки. Расчет продолжительности камерной сушки пиломатериалов. Показатели качества сушки древесины. Определение параметров сушильного агента на входе и выходе из штабеля. Выбор конденсатоотводчика.
курсовая работа [3,9 M], добавлен 08.01.2016Классификация сушилок по способу подвода тепла, уровню давления сушильного агента в рабочем пространстве сушильной камеры, применяемому сушильному агенту. Принцип работы барабанных сушилок. Графоаналитический расчет процесса сушки в теоретической сушилке.
курсовая работа [3,0 M], добавлен 26.05.2015Общая характеристика и принцип действия сушилки Т-4721D, предназначенной для сушки ПВХ. Теплообменные процессы в сушилке. Инженерный анализ технологического процесса как объекта автоматизации. Разработка функциональной схемы автоматизации процесса сушки.
курсовая работа [52,7 K], добавлен 22.11.2011Исследование влияния различных видов сушильных агентов на эффективность сушки формовочных смесей и стержней. Расчет сушильного агрегата в процессе сушки стержня воздухом, проходимым через сушило. Теплотехнические основы сушильного процесса, теплообмен.
курсовая работа [4,5 M], добавлен 04.11.2011Конструкция барабанной сушилки. Выбор режима сушки и варианта сушильного процесса. Технологический расчет оптимальной конструкции барабанной конвективной сушилки для сушки сахарного песка, позволяющей эффективно решать проблему его комплексной переработки
курсовая работа [822,9 K], добавлен 12.05.2011Сущность процесса сушки и описание его технологической схемы. Барабанные атмосферные сушилки, их строение и основной расчёт. Параметры топочных газов, подаваемых в сушилку, автоматическая регулировка влажности. Транспортировка сушильного агента.
курсовая работа [140,6 K], добавлен 24.06.2012Применение аппаратов с кипящим слоем. Материальный, тепловой, гидродинамический, гидравлический и конструктивный расчеты сушилки с псевдоожиженным слоем. Подбор вспомогательного оборудования: калорифера, циклона, вентилятора, питателя, разгрузителя.
курсовая работа [769,9 K], добавлен 07.08.2017Расчет продолжительности сушки пиломатериалов и оборота камеры. Определение параметров агента сушки на входе в штабель. Составление схемы циркуляции агента сушки с выявлением участков сопротивления. Транспортировка сырых пиломатериалов в сушильный цех.
курсовая работа [396,5 K], добавлен 19.10.2012Устройство и принцип действия основного и дополнительного оборудования. Выбор и обоснование режимов сушки и влаготеплообработки. Расчет продолжительности цикла сушки, количества камер. Определение параметров агента сушки, а также расхода теплоты.
курсовая работа [139,6 K], добавлен 23.04.2015Тепловой расчет барабанного сушила, его производительность и расчет начальных параметров. Построение теоретического процесса сушки, тепловой баланс. Расход воздуха и объем отходящих газов, аэродинамический расчет. Материальный баланс процесса сушки.
курсовая работа [664,3 K], добавлен 27.04.2013Общая характеристика сушки как термического процесса удаления из твердых материалов влаги, путем её испарения. Описание конструкции и технический расчет сушильного устройства с выкатной тележкой. Параметры сушильного агента на входе в сушильную камеру.
реферат [106,0 K], добавлен 04.06.2014Устройство и принцип действия сушильной камеры. Выбор режимов сушки и влаготеплообработки. Расчет требуемого количества камер. Определение массы испаряемой влаги, параметров агентов сушки, расходов теплоты на сушку. Разработка технологического процесса.
курсовая работа [1,4 M], добавлен 11.10.2012Выбор способа обработки и описание типа лесосушильной камеры. Режимы и продолжительность сушки. Выбор расчетного материала. Определение параметров агента сушки. Выбор и расчет конденсата отводчиков, калориферов, вытяжных каналов. Контроль качества сушки.
курсовая работа [46,5 K], добавлен 07.06.2010Расчет горения топлива и начальных параметров теплоносителя. Построение теоретического и действительного процессов сушки на I-d диаграмме. Материальный баланс и производительность сушильного барабана для сушки сыпучих материалов топочными газами.
курсовая работа [106,3 K], добавлен 03.04.2015Устройство и принцип действия сушильной камеры ВК-4 и вспомогательного оборудования. Обоснование режимов сушки и влаготеплообработки древесины. Расчёт количества сушильных камер. Определение параметров агента сушки. Организация технологического процесса.
курсовая работа [599,7 K], добавлен 24.08.2012Описание технологии производства пектина. Классификация сушильных установок и способы сушки. Проектирование устройства для сушки и охлаждения сыпучих материалов. Технологическая схема сушки яблочных выжимок. Конструктивный расчет барабанной сушилки.
курсовая работа [2,9 M], добавлен 19.11.2014Выбор барабанной сушилки и сушильного агента. Материальный баланс процесса сушки. Тепловой баланс сушильного барабана. Частота вращения и мощность привода барабана. Аэродинамический расчет, подбор приборов для сжигания топлива и вентиляционных устройств.
курсовая работа [301,6 K], добавлен 12.05.2011Устройство и принцип действия сушильной камеры CM 3000 90. Выбор и обоснование режима сушки и влаготеплообработки древесины. Определение количества сушильных камер и вспомогательного оборудования. Тепловой расчет процесса сушки. План сушильного цеха.
курсовая работа [540,7 K], добавлен 20.05.2014