Основные реакции сталеплавильных процессов
Получение стали. Реакции переноса кислорода из шлака в металл. Основные свойства и значение углерода, его окисление. Основные свойства и значение марганца. Окисление и восстановление марганца, кремния, фосфора. Удаление серы (десулъфурация металла).
Рубрика | Производство и технологии |
Вид | лекция |
Язык | русский |
Дата добавления | 29.07.2017 |
Размер файла | 54,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основные реакции сталеплавильных процессов
Введение
сталь углерод десульфурация
Сталь получают из чугуна и лома в результате окисления и удаления, содержащихся в них примесей (кремния, марганца, фосфора и др.), поэтому особое значение в сталеплавильной практике имеют реакции окисления. Кислород для протекания этих реакций поступает или из атмосферы, или из железной руды, или из других окислителей, или при продувке ванны газообразным кислородом.
При контакте с металлом и шлаком окислительной атмосферы, содержащей кислород в виде О2, СО2 или Н2О, образуются высшие оксиды железа, обогащающие шлак кислородом (например,
СО2+2(FeO)=(Fe2O3)+СО).
Дальнейший процесс переноса кислорода из шлака в металл протекает по реакциям
(Fe2O3)+Fеж=3(FеО), а затем (FeO)[О]+Fеж.
Ниже рассмотрены основные реакции, происходящие при протекании сталеплавильных процессов. При этом для простоты расплавленная сталь будет рассматриваться как однородный раствор тех или иных компонентов в железе независимо от того, какая структура была у металла данного состава в твердом состоянии.
1.Углерод
1.1 Основные свойства и значение углерода
Углерод является важнейшей примесью металла, играющей огромную положительную роль в процессах производства стали улучшая свойства железа. Углерод позволяет получать сталь с широким диапазоном механических свойств. В сталях очень немногих марок специального назначения (электротехнических, коррозионностойких, жаропрочных и т. п.) углерод является нежелательной примесью.
Углерод имеет ограниченную растворимость в жидком железе. При 1600°С [С]мах = 5,75%. Такое содержание может наблюдаться только тогда, когда углерод является единственной примесью железа. Присутствие других примесей изменяет растворимость углерода. Карбидообразующие примеси (Мп, Сr и др.) способствуют повышению [С]мах, а примеси, образующие соединения с жидким железом (Si, Р и др.), уменьшают [С]max, поэтому в чугунах и ферросплавах содержание углерода различно, если даже в процессе их производства происходит насыщение металла углеродом (жидкий металл находится в постоянном контакте с твердым углеродом -- коксом). Так, содержание углерода обычно составляет: в ферромарганце и феррохроме, полученных в указанных выше условиях, >6,5%, в обычном передельном чугуне 4,2--4,5%, в высокофосфористом чугуне ~3,6%, в 10%-ном ферросилиции ~2 %.
Углерод является главным потребителем кислорода, подводимого в ванну для окисления примесей. Например, в конвертерном процессе до 75--80 % и более кислорода расходуется на окисление углерода, поэтому управление процессом окислительного рафинирования во многих случаях сводится главным образом к регулированию реакции окисления углерода.
Перемешивание (кипение) ванны обусловлено выделением газообразных продуктов реакции окисления углерода. При окислении углерода образуются СО и СО2, объем которых в тысячи раз превышает объем металла. Выделение такого количества газа обеспечивает интенсивное перемешивание металла и шлака, облегчает массо- и теплопередачу, создавая условия для ускорения других физико-химических и физических процессов и форсирования плавки в целом. Пузыри СО, проходя через жидкий металл, также способствуют удалению из него газов и неметаллических включений в процессе плавки (особенно в подовых процессах) и во время вакуумирования.
Нагрев ванны теплом, выделяющимся при окислении углерода, имеет важное значение в кислородных процессах. В кислородно-конвертерном процессе тепло реакции окисления углерода составляет 20--25 % от общего теплового баланса плавки и обеспечивает необходимый нагрев металла по ходу процесса при значительных расходах лома в шихту.
Содержание в металле углерода и непрерывное его окисление являются основным фактором, определяющим окисленность ванны -- содержание кислорода в металле и оксидов железа в шлаке. Окисленность ванны влияет на потери железа в шлаке в виде оксидов, а также на поведение других (кроме углерода) примесей, в частности на остаточное содержание их в металле, на угар раскисляющих и легирующих добавок, на содержание неметаллических включений в стали.
1.2 Окисление углерода
Углерод, растворенный в металле окисляется в основном до СО. При очень низких концентрациях углерода кроме реакции [С]+[О]=СО возможна реакция [С]+2[О]=СО2. Скорость реакции обезуглероживания определяется интенсивностью подвода окислителя и условиями образования и выделения продукта реакции -- оксидов углерода. Чтобы пузырек СО мог образоваться в металле, он должен преодолеть давление расположенного над ним столба металла (рмет), шлака (ршл) и атмосферы (ратм), а также силы сцепления жидкости рпов.нат (преодоление сил поверхностного натяжения):
Чем глубже ванна, больше слой шлака и выше давление в агрегате, тем затруднительные условия образования и выделения пузырьков СО. И наоборот, снижение давления (например, при помещении металла в вакуумную камеру) приводит к вскипанию металла.
Углерод, растворенный в металле, может окислять кислород:
а) содержащийся в газовой фазе
;
при протекании этой реакции выделяется значительное количество тепла;
б) содержащийся в окислах железа шлака
;
эта реакция идет с поглощением заметного количества тепла;
в) растворенный в металле
при протекании этой реакции выделяется очень небольшое количество тепла.
Значение ДG с повышением температуры уменьшается, т.е. ее повышение благоприятствует протеканию реакции окисления углерода. Кроме того, образующаяся при окислении углерода газовая фаза (пузырьки СО) перемешивает ванну, выравнивает состав и температуру металла, оказывает большое влияние на процессы удаления газов и неметаллических включений. Эту реакцию называют основной реакцией сталеплавильного производства.
2. Марганец
2.1 Основные свойства и значение марганца
Марганец имеет следующие физико-химические свойства: атомную массу 54,93; плотность 7,42 г/см3; температуру плавления 1244°С; температуру кипения 2150°С; теплоту плавления 14700 Дж/моль.
При 1600 °С рмп = 3,7 кПа, тогда как упругость пара железа при этой температуре составляет всего 20 Па, поэтому в испарениях металла обычно марганец содержится в значительных количествах, хотя его содержание в самом металле во много раз меньше содержания железа. В связи с этим в сталеплавильных процессах приходится учитывать возможность испарения марганца, например, во время выпуска плавки с высоким содержанием марганца, при вакуумировании, особенно при различных способах переплава с использованием вакуума. Металлический марганец очень хрупок, поэтому он в чистом виде имеет ограниченное применение, в основном используется для получения различных сплавов, важнейшим из которых является сталь.
Марганец в жидком железе имеет неограниченную растворимость, и это растворение протекает без теплового эффекта (без химического взаимодействия), так как марганец является ближайшим соседом железа в Периодической системе элементов Д. И. Менделеева.
С примесями металла марганец может образовывать различные химические соединения, наиболее важными из которых являются MnO, MnS и Мn3С. Марганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.
Раскислительная способность марганца относительно невысока, но обычно бывает достаточной для раскисления кипящей стали.
Влияние марганца на свойства стали. Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы. Марганец, имея высокое химическое сродство к сере, легко образует сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вредных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S] ?20-22.
Марганец как легирующий элемент является одним из самых дешевых и наиболее распространенных. Марганец повышает устойчивость аустенита и увеличивает степень его переохлаждения. Благодаря этому марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец повышает прочность стали (пределы прочности и текучести), особенно в области содержаний 0,1--0,5 % С, но несколько снижает пластичность стали (относительное удлинение и ударную вязкость). Марганец повышает износостойкость и упругость стали, широко применяется для легирования конструкционных, пружинно-рессорных, износостойких и других сталей.
Чаще всего применяют стали низко- (0,8--1,8 % Mn) и высоколегированные (10--15% Mn), в которых в качестве легирующих элементов могут быть также хром, никель и др. Марганец в легированных сталях часто является заменителем более дорогого и дефицитного никеля.
В конструкционных сталях марганец может быть единственным легирующим элементом (0,8--1,8%) или в сочетании с другими: в шарикоподшипниковой -- в сочетании с хромом (0,9--1,2% Mn, 1,3--1,6% Сг, 0,95--1,1% С), в рессорно-пружинной -- в сочетании с кремнием (0,6--0,9 % Mn, 1,5--2,0% Si, 0,5--0,6% С). Из высоколегированных наибольшее распространение имеет сталь 110Г13Л (сталь Гатфильда), содержащая 1,0--1,2% С и 12--14% Mn и обладающая высокой износостойкостью благодаря большой вязкости и пластичности при высокой твердости. Она используется для изготовления различных деталей, подвергающихся сильному истиранию: зубьев ковшей экскаваторов и драг, шаров шаровых мельниц и т. д. Сталь Гатфильда плохо поддается обработке давлением и резанием, и изделия из нее в основном получают в литом виде.
Марганец вследствие образования прочных карбидов несколько снижает пластичность стали, особенно при обычной температуре.
Поведение марганца в сталеплавильных ваннах. Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3--0,5 до 1,0--1,5 % и более. В сталеплавильной ванне марганец в основном окисляется до MnО. Одновременно образуется и некоторое количество Mn2Оз, но это практического значения не имеет, поэтому в сталеплавильных процессах достаточно рассмотрение реакции образования MnО.
Окисление марганца в период окислительного рафинирования протекает по реакции [Mn]+(FeO)=(MnО)+[Fe], а в период раскисления -- по реакции [Mn]+[О]=MnО.
Характерно, что при раскислении металла только марганцем, как правило, MnО выделяется в виде сплава MnО -- FeO.
Содержание марганца в металле по ходу плавки изменяется, подчиняясь следующим общим закономерностям.
В периоды плавки, когда реакция окисления марганца не находится в состоянии равновесия, а протекает в сторону образования оксида, содержание марганца в металле только уменьшается, но с разной скоростью в зависимости от конкретных условий -- интенсивности поступления кислорода в ванну, концентрации марганца и других окисляющихся примесей в металле, температуры, содержания оксидов железа в шлаке и т. п. В конкретном процессе (при постоянной скорости поступления кислорода и т. п.), чем больше концентрации марганца и оксидов железа и выше температура, тем больше скорость окисления марганца и наоборот, поэтому обычно продолжительность окисления марганца в начале плавки в незначительной степени зависит от исходной его концентрации в металле.
После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или уменьшения в зависимости от характера изменения внешних условий -- температуры, окисленносги ванны, количества шлака и т. п. Повышение температуры способствует увеличению содержания марганца в металле, так как реакция окисления его экзотермическая, а увеличение количества шлака и повышение окисленности ванны приводят к его снижению, и наоборот.
В конце плавки обычно температура ванны повышается, а количество шлака увеличивается незначительно, поэтому в случаях незначительного изменения содержания FeO в шлаке концентрация марганца в металле в конце плавки повышается. Это наблюдается при содержании углерода в металле 0,2--0,3 % и более. Если содержание углерода в металле очень низкое (не более 0,05--0,07 %), то вследствие резкого повышения содержания FeO в шлаке концентрация марганца в металле снижается, несмотря на дополнительное повышение температуры, неизбежное при выплавке низкоуглеродистон стали. В частном случае, когда к концу плавки происходит снижение содержания марганца в металле в результате повышения FeO в шлаке в той мере, в какой происходит его повышение благодаря возрастанию температуры, в конце плавки концентрация марганца в металле остается на одном уровне.
Уровень концентрации марганца в металле в конце плавки зависит от многих факторов, главными из которых являются содержание марганца в исходной шихте, шлаковый режим плавки и концентрация углерода в металле.
Содержание MnО в шлаке по ходу плавки уменьшается. Высокое содержание MnО в начале плавки объясняется тем, что марганец металла в основном окисляется в этот период. В дальнейшем в результате увеличения количества шлака и восстановления марганца содержание MnО в шлаке уменьшается. Это уменьшение происходит практически до конца плавки, так как и формирование шлака, и повышение температуры ванны не прекращаются до окончания плавки.
Поскольку марганец в готовой стали обычно является полезной примесью, то, если возможно, принимают такой шлаковый режим, который обеспечивает наибольшее сохранение его в металле.
Обеспечение заданного содержания марганца в готовой стали. В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего материала (ферромарганца, силикомарганца, металлического марганца и др ) в конце плавки в ванну или в ковш при выпуске, во время обработки вакуумом и нейтральным газом.
Ферромарганец хорошо растворяется в жидком железе. Кроме того, при растворении ферромарганца происходит незначительное снижение температуры металла. Растворение в жидком металле, имеющем температуру 1600--1620 °С, 1 % твердого холодного ферромарганца может вызвать охлаждение металла примерно на 16--17 °С.
При выплавке углеродистых сталей ферромарганец обычно вводят в ковш, не опасаясь большого охлаждения металла. При введении ферромарганца в ковш уменьшаются потери в результате окисления и испарения. Увеличив дополнительный перегрев металла, можно легировать сталь в ковше ферромарганцем при любом его расходе. Смешение жидкого ферромарганца с жидким железом протекает практически без теплового эффекта. Во избежание значительного охлаждения металла при введении в ковш больших количеств ферромарганца используют предварительный нагрев ферросплава. Например, нагрев ферромарганца до 800--900 °С позволяет вводить его в ковш до 4 % без заметного охлаждения металла. Обеспечение необходимого содержания марганца в готовой стали не всегда может сводиться только к введению в металл того или иного количества ферромарганца с учетом возможного окисления марганца в процессе растворения этого материала. В некоторых случаях необходимо учитывать возможное восстановление марганца в процессе раскисления и легирования. Значительное восстановление марганца возможно при резком снижении (FeO), что бывает при так называемом диффузионном раскислении.
2.2 Окисление и восстановление марганца
Марганец по своим свойствам близок к железу, в железе он растворяется в любых соотношениях. Марганец--элемент, легко окисляющийся, особенно при сравнительно невысокихтемпературах, при этом могут образоваться следующие оксиды: МпО2, Мп2О3, Мп3О, МпО. При высоких температурах устойчивым является оксид МпО. Основная часть находящегося в шихте марганца поступает с чугуном и в стальным ломом.
Марганец, растворенный в металле, окисляется кислородом:
а) содержащимся в газовой фазе
[Мп]+1/2О2газ=(МпО),
;
при протекании этой реакции выделяется много тепла;
б) содержащимся в оксидах железа шлака
[Мп]+(FeO)=(МпО)+Fе,
;
эта реакция также экзотермическая;
в) растворенным в металле
[Мп]+[О]=(МпО),
.
эта реакция также протекает с выделением тепла.
Из приведенных формул видно, что перед вторым (энтропийным) членом уравнения стоит знак "+". Возрастание величины ДG по мере повышения температуры свидетельствует о возможности протекания при высоких температурах обратного процесса -- восстановления марганца, в частности, железом: (МпО)+Fеж=[Мп]+(FeO).
Марганец могут восстановить также углерод, кремний и другие элементы:
(МпО)+[С]=[Мп]+СОгаэ;
2(MnO)+[Si]=2[Mn]+Si02.
Температура, при которой прекратится окисление марганца и начнется его восстановление, зависит от состава металла и шлака.
Активность закиси марганца в кислом шлаке ниже, чем в основном, поэтому при прочих равных условиях в кислом процессе марганец окисляется легче и более полно, а восстанавливается менее полно, чем в основных. На процессы окисления и восстановления марганца большое влияние оказывает также окисленность шлака. Чем выше окисленность шлака, тем полнее окисляется марганец и тем более высокая температура требуется для его восстановления.
3.Кремний
3.1 Основные свойства и значение кремния
Кремний имеет следующие физико-химические свойства: атомную массу 28,06; плотность 2,4 г/см3; температуру плавления 1414°С; температуру кипения 2287°С; теплоту плавления 39,76 кДж/моль. В жидком железе кремний имеет неограниченную растворимость, в твердом -- ограниченную (до 14%). С железом кремний образует несколько соединений -- Fe3Si2, FeSi и FeSi5, но в жидком железе устойчивым является только силицид FeSi (33,3% Si), имеющий температуру плавления 1410°С. Кислородным соединением кремния, устойчивым в сталеплавильных ваннах, является SiO2 (температура плавления 1710°С).
Кремний является одним из наиболее распространенных в природе и занимает второе место после кислорода (в земной коре 26 % Si). Вследствие высокого химического сродства к кислороду и большой доступности кремний при производстве стали прежде всего используется в качестве раскислителя. Кроме того, кремний вводят в металл для его легирования.
Для раскисления кремний вводят в спокойную сталь обычно в количестве 0,15--0,35 %, в полуспокойную сталь -- до 0,10--0,12 %. В кипящей стали кремний является нежелательной примесью, ухудшающей кипение металла в изложнице и строение слитка, поэтому содержание кремния в кипящей стали не должно превышать 0,02--0,03 %.
Кремний как легирующий элемент в сталях содержится в количестве 0,5--0,6 % и более.
Сталь, легированная кремнием, обладает более высокими значениями предела текучести, упругости, ударного сопротивления, небольшим остаточным магнетизмом, хорошей прока-ливаемостью, жароупорностью, способностью в закаленном состоянии сохранять твердость при относительно высоких температурах и другими полезными свойствами. Кремнием легируют стали различного назначения: конструкционные (0,8--1,5% Si), инструментальные (1,2--1,6% Si); пружинно-рессорные (1,3--2,0% Si), жаро- и окалиностойкие (2,0--3,0% Si), динамно-трансформаторные (2,5--4,5 % Si) и др. Обычно сталь легируют кремнием в сочетании с другими примесями, чаще всего в сочетании с хромом и марганцем.
Кремний, содержащийся в металлической шихте, хотя во время плавки окисляется и теряется практически полностью, но на ход процесса, как правило, влияет положительно. Это выражается в улучшении теплового баланса плавки, поскольку среди обычных примесей металлической шихты кремний окисляется с выделением наибольшего количества тепла.
В любых сталеплавильных шлаках кремнезем является одним из важнейших компонентов. Кремнезем, получающийся в результате окисления кремния в ванне, активнее вносимого в готовом виде и ускоряет процесс формирования шлака. Однако кремнезем, образующийся при окислении кремния металла, оказывает разрушающее действие на основную футеровку, особенно в процессах с высоким расходом жидкого чугуна, например в конвертерных. Кроме того, при очень высоком содержании кремния образуется большое количество шлака, которое не всегда является желательным, поэтому обычно устанавливаются пределы содержания кремния в чугуне. Например, для основного мартеновского и кислородно-конвертерного процессов содержание кремния в чугуне желательно иметь в пределах 0,5--0,8%.
Поведение кремния в сталеплавильных ваннах. Кремний является обязательной примесью чугуна и в том или ином количестве содержится в ломе. Обычно содержание кремния в металлической шихте довольно высокое (0,5--1,0%). Кремнезем является сильным кислотным оксидом, поэтому полнота протекания реакции окисления кремния также зависит от типа процесса, точнее, характера шлака, под которым проводится плавка.
В основных процессах кремнезем образует в шлаке прочные соединения: в начале плавки силикаты железа 2FeO*SiO2 и кальция СаО*SiO2, в дальнейшем силикат кальция 2СаО*SiO2. Благодаря этому активность SiO2 в шлаке очень низкая даже при высокой его концентрации и кремний в основных процессах окисляется практически полностью еще в начале плавки, а по ходу плавки в заметных количествах не восстанавливается, независимо от присутствия углерода и других обычных примесей чугуна и изменения температуры ванны. В начале плавки окислению кремния способствуют относительно низкая температура ванны и высокое содержание FeO в шлаке. По ходу плавки температура ванны повышается. Это вызывает смещение реакции влево, в сторону восстановления кремния, так как реакция является экзотермической. Однако с повышением температуры ванны одновременно происходит увеличение основности шлака, что способствует более глубокому обескремниванию металла с образованием наиболее прочного силиката кальция 2СаО*SiO2. В результате действия этих двух противоположных факторов остаточное содержание кремния в металле остается примерно на одном уровне, составляющем обычно 0,01--0,02%.
Это остаточное содержание кремния в металле не влияет ни на ход процесса, ни на качество готовой стали обычных марок, поэтому остаточным содержанием кремния в металле пренебрегают, т. е. считают, что в основных процессах в результате окислительного рафинирования из металла кремний удаляется полностью.
При основных процессах состав шлака регулируется введением того или иного количества флюсов (извести или известняка), поэтому независимо от содержания кремния в исходной шихте получают, по крайней мере к концу плавки, определенное содержание SiO2 в шлаке. Разное содержание кремния в исходной металлической шихте и кремнезема в неметаллической шихте лишь приводит к расходу различного количества флюсов и получению неодинакового количества шлака.
В кислых процессах активность SiO2 в шлаке во много раз выше, чем в основных процессах, поэтому остаточное содержание кремния в металле значительно больше и может достигать 0,4%. В начале плавки вследствие низкой температуры ванны и высокого содержания FeO в шлаке кремний окисляется полнее, остаточное содержание его бывает относительно низким (~0,05%). К концу плавки температура ванны повышается, и это одновременно способствует и снижению содержания оксидов железа в шлаке и повышению концентрации (активности) кремнезема в результате поступления его из футеровки агрегата. Изменение этих параметров плавки оказывает одинаковое действие на реакцию окисления кремния -- смещает ее влево, в сторону восстановления кремния. Наибольшее восстановление кремния возможно тогда, когда шлак насыщен SiO2.
Насыщение шлака кремнеземом приводит к увеличению его вязкости, поэтому шлак систематически разжижают введением различных основных оксидов (железа, марганца, кальция) в виде железной или марганцевой руды, извести. При этом активность SiO2 в шлаке снижается, что приводит к уменьшению остаточного содержания кремния до 0,05--0,15%.
Обеспечение заданного содержания кремния в готовой стали. В основных процессах, имеющих в настоящее время решающее значение в производстве стали, остаточное содержание кремния в металле в конце окислительного рафинирования ничтожно мало (следы), поэтому кремний как полезная примесь в необходимом количестве вводится в металл после окончания окислительного рафинирования. Для этой цели обычно используют различные железокремнистые сплавы, называемые ферросилицием. Иногда кремний входит и в состав комбинированных сплавов, например, с марганцем, хромом, алюминием, кальцием и другими элементами.
Ввиду высокого химического сродства кремния к кислороду при введении ферросилиция или другого сплава, содержащего кремний, в сталеплавильный агрегат при наличии окислительного шлака в нем наблюдается значительный угар кремния. Поэтому целесообразно вводить кремний не в сталеплавильную ванну, а в сталеразливочный ковш во время выпуска плавки.
На практике для раскисления ферросилиций иногда вводят в печь. В некоторых случаях во время раскисления и легирования стали возможно не только окисление, но и восстановление кремния. Это обычно бывает тогда, когда в металл вводят в больших количествах (0,5--1,0%) сильные раскнслители (алюминий, титан и др.), а содержание кремния в металле невысокое. Восстановление кремния из футеровки ковша получает большое развитие при длительном перемешивании металла в ковше во время вакуумирования и продувки нейтральным газом. В связи с этим вакуумирование или обработку нейтральным газом металла с высоким содержанием титана и алюминия нельзя вести в ковше, футерованном шамотом. Ковш должен иметь иную футеровку, например, доломитовую. При длительной обработке металла в условиях глубокого вакуума восстановление кремния из футеровки и шлака возможно и под действием углерода металла, так как при разрежении углерод становится сильным раскислителем. В этом случае также нежелательна шамотная футеровка ковша.
3.2 Окисление и восстановление кремния
Реакции окисления кремния является одной из основных статей приходной части теплового баланса плавки. Кремний растворяется в железе в любых соотношениях. Растворение кремния в железе происходит с выделением тепла:
, .
Основная масса кремния, содежащегося в шихте, поступает в нее с чугуном.
Кремний--элемент легко окисляющийся. Растворенный в металле кремний может окисляться кислородом:
а) содержащимся в газовой фазе
,
;
б) содержащимся в окислах железа шлака
,
;
в) растворенным в металле
,
.
Все эти реакции сопровождаются выделением очень большого количества тепла.
Знак "+" перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаваться благоприятные условия для восстановления кремния. Восстановление его при повышении температуры происходит в кислых процессах, под кислыми шлаками, когда активность SiO2 в шлаке (и в футеровке) высока, а окисленность шлака мала. Повышение окисленности шлака благоприятствует процессам окисления кремния и препятствует его восстановлению.
4.Фосфор
4.1 Окисление и восстановление фосфора
Фосфор растворяется в железе в значительных количествах. При растворении фосфора выделяется некоторое количество тепла:
, .
Фосфор Фосфор не всегда является вредной примесью; например, при производстве стали, обрабатываемой на станках-автоматах, когда требуется получение ломкой стружки ("автоматные" стали), при производстве чугуна для фасонного литья (фосфор повышает жидкотекучестъ) и др. считают вредной примесью в стали.
В основе вредного влияния фосфора лежат два его свойства:
1) значительное расширение двухфазной области между линиями ликвидуса и солидуса, вследствие чего при кристаллизации слитка или отливки возникают сильная первичная ликвация (сегрегация),
2) относительно малая скорость диффузии фосфора в и твердых растворах, в результате чего образовавшаяся неоднородность (сегрегация) плохо ликвидируется методами термообработки (особенно в литой стали, не подвергнутой пластической деформации).
Располагающиеся в межзеренном пространстве хрупкие прослойки, богатые фосфором, снижают пластические свойства металла, особенно при низких температурах.
В шихту сталеплавильных печей фосфор попадает в основном из чугуна (пустая порода железной руды всегда содержит Р2О5, и в процессе доменной плавки фосфор восстанавливается). Некоторое количество фосфора может попасть в шихту из лома, а также из ферросплавов.
Растворенный в металле фосфор может окисляться кислородом:
а) содержащимся в газовой фазе
,
;
б) содержащимся в оксидах железа шлака
,
;
в) растворенным в металле
,
Во всех случаях окисление растворенного в металле фосфора сопровождается выделением тепла. В случае окисления фосфора газообразным кислородом выделяется очень большое количество тепла.
ак "+" перед энтропийными членами в уравнениях свободной энергии свидетельствует о том, что при повышении температуры могут создаться благоприятные условия для восстановления фосфора. Повышение окисленности шлака благоприятствует процессам окисления фосфора и, наоборот, снижение активности окислов железа в шлаке затрудняет протекание этих процессов.
Для удаления фосфор из металла и удержания его в шлаке, необходимо снижать активность Р2О5 в шлаке. Этого достигают при наведении основного шлака с помощью добавок извести (или известняка). Основная составляющая извести - СаО реагирует с Р2О5, образуя прочные соединения типа или
При взаимодействии металла со шлаком, содержащим окислы железа и кальция, протекает реакция
или
При продувке ванны кислородом какая-то часть железа окисляется и образующиеся окислы железа, которые также при наличии основного шлака взаимодействуют с фосфором.
В ряде случаев для ускорения дефосфораиии в металл в струе кислорода вдувают тонкоизмельченную известь или смесь извести и железной руды.
Таким образом при высоких температурах для удаления фосфора из металла необходимо, чтобы шлаки были одновременно и окисленные, и высокоосновные. В кислых процессах при работе под кислыми шлаками удалить фосфор в шлак вообще невозможно (поэтому в кислых процессах шихта должна быть очень чистой). Шлак, содержащий какое-то количество фосфора, близкое к равновесному с металлом, удаляют из агрегата (скачивают), а вместо него с помощью добавок, не содержащих фосфор, "наводят" новый шлак. После такой операции какое-то количество фосфора из металла опять переходит в "новый" шлак, пока не установится состояние, близкое к равновесию. Операцию скачивания шлака и замены его новым шлаком можно проводить несколько раз до тех пор, пока в металле не останется очень мало фосфора.
Таким образом, можно сформулировать основные условия, соблюдение которых позволяет удалять фосфор из металла (проводить дефосфорацию металла).
Эти условия состоят в обеспечении:
1) окислительной среды, высокой активности оксидов железа в шлаке;
2) достаточно высокой основности шлака;
3) наличия шлаков, содержащих мало фосфора, смены (скачивания) шлака;
Если в какой-то момент эти условия не будут соблюдены, может произойти обратное восстановление в металл ранее окислившегося фосфора (рефосфорация).
5.Сера
5.1 Удаление серы (десулъфурация металла)
Сера обладает неограниченной растворимостью в жидком железе и ограниченной в твердом. При кристаллизации стали по границам зерен выделяются застывающие в последнюю очередь сульфиды железа. Железо и сульфид железа образуют низкоплавкую эвтектику (температура плавления 988 °С), которая при наличии кислорода (образование оксисульфидов) плавится при еще более низких температурах. Межзеренные прослойки (выглядят в виде нитей) при нагревании металла перед прокаткой или ковкой размягчаются, и сталь теряет свои свойства - происходит разрушение металла (красноломкость). Красноломкость особенно сильно проявляется в литой стали, так как сульфиды и оксисульфиды в этом случае скапливаются по границам первичных зерен. Повышенное содержание серы приводит часто к появлению так называемых "горячих трещин". Поэтому в большинстве случаев удаление из металла серы - одна из главных задач сталеплавильщика В некоторых случаях не стремятся получать очень низкие концентрации серы (иногда даже вводят некоторое количество серы в металл). Это бывает в случае выплавки «автоматной» стали, когда требуется ее хорошая обрабатываемость (например, при полировке стальных изделий в декоративных целях)..
При растворении серы в железе выделяется тепло, что видно из следующей реакции:
,
Активность серы в жидком железе зависит от состава расплава. Такие примеси, как углерод, кремний, повышают активность серы в жидком расплаве, так как вытесняют ее из "микроячеек" структуры жидкого металла и занимают ее место. Поэтому, например, при прочих равных условиях обессеривать чугун, содержащий много углерода и кремния, легче, чем обычную сталь.
Десульфураторами чугуна являются элементы, имеющие более высокое сродство к сере (большее отрицательное значение ДG реакции образования сульфида), чем железо: Mn, Mg, Na, Ca и др., а также церий (Се) и другие редкоземельные элементы. Все эти элементы используют на практике:
- натрий в виде соды при внедоменной десульфурации чугуна;
- магний - в виде чистого Mg или сплавов (лигатур) с другими металлами;
- кальций - иногда в виде сплавов с другими металлами, а чаще в виде извести (СаО) или известняка (СаСО3);
- марганец - в виде сплавов марганца с железом (ферромарганца), а также в виде марганцевой руды.
Очень большим сродством к сере обладают редкоземельные металлы. Самым дешевым и распространенным из перечисленных материалов является известь.
Основным источником серы в шихте является чугун. Кроме того, определенное количество серы может попасть в металл с ломом (особенно со стружкой, не очищенной от смазочных масел), с добавочными материалами, а также из атмосферы печи, если печь отапливают топливом (мазутом, газом), содержащим серу.
В сталеплавильном агрегате удаление серы из расплавленного металла в шлак происходит в большинстве случаев в результате образования CaS:
Fe+[S]+(СаО)=(CaS)+(FeO),
при этом сера, растворенная в металле, реагирует с СаО в шлаке. Реакция протекает на поверхности раздела фаз, и увеличение этой поверхности (перемешивание металла со шлаком, вдувание в металл СаО в виде порошкообразной извести и другие способы) ускоряет эту реакцию и способствует более глубокой десульфурации.
Если шлак, кроме СаО, содержит много МпО, возможно протекание реакции
Fe+[S]+(МпО)=(MnS)+(FeO).
Образующийся при реакциях десульфурации сульфид кальция CaS и MnS нерастворим в металле.
В результате протекания реакций удаления серы из металла общая концентрация серы в шлаке (S) растет, а концентрация серы в металле [S] уменьшается.
Скачивание шлака и наведение нового (чистого по сере) шлака способствуют переходу новых порций серы из металла в шлак.
Таким образом, удалению серы из металла (десульфурации металла) способствуют:
1) наличие основных шлаков с высокой активностью СаО;
2) низкая окисленность металла, низкая окисленность шлака (минимум FeO);
3) низкая концентраци серы в шлаке (скачивание и наведение нового шлака);
4) перемешивание металла со шлаком и увеличение поверхности контакта;
Размещено на Allbest.ru
...Подобные документы
Углеродистые стали как основная продукция чёрной металлургии, характеристика их состава и компоненты. Влияние концентрации углерода, кремния и марганца, серы и фосфора в сплаве на свойства стали. Роль азота, кислорода и водорода, примесей в сплаве.
контрольная работа [595,8 K], добавлен 17.08.2009Роль марганца в сталеплавильных агрегатах, особенности процессов его окисления и восстановления. Принципы получения заданного содержания марганца в стали. Черная металлургия как ключевой потребитель марганца, использование в промышленности его сплавов.
реферат [24,9 K], добавлен 21.08.2012Чугун - сплав железа с углеродом, дешевый машиностроительный материал. Основные физические и химические свойства серого чугуна. Применение в машиностроении для отливок деталей. Влияние на свойства чугуна примесей: кремния, марганца, серы и фосфора.
реферат [15,5 K], добавлен 07.03.2011Оборудование для термического окисления: модель Дила-Гроува, зависимость толщины окисла от времени окисления, особенности роста тонких и толстых плёнок двуокиси кремния, их свойства и применение в микроэлектронике. Реакторы биполярного окисления.
реферат [106,3 K], добавлен 10.06.2009Окисление этилена с целью производства этиленоксида как одно из крупнотоннажных производств нефтехимической промышленности. Кинетические уравнения процесса окисления этилена. Зависимость основных показателей процесса окисления от времени реакции.
лабораторная работа [442,8 K], добавлен 19.10.2015Конструкционные стали с повышенным содержанием углерода. Качество и работоспособность пружины. Маркировка и основные характеристики пружинных сталей. Основные механические свойства рессорно-пружинной стали после специальной термической обработки.
курсовая работа [25,4 K], добавлен 17.12.2010Физические свойства марганца, его применение в металлургии. Производство порошка марганца с помощью дезинтегратора. Снижение взрывоопасности при производстве порошка. Механические методы получения порошков. Приготовление порошков в шаровой мельнице.
реферат [651,9 K], добавлен 04.11.2013Расчёт технологии выплавки стали ёмкостью 80 тонн, химический состав металла по периодам плавки. Соотношения в составе шихты: лома и чугуна, газообразного кислорода и твердого окислителя, в виде железной руды. Количество и состав шлака, расход извести.
курсовая работа [222,0 K], добавлен 08.06.2016Определение температуры закалки, охлаждающей среды и температуры отпуска деталей машин из стали. Превращения при термической обработке и микроструктура. Состав и группа стали по назначению. Свойства и применение в машиностроении органического стекла.
контрольная работа [1,3 M], добавлен 28.08.2011Экспериментальное изучение реакции азотирования алюминия для получения нитрида алюминия. Свойства, структура и применение нитрида алюминия. Установка для исследования реакции азотирования алюминия. Результаты синтеза и анализ полученных продуктов.
дипломная работа [1,1 M], добавлен 12.02.2015Наиболее значимые для человека свойства металлов. Место металла в культурном развитии человечества. Использование различных свойств металла современным человеком. Значение металлопроката в отраслях промышленности. Круг отрезной для резки металла.
презентация [8,7 M], добавлен 22.01.2014Особенности организации ведения плавки. Контролируемые признаки, методы и средства контроля покрытий. Окисление примесей и шлакообразование. Изменение состава металла и шлака по ходу плавки в кислородном конвертере. Применение неметаллических покрытий.
контрольная работа [61,1 K], добавлен 17.05.2014Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.
контрольная работа [1,1 M], добавлен 25.09.2013Производство глинозема, обогащение полиметаллических руд Майкаинского месторождения. Основные компоненты электролита, их свойства и состав. Основные электродные реакции и поведение примесей при электролизе. Конструкция электролитических ванн.
отчет по практике [229,7 K], добавлен 10.02.2013Механические свойства сталей. Основные механические свойства, определяемые для низкоуглеродистых сталей. Статические и динамические нагрузки. Влияние азота, кислорода и водорода. Легирующие элементы и примеси. Машиностроительные стали и сплавы.
презентация [1,6 M], добавлен 12.09.2015Характеристика современных сталеплавильных технологий с использованием методов внепечной обработки, которые основываются на использовании следующих технологических приемов: обработки металла вакуумом, твердыми и жидкими шлаками; продувки инертными газами.
контрольная работа [1,0 M], добавлен 05.11.2011Роль реакции взаимодействия твердого углерода с кислородсодержащей газовой фазой в металлургических процессах. Восстановление оксидов железа оксидом углерода и водородом. Определение активности компонентов расплава. Раскисление металлических расплавов.
контрольная работа [427,4 K], добавлен 25.09.2013Система легирования свариваемого металла, его состав и класс. Характеристика способа сварки и выбор режимов. Описание металлургических процессов, обеспечивающих получение качественных соединений. Процесс нагрева, плавления и охлаждения основного металла.
курсовая работа [694,2 K], добавлен 01.09.2010Характеристика стали 25ХГСА, расчёт материального баланса. Среднешихтовой состав и период плавления. Расчет периода плавления и окисления. Тепловой баланс. Обоснование выбора трансформатора. Расчёт времени плавки. Коэффициент теплоёмкости шлака.
курсовая работа [46,5 K], добавлен 05.01.2016Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.
контрольная работа [79,3 K], добавлен 12.12.2011