Фибропеногипсобетонные композиты с применением вулканического пепла
Разработка составов гипсоцементопуццоланового композита с применением вулканического пепла. Влияние добавок портландцемента на свойства полуводного гипса. Физико-механические свойства гипсоцементопуццоланового композита, показатели фибрового армирования.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.07.2017 |
Размер файла | 29,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Фибропеногипсобетонные композиты с применением вулканического пепла
Т.А. Хежев
Аннотация
Приведены результаты исследований фибропеногипсобетонных композитов с применением вулканического пепла. Разработаны составы гипсоцементопуццоланового композита с применением вулканического пепла, позволяющие существенно сократить расход гипса и улучшить характеристики гипсобетона. Выявлено влияние пенообразователя ПБ-2000 на сроки схватывания гипсового теста. Получены пеногипсобетонные композиты на основе гипсоцементопуццоланового вяжущего и синтетического пенообразователя ПБ-2000. Разработанные составы фибропеногипсобетонных композитов с применением вулканического пепла позволяют сократить расход гипса на 50 % при одновременном улучшении физико-механических свойств исходного пеногипса и снижении себестоимости материала за счет использования местного сырья.
Ключевые слова: гипс, портландцемент, пепел, пенообразователь ПБ-2000, базальтовое волокно, гипсоцементопуццолановый композит, сроки схватывания гипсового теста, пеногипсобетон, фибропеногипсобетонный композит, прочность на изгиб и сжатие, средняя плотность.
Ячеистые бетоны относятся к энергоэффективным и недорогим строительным материалам. Обладая небольшой средней плотностью, ячеистые бетоны отличаются достаточной прочностью и хорошими теплоизоляционными свойствами.
Основным минеральным вяжущим в производстве неавтоклавного ячеистого бетона является портландцемент. Однако производство портландцемента связано с высокими капитальными вложениями, энергозатратами и выделением побочных продуктов в виде газов и пыли в окружающую среду. Исследования и разработки в области гипсовых вяжущих, материалов и изделий [1-4] показывают возможность расширения области их эффективного применения в строительстве.
Изделия из гипса отличаются относительной легкостью, прочностью, огнестойкостью, низкими тепло- и звукопроводностью. Наряду с рядом положительных технических свойств гипсовые вяжущие и изделия имеют следующие недостатки: значительная хрупкость, низкая водостойкость, низкая морозостойкость, высокая ползучесть при увлажнении.
Преодоление многих недостатков гипсовых вяжущих и изделий возможно в результате создания композитов с использованием эффективных наполнителей и заполнителей, а также дисперсного армирования. Для снижения стоимости строительства эффективно применение местного сырья для производства строительных материалов [5-8].
Ячеистые бетоны на гипсовых вяжущих обладают такими недостатками, как хрупкость, низкая водостойкость, что сдерживает их применение. Преодоление этих и других недостатков возможно в результате дисперсного армирования пеногипсобетонов базальтовыми волокнами [9, 10] и использования активных минеральных добавок, в том числе вулканических горных пород.
Целью работы является получение эффективных фибропеногипсобетонных композитов с применением вулканического пепла.
В исследованиях использовались: гипсовое вяжущее Усть-Джегутинского гипсового комбината марки Г-5 БII; портландцемент ПЦ500-ДО производства ЗАО «Белгородский цемент»; вулканический пепел Заюковского месторождения с максимальной крупностью зерен 1,25 мм; базальтовые волокна производства ОАО «Ивотстекло» марки РНБ-9-1200-4с; пенообразователь ПБ-2000 производства ОАО «Ивхимпром».
Исследовалось влияние соотношения компонентов на свойства гипсоцементопцуцолановой матрицы. В лабораторных условиях образцы-балочки размером 40Ч40Ч160 мм изготовлялись по литьевой технологии и сушили в естественных условиях. Перед испытаниями образцы высушивались до постоянной массы при t = 50 0C в сушильном шкафу. Приготовление смеси осуществляли в смесителе принудительного действия, в которой в воду добавляли предварительно перемешанную всухую смесь гипса, портландцемента, пепла, после чего перемешивание всех компонентов продолжали до получения однородной гипсобетонной смеси. Результаты исследований влияния добавок портландцемента на свойства полуводного гипса приведены в табл. 1.
Таблица 1
Влияние добавок портландцемента на свойства полуводного гипса
Расход цемента в % от массы гипса |
Вода/вяжущее |
Предел прочности при изгибе (МПа), в возрасте |
Предел прочности при сжатии (МПа), в возрасте |
|||
2 ч |
28 сут |
2 ч |
28 сут |
|||
1 |
2 |
3 |
4 |
5 |
6 |
|
- |
0,5 |
2,6 |
4,5 |
5,3 |
10,5 |
|
10 |
0,52 |
3,9 |
5,8 |
7,8 |
12,8 |
|
20 |
0,52 |
4,0 |
7 |
8,3 |
15,7 |
|
30 |
0,53 |
3,4 |
6,1 |
7,8 |
13,1 |
Из табл. 1 следует, что существенное увеличение прочности при изгибе и сжатии образцов происходит с добавками портландцемента до 20 % от массы гипса, дальнейшее увеличение добавки цемента приводит к снижению прочности композита.
Результаты исследований композитов с применением гипса, портландцемента и вулканического пепла с максимальной крупностью зерен 1,25 мм приводятся в табл. 2.
Таблица 2
Физико-механические свойства гипсоцементопуццоланового композита
№ состава |
Соотно-шение гипс : пепел по массе |
Расход цемен-та в % от массы гипса |
Свойства композита |
|||||
средняя плотность в возрасте 28 сут, кг/м3 |
предел прочности при изгибе (МПа) в возрасте |
предел прочности при сжатии (МПа) в возрасте |
||||||
2 ч |
28 сут |
2 ч |
28 сут |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
1 |
1:1 |
- |
1090 |
2,3 |
4,3 |
5,4 |
7,5 |
|
2 |
1:1 |
10 |
1086 |
2,4 |
3,8 |
5,4 |
8,5 |
|
3 |
1:1 |
20 |
1120 |
2,1 |
3,7 |
4,8 |
7,9 |
|
4 |
1:1 |
30 |
1150 |
1,5 |
3,4 |
3,3 |
6,9 |
|
5 |
1:2 |
- |
1130 |
1,3 |
2,9 |
2,5 |
5,9 |
|
6 |
1:2 |
10 |
1180 |
1,3 |
2,7 |
3,0 |
6,2 |
|
7 |
1:2 |
20 |
1140 |
1,2 |
2,6 |
2,9 |
6,0 |
|
8 |
1:2 |
30 |
1160 |
1,1 |
2,3 |
2,1 |
4,6 |
Из табл. 2 видно, что добавка портландцемента до 10-20 % оказывает положительное влияние на прочность при сжатии только для состава гипс: пепел с соотношением 1:1. В других составах добавка портландцемента не оказывает заметного влияния на прочностные характеристики композита.
Таким образом, применение вулканического пепла совместно с портландцементом в гипсобетонных композитах позволяет сократить расход гипса до 50 % без существенного снижения прочностных характеристик. При этом разработанные гипсобетонные композиты имеют повышенную водостойкость.
Одной из задач, которую следует решить в производстве пеногипса, является предотвращение схватывания гипсового теста в течении времени, необходимого для вспенивания смеси и ее укладки в формы или опалубку.
Влияние дозировки пенообразователя ПБ-2000 на сроки схватывания гипсового теста приведены в табл. 3.
Таблица 3
Влияние пенообразователя ПБ-2000 на сроки схватывания гипсового теста
№№ состава |
Дозировка ПБ-2000, % от массы гипса |
Начало схватывания, мин |
Конец схватывания, мин |
Продолжитель-ность схватывания, мин |
|
1 |
- |
12 |
17 |
5 |
|
2 |
0,21 |
15 |
18 |
3 |
|
3 |
0,35 |
23 |
34 |
11 |
|
4 |
0,45 |
43 |
63 |
20 |
Из приведенных данных можно сделать вывод, что значительный замедляющий эффект на сроки схватывания гипсового теста оказывает синтетический пенообразователь ПБ-2000 (активная основа - вторичный алкилсульфат натрия). ПБ-2000 уже при дозировке 0,35 % отодвигает начало схватывания гипса на 11мин., а конец схватывания - на 17 мин. Увеличение дозировки до 0,45 % усиливает замедляющий эффект до 31 минуты (начало схватывания) и 46 мин. (конец схватывания). При этом период схватывания увеличивается с 5 мин. (для контрольного состава) до 20 мин.
Были проведены эксперименты по получению теплоизоляционно-конструкционных пеногипсобетонов с использованием в качестве заполнителя вулканического пепла с наибольшей крупностью зерен Днаиб = 1,25 мм при водотвердом отношении В/Т=0,47 (табл. 4). Смесь готовилась по классической технологии.
Таблица 4
Физико-механические характеристики пеногипсобетонов с использованием вулканического пепла
№№ сос-тава |
Расход компонентов на 1 м3 смеси, кг |
Дозировка ПБ-2000, % от массы твердых частиц |
Сред-няя плот-ность, кг/м3 |
Предел проч-ности при изгибе, МПа |
Предел проч-ности на сжатие, МПа |
||||
гипс |
пе-пел |
це-мент |
во-да |
||||||
1 |
456 |
- |
- |
214 |
0,35 |
560 |
0,70 |
1,4 |
|
2 |
205 |
228 |
23 |
214 |
0,35 |
530 |
0,65 |
1,2 |
|
3 |
182 |
228 |
46 |
214 |
0,35 |
540 |
0,65 |
1,3 |
гипсоцементопуццолановый вулканический гипс пепел
Из таблицы следует, что при средней плотности пеногипсобетона 530-550 кг/м3 минимально допустимые прочностные характеристики достигаются при отношении вяжущего к заполнителю, равном единице. При проведении последующих экспериментов это соотношение принималось в качестве базового.
Наряду с достоинствами, ячеистые бетоны на гипсовых вяжущих обладают такими недостатками, как хрупкость, низкая ударостойкость, что сдерживает их применение. Преодоление этих и других недостатков возможно в результате дисперсного армирования пеногипсобетонов дисперсными волокнами.
Соотношение компонентов в смеси и прочностные свойства пеногипсобетонной матрицы для армирования базальтовыми фибрами принят состав №2 табл. 4. Введение базальтовых волокон происходит после получения растворной смеси, затем подается готовая пена и перемешивается. Смеси готовились в высокоскоростных смесителях.
Результаты проведенных экспериментов приведены в табл. 5.
Таблица 5
Прочностные характеристики фибропеногипсобетонного композита в зависимости от параметров фибрового армирования
№№ состава |
Отношение длины волокон к их диаметру |
Процент армирования по объему |
Предел прочности при изгибе, МПа |
Предел прочности на сжатие, МПа |
|
1 |
- |
- |
0,65 |
1,30 |
|
2 |
1444 |
0,3 |
0,74 |
1,53 |
|
3 |
1444 |
0,6 |
1,12 |
1,65 |
|
4 |
1444 |
0,9 |
1,02 |
1,53 |
|
5 |
667 |
0,6 |
0,79 |
1,3 |
|
6 |
2221 |
0,6 |
0,88 |
1,35 |
Результаты исследований показали, что наибольшие значения предела прочности на сжатие и на изгиб фибропеногипсобетонного композита с применением вулканического пепла получены при проценте армирования и . Увеличение процента армирования базальтовыми волокнами композита приводит к уменьшению прочностных характеристик композита, что обусловлено ухудшением их структуры.
Таким образом, разработанные составы фибропеногипсобетонных композитов с применением вулканического пепла позволяют сократить расход гипса на 50 % при одновременном улучшении физико-механических свойств исходного пеногипса.
Литература
1. Гипсовые материалы и изделия (производство и применение): справочник под общ. ред. А.В. Ферронской. М.: АСВ, 2004. 488 с.
2. Knauf A.N., Kronert W., Haubert P. Rasterelektromen-mikroskopie, eine ergazende Methode zur Untersuchung von Gipsen // Zement-Kalk-Gips. Wiesbaden. 1972. № 11. ss. 548-552.
3. Walter E. Unterauchungen zum Asbestaufschluss und die Bedeutung fьr die Praxis // Baustoffindustrie. 1972. №15. s. 40.
4. Schwiete H.E., Knauf A.N. Alte und neue Erkenntnisse in der Herstellung und An-wendung der Gipse. Berlin. 115 s.
5. Овсюков М.Ю., Сухов А.А., Хежев Т.А. Технология фибропенобетонов с применением отходов пиления вулканического туфа // Вестник Дагестанского государственного технического университета. Технические науки. Махачкала. №1 (36). 2015. С. 107-113.
6. Хежев Х.А., Хежев Т.А., Кимов У.З., Думанов К.Х. Огнезащитные и жаростойкие композиты с применением вулканических горных пород // Инженерный вестник Дона, 2011. №4 URL: ivdon.ru /magazine/archive/n4y2011/710.
7. Хежев Т.А., Матаев Т.З., Гедгафов И.А., Дымов Р.Х. Фиброгипсовермикулитобетонные композиты с применением вулканического пепла // Инженерный вестник Дона, 2015. №1 URL: ivdon.ru/ru/magazine/archive/n1p2y2015.
8. Хежев Т.А., Жуков А.З., Хежев Х.А. Огнезащитные и жаростойкие вермикулитобетонные композиты с применением вулканического пепла и пемзы // Инженерный вестник Дона, 2015. №2 URL: ivdon.ru/ru/magazine/archive/n2y2015/2902.
9. Волков И.В. Фибробетон: Состояние и перспективы применения // Промышленное и гражданское строительство. 2002. №9. С. 37.
10. Волков И.В. Проблемы применения фибробетона в отечественном строительстве // Строительные материалы. 2004. №6. С. 12.
Размещено на Allbest.ru
...Подобные документы
Создание композиционного материала (КМ) на основе никеля для повышения жаропрочности существующих никелевых сплавов. Технология изготовления КМ, его характеристика. Компоненты композита, матрица, армирующий элемент. Применение металлических композитов.
курсовая работа [965,7 K], добавлен 25.10.2012Технологическая характеристика древесно-полимерного композита и исходного сырья - древесной муки. Генеральный план промышленного предприятия. Объемно-планировочное решение производственного здания. Теплотехнический расчет ограждающих конструкций.
курсовая работа [9,5 M], добавлен 24.04.2015Физико-механические свойства термореактивных пластмасс. Свойства и применение пластмассы с порошковыми и волокнистыми наполнителями, стекловолокнита и асботекстолита. Назначение и химический состав стали 4XB2C, ее механические и технологические свойства.
контрольная работа [696,9 K], добавлен 05.11.2011Общее представление о композиционных материалах, их характеристика, разновидности и отличительные свойства, области и особенности практического применения. Установление уровня развития техники и анализ применимости прогрессивных решений на сегодня.
дипломная работа [306,9 K], добавлен 12.03.2011Сырье, технология и способы производства портландцемента: мокрый, сухой и комбинированный. Твердение и свойства портландцемента, его разновидности, состав и технология получения, область применения. Расширяющиеся и безусадочные цементы, процесс активации.
курсовая работа [935,7 K], добавлен 18.01.2012Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.
курсовая работа [2,1 M], добавлен 27.05.2015Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.
реферат [2,5 M], добавлен 01.12.2008Общие сведения о гипсовом камне: месторождения, запасы и добыча. Требования к строительному гипсу, его свойства, твердение и практическое применение. Обоснование технологической схемы завода по производству гипса с применением гипсоварочного котла.
курсовая работа [752,2 K], добавлен 27.04.2015Физико-механические свойства каучуков. Классификация резин, маркировка, ее хранение и применение. Ингредиенты, добавляемые при производстве резины и их влияние на свойства резины. Способы переработки, складирование, утилизация и захоронение отходов.
курсовая работа [54,3 K], добавлен 04.12.2012Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.
научная работа [134,6 K], добавлен 14.03.2011Исследование химического диспергирования алюминиевого сплава; влияние концентрации щелочи на структуру диспергированных порошков и физико-механические свойства керамических материалов. Разработка технологической схемы спекания; безопасность и экология.
дипломная работа [2,9 M], добавлен 27.01.2013Механические свойства сталей. Основные механические свойства, определяемые для низкоуглеродистых сталей. Статические и динамические нагрузки. Влияние азота, кислорода и водорода. Легирующие элементы и примеси. Машиностроительные стали и сплавы.
презентация [1,6 M], добавлен 12.09.2015Назначение и принцип работы подшипников скольжения. Свойства политетрафторэтилена. Технология сборки подшипников скольжения. Определение зависимости предела прочности композита от амплитуды колебаний. Прочностные характеристики от амплитуды колебаний.
дипломная работа [2,2 M], добавлен 17.05.2015Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.
контрольная работа [370,2 K], добавлен 12.06.2012Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.
контрольная работа [1,1 M], добавлен 25.09.2013Технологическая схема производства портландцемента - гидравлического вяжущего вещества, получаемого путем измельчения клинкера и гипса. Добыча материала и приготовление сырьевой смеси. Обжиг сырья и получение клинкера. Размол, упаковка и отгрузка цемента.
курсовая работа [759,2 K], добавлен 09.04.2012Процесс тонкого измельчения клинкера и необходимого количества гипса для получения портландцемента. Режим работы предприятия, определение производительности. Расчет основного технического и транспортного оборудования для производства шлакопортландцемента.
курсовая работа [68,3 K], добавлен 06.02.2011Применение бентонитовых глин при производстве железорудных окатышей, входящие в их состав минералы. Исследование влияния органических добавок на свойства сырых окатышей. Физические и химические характеристики связующих добавок, их реологические свойства.
реферат [3,2 M], добавлен 03.03.2014Поливинилхлорид (ПВХ) - термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена. Процессы переработки, хранения и эксплуатации полимера. Производство ПВХ в массе, его физико-механические свойства и методы получения.
курсовая работа [842,0 K], добавлен 20.11.2010Никель и его свойства. Применение дисперсных материалов и ультрадисперсных алмазов. Исследования по получению никелевых покрытий с повышенными механическими свойствами за счет введения в электролит наноуглеродных добавок УДА-ТАН, АСМ и алмазной шихты.
дипломная работа [1,8 M], добавлен 25.05.2012