Фибропеногипсобетонные композиты с применением вулканического пепла

Разработка составов гипсоцементопуццоланового композита с применением вулканического пепла. Влияние добавок портландцемента на свойства полуводного гипса. Физико-механические свойства гипсоцементопуццоланового композита, показатели фибрового армирования.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.07.2017
Размер файла 29,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фибропеногипсобетонные композиты с применением вулканического пепла

Т.А. Хежев

Аннотация

Приведены результаты исследований фибропеногипсобетонных композитов с применением вулканического пепла. Разработаны составы гипсоцементопуццоланового композита с применением вулканического пепла, позволяющие существенно сократить расход гипса и улучшить характеристики гипсобетона. Выявлено влияние пенообразователя ПБ-2000 на сроки схватывания гипсового теста. Получены пеногипсобетонные композиты на основе гипсоцементопуццоланового вяжущего и синтетического пенообразователя ПБ-2000. Разработанные составы фибропеногипсобетонных композитов с применением вулканического пепла позволяют сократить расход гипса на 50 % при одновременном улучшении физико-механических свойств исходного пеногипса и снижении себестоимости материала за счет использования местного сырья.

Ключевые слова: гипс, портландцемент, пепел, пенообразователь ПБ-2000, базальтовое волокно, гипсоцементопуццолановый композит, сроки схватывания гипсового теста, пеногипсобетон, фибропеногипсобетонный композит, прочность на изгиб и сжатие, средняя плотность.

Ячеистые бетоны относятся к энергоэффективным и недорогим строительным материалам. Обладая небольшой средней плотностью, ячеистые бетоны отличаются достаточной прочностью и хорошими теплоизоляционными свойствами.

Основным минеральным вяжущим в производстве неавтоклавного ячеистого бетона является портландцемент. Однако производство портландцемента связано с высокими капитальными вложениями, энергозатратами и выделением побочных продуктов в виде газов и пыли в окружающую среду. Исследования и разработки в области гипсовых вяжущих, материалов и изделий [1-4] показывают возможность расширения области их эффективного применения в строительстве.

Изделия из гипса отличаются относительной легкостью, прочностью, огнестойкостью, низкими тепло- и звукопроводностью. Наряду с рядом положительных технических свойств гипсовые вяжущие и изделия имеют следующие недостатки: значительная хрупкость, низкая водостойкость, низкая морозостойкость, высокая ползучесть при увлажнении.

Преодоление многих недостатков гипсовых вяжущих и изделий возможно в результате создания композитов с использованием эффективных наполнителей и заполнителей, а также дисперсного армирования. Для снижения стоимости строительства эффективно применение местного сырья для производства строительных материалов [5-8].

Ячеистые бетоны на гипсовых вяжущих обладают такими недостатками, как хрупкость, низкая водостойкость, что сдерживает их применение. Преодоление этих и других недостатков возможно в результате дисперсного армирования пеногипсобетонов базальтовыми волокнами [9, 10] и использования активных минеральных добавок, в том числе вулканических горных пород.

Целью работы является получение эффективных фибропеногипсобетонных композитов с применением вулканического пепла.

В исследованиях использовались: гипсовое вяжущее Усть-Джегутинского гипсового комбината марки Г-5 БII; портландцемент ПЦ500-ДО производства ЗАО «Белгородский цемент»; вулканический пепел Заюковского месторождения с максимальной крупностью зерен 1,25 мм; базальтовые волокна производства ОАО «Ивотстекло» марки РНБ-9-1200-4с; пенообразователь ПБ-2000 производства ОАО «Ивхимпром».

Исследовалось влияние соотношения компонентов на свойства гипсоцементопцуцолановой матрицы. В лабораторных условиях образцы-балочки размером 40Ч40Ч160 мм изготовлялись по литьевой технологии и сушили в естественных условиях. Перед испытаниями образцы высушивались до постоянной массы при t = 50 0C в сушильном шкафу. Приготовление смеси осуществляли в смесителе принудительного действия, в которой в воду добавляли предварительно перемешанную всухую смесь гипса, портландцемента, пепла, после чего перемешивание всех компонентов продолжали до получения однородной гипсобетонной смеси. Результаты исследований влияния добавок портландцемента на свойства полуводного гипса приведены в табл. 1.

Таблица 1

Влияние добавок портландцемента на свойства полуводного гипса

Расход цемента в % от массы гипса

Вода/вяжущее

Предел прочности при изгибе (МПа), в возрасте

Предел прочности при сжатии (МПа), в возрасте

2 ч

28 сут

2 ч

28 сут

1

2

3

4

5

6

-

0,5

2,6

4,5

5,3

10,5

10

0,52

3,9

5,8

7,8

12,8

20

0,52

4,0

7

8,3

15,7

30

0,53

3,4

6,1

7,8

13,1

Из табл. 1 следует, что существенное увеличение прочности при изгибе и сжатии образцов происходит с добавками портландцемента до 20 % от массы гипса, дальнейшее увеличение добавки цемента приводит к снижению прочности композита.

Результаты исследований композитов с применением гипса, портландцемента и вулканического пепла с максимальной крупностью зерен 1,25 мм приводятся в табл. 2.

Таблица 2

Физико-механические свойства гипсоцементопуццоланового композита

состава

Соотно-шение гипс : пепел по массе

Расход цемен-та в % от массы гипса

Свойства композита

средняя плотность в возрасте 28 сут, кг/м3

предел прочности при изгибе (МПа) в возрасте

предел прочности при сжатии (МПа) в возрасте

2 ч

28 сут

2 ч

28 сут

1

2

3

4

5

6

7

8

1

1:1

-

1090

2,3

4,3

5,4

7,5

2

1:1

10

1086

2,4

3,8

5,4

8,5

3

1:1

20

1120

2,1

3,7

4,8

7,9

4

1:1

30

1150

1,5

3,4

3,3

6,9

5

1:2

-

1130

1,3

2,9

2,5

5,9

6

1:2

10

1180

1,3

2,7

3,0

6,2

7

1:2

20

1140

1,2

2,6

2,9

6,0

8

1:2

30

1160

1,1

2,3

2,1

4,6

Из табл. 2 видно, что добавка портландцемента до 10-20 % оказывает положительное влияние на прочность при сжатии только для состава гипс: пепел с соотношением 1:1. В других составах добавка портландцемента не оказывает заметного влияния на прочностные характеристики композита.

Таким образом, применение вулканического пепла совместно с портландцементом в гипсобетонных композитах позволяет сократить расход гипса до 50 % без существенного снижения прочностных характеристик. При этом разработанные гипсобетонные композиты имеют повышенную водостойкость.

Одной из задач, которую следует решить в производстве пеногипса, является предотвращение схватывания гипсового теста в течении времени, необходимого для вспенивания смеси и ее укладки в формы или опалубку.

Влияние дозировки пенообразователя ПБ-2000 на сроки схватывания гипсового теста приведены в табл. 3.

Таблица 3

Влияние пенообразователя ПБ-2000 на сроки схватывания гипсового теста

№№

состава

Дозировка ПБ-2000, % от массы гипса

Начало схватывания, мин

Конец схватывания, мин

Продолжитель-ность схватывания, мин

1

-

12

17

5

2

0,21

15

18

3

3

0,35

23

34

11

4

0,45

43

63

20

Из приведенных данных можно сделать вывод, что значительный замедляющий эффект на сроки схватывания гипсового теста оказывает синтетический пенообразователь ПБ-2000 (активная основа - вторичный алкилсульфат натрия). ПБ-2000 уже при дозировке 0,35 % отодвигает начало схватывания гипса на 11мин., а конец схватывания - на 17 мин. Увеличение дозировки до 0,45 % усиливает замедляющий эффект до 31 минуты (начало схватывания) и 46 мин. (конец схватывания). При этом период схватывания увеличивается с 5 мин. (для контрольного состава) до 20 мин.

Были проведены эксперименты по получению теплоизоляционно-конструкционных пеногипсобетонов с использованием в качестве заполнителя вулканического пепла с наибольшей крупностью зерен Днаиб = 1,25 мм при водотвердом отношении В/Т=0,47 (табл. 4). Смесь готовилась по классической технологии.

Таблица 4

Физико-механические характеристики пеногипсобетонов с использованием вулканического пепла

№№

сос-тава

Расход компонентов на 1 м3 смеси, кг

Дозировка ПБ-2000, % от массы твердых частиц

Сред-няя плот-ность, кг/м3

Предел проч-ности при изгибе, МПа

Предел проч-ности на сжатие, МПа

гипс

пе-пел

це-мент

во-да

1

456

-

-

214

0,35

560

0,70

1,4

2

205

228

23

214

0,35

530

0,65

1,2

3

182

228

46

214

0,35

540

0,65

1,3

гипсоцементопуццолановый вулканический гипс пепел

Из таблицы следует, что при средней плотности пеногипсобетона 530-550 кг/м3 минимально допустимые прочностные характеристики достигаются при отношении вяжущего к заполнителю, равном единице. При проведении последующих экспериментов это соотношение принималось в качестве базового.

Наряду с достоинствами, ячеистые бетоны на гипсовых вяжущих обладают такими недостатками, как хрупкость, низкая ударостойкость, что сдерживает их применение. Преодоление этих и других недостатков возможно в результате дисперсного армирования пеногипсобетонов дисперсными волокнами.

Соотношение компонентов в смеси и прочностные свойства пеногипсобетонной матрицы для армирования базальтовыми фибрами принят состав №2 табл. 4. Введение базальтовых волокон происходит после получения растворной смеси, затем подается готовая пена и перемешивается. Смеси готовились в высокоскоростных смесителях.

Результаты проведенных экспериментов приведены в табл. 5.

Таблица 5

Прочностные характеристики фибропеногипсобетонного композита в зависимости от параметров фибрового армирования

№№

состава

Отношение длины волокон к их диаметру

Процент армирования по объему

Предел прочности при изгибе, МПа

Предел прочности на сжатие, МПа

1

-

-

0,65

1,30

2

1444

0,3

0,74

1,53

3

1444

0,6

1,12

1,65

4

1444

0,9

1,02

1,53

5

667

0,6

0,79

1,3

6

2221

0,6

0,88

1,35

Результаты исследований показали, что наибольшие значения предела прочности на сжатие и на изгиб фибропеногипсобетонного композита с применением вулканического пепла получены при проценте армирования и . Увеличение процента армирования базальтовыми волокнами композита приводит к уменьшению прочностных характеристик композита, что обусловлено ухудшением их структуры.

Таким образом, разработанные составы фибропеногипсобетонных композитов с применением вулканического пепла позволяют сократить расход гипса на 50 % при одновременном улучшении физико-механических свойств исходного пеногипса.

Литература

1. Гипсовые материалы и изделия (производство и применение): справочник под общ. ред. А.В. Ферронской. М.: АСВ, 2004. 488 с.

2. Knauf A.N., Kronert W., Haubert P. Rasterelektromen-mikroskopie, eine ergazende Methode zur Untersuchung von Gipsen // Zement-Kalk-Gips. Wiesbaden. 1972. № 11. ss. 548-552.

3. Walter E. Unterauchungen zum Asbestaufschluss und die Bedeutung fьr die Praxis // Baustoffindustrie. 1972. №15. s. 40.

4. Schwiete H.E., Knauf A.N. Alte und neue Erkenntnisse in der Herstellung und An-wendung der Gipse. Berlin. 115 s.

5. Овсюков М.Ю., Сухов А.А., Хежев Т.А. Технология фибропенобетонов с применением отходов пиления вулканического туфа // Вестник Дагестанского государственного технического университета. Технические науки. Махачкала. №1 (36). 2015. С. 107-113.

6. Хежев Х.А., Хежев Т.А., Кимов У.З., Думанов К.Х. Огнезащитные и жаростойкие композиты с применением вулканических горных пород // Инженерный вестник Дона, 2011. №4 URL: ivdon.ru /magazine/archive/n4y2011/710.

7. Хежев Т.А., Матаев Т.З., Гедгафов И.А., Дымов Р.Х. Фиброгипсовермикулитобетонные композиты с применением вулканического пепла // Инженерный вестник Дона, 2015. №1 URL: ivdon.ru/ru/magazine/archive/n1p2y2015.

8. Хежев Т.А., Жуков А.З., Хежев Х.А. Огнезащитные и жаростойкие вермикулитобетонные композиты с применением вулканического пепла и пемзы // Инженерный вестник Дона, 2015. №2 URL: ivdon.ru/ru/magazine/archive/n2y2015/2902.

9. Волков И.В. Фибробетон: Состояние и перспективы применения // Промышленное и гражданское строительство. 2002. №9. С. 37.

10. Волков И.В. Проблемы применения фибробетона в отечественном строительстве // Строительные материалы. 2004. №6. С. 12.

Размещено на Allbest.ru

...

Подобные документы

  • Создание композиционного материала (КМ) на основе никеля для повышения жаропрочности существующих никелевых сплавов. Технология изготовления КМ, его характеристика. Компоненты композита, матрица, армирующий элемент. Применение металлических композитов.

    курсовая работа [965,7 K], добавлен 25.10.2012

  • Технологическая характеристика древесно-полимерного композита и исходного сырья - древесной муки. Генеральный план промышленного предприятия. Объемно-планировочное решение производственного здания. Теплотехнический расчет ограждающих конструкций.

    курсовая работа [9,5 M], добавлен 24.04.2015

  • Физико-механические свойства термореактивных пластмасс. Свойства и применение пластмассы с порошковыми и волокнистыми наполнителями, стекловолокнита и асботекстолита. Назначение и химический состав стали 4XB2C, ее механические и технологические свойства.

    контрольная работа [696,9 K], добавлен 05.11.2011

  • Общее представление о композиционных материалах, их характеристика, разновидности и отличительные свойства, области и особенности практического применения. Установление уровня развития техники и анализ применимости прогрессивных решений на сегодня.

    дипломная работа [306,9 K], добавлен 12.03.2011

  • Сырье, технология и способы производства портландцемента: мокрый, сухой и комбинированный. Твердение и свойства портландцемента, его разновидности, состав и технология получения, область применения. Расширяющиеся и безусадочные цементы, процесс активации.

    курсовая работа [935,7 K], добавлен 18.01.2012

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.

    реферат [2,5 M], добавлен 01.12.2008

  • Общие сведения о гипсовом камне: месторождения, запасы и добыча. Требования к строительному гипсу, его свойства, твердение и практическое применение. Обоснование технологической схемы завода по производству гипса с применением гипсоварочного котла.

    курсовая работа [752,2 K], добавлен 27.04.2015

  • Физико-механические свойства каучуков. Классификация резин, маркировка, ее хранение и применение. Ингредиенты, добавляемые при производстве резины и их влияние на свойства резины. Способы переработки, складирование, утилизация и захоронение отходов.

    курсовая работа [54,3 K], добавлен 04.12.2012

  • Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.

    научная работа [134,6 K], добавлен 14.03.2011

  • Исследование химического диспергирования алюминиевого сплава; влияние концентрации щелочи на структуру диспергированных порошков и физико-механические свойства керамических материалов. Разработка технологической схемы спекания; безопасность и экология.

    дипломная работа [2,9 M], добавлен 27.01.2013

  • Механические свойства сталей. Основные механические свойства, определяемые для низкоуглеродистых сталей. Статические и динамические нагрузки. Влияние азота, кислорода и водорода. Легирующие элементы и примеси. Машиностроительные стали и сплавы.

    презентация [1,6 M], добавлен 12.09.2015

  • Назначение и принцип работы подшипников скольжения. Свойства политетрафторэтилена. Технология сборки подшипников скольжения. Определение зависимости предела прочности композита от амплитуды колебаний. Прочностные характеристики от амплитуды колебаний.

    дипломная работа [2,2 M], добавлен 17.05.2015

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.

    контрольная работа [1,1 M], добавлен 25.09.2013

  • Технологическая схема производства портландцемента - гидравлического вяжущего вещества, получаемого путем измельчения клинкера и гипса. Добыча материала и приготовление сырьевой смеси. Обжиг сырья и получение клинкера. Размол, упаковка и отгрузка цемента.

    курсовая работа [759,2 K], добавлен 09.04.2012

  • Процесс тонкого измельчения клинкера и необходимого количества гипса для получения портландцемента. Режим работы предприятия, определение производительности. Расчет основного технического и транспортного оборудования для производства шлакопортландцемента.

    курсовая работа [68,3 K], добавлен 06.02.2011

  • Применение бентонитовых глин при производстве железорудных окатышей, входящие в их состав минералы. Исследование влияния органических добавок на свойства сырых окатышей. Физические и химические характеристики связующих добавок, их реологические свойства.

    реферат [3,2 M], добавлен 03.03.2014

  • Поливинилхлорид (ПВХ) - термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена. Процессы переработки, хранения и эксплуатации полимера. Производство ПВХ в массе, его физико-механические свойства и методы получения.

    курсовая работа [842,0 K], добавлен 20.11.2010

  • Никель и его свойства. Применение дисперсных материалов и ультрадисперсных алмазов. Исследования по получению никелевых покрытий с повышенными механическими свойствами за счет введения в электролит наноуглеродных добавок УДА-ТАН, АСМ и алмазной шихты.

    дипломная работа [1,8 M], добавлен 25.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.