Полноцикловой пилотный комплекс переработки природного и попутного нефтяного газов в синтетическую нефть
Разработка полноциклового пилотного комплекса конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша, включающего все основные стадии технологии GTL. Синтез моторных топлив из "модельного" состава газа.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.07.2017 |
Размер файла | 223,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова
Полноцикловой пилотный комплекс переработки природного и попутного нефтяного газов в синтетическую нефть
И.Н. Зубков
Аннотация
газ конверсия нефть углеводород
Разработан полноцикловой пилотный комплекс конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша, включающий все основные стадии технологии GTL. Проведены экспериментальные исследования по синтезу моторных топлив из «модельного» состава газа. Наличие стадии предриформинга обусловлено необходимостью удаления углеводородов С2+, приводящих к дезактивации катализатора конверсии. Показано, что получаемый синтез-газ на стадии конверсии может быть использован в синтезе углеводородов по методу Фишера-Тропша. Разработанный композитный катализатор позволяет осуществить однореакторное получение высококачественных моторных топлив, объединив стадии синтеза углеводородов из СО и Н2, их гидрокрекинга и гидроизомеризации.
Ключевые слова: попутный нефтяной газ, технология GTL, синтез Фишера-Тропша, синтетические жидкие углеводороды.
В настоящее время крайне актуальна проблема рационального использования попутного нефтяного газа (ПНГ), так как его сжигаемые объемы, по разным оценкам международных экспертных агентств, на факельных установках достигают 20-50 млрд. м3/год [1, 2]. В соответствии с постановлением РФ от 8 ноября 2012 г. № 1148 степень переработки ПНГ должна быть не менее 95 %. Основной задачей развития газовой промышленности является создание технологий, обеспечивающих глубокую переработку добываемых газов, позволяющих получать из него продукцию с высокой добавленной стоимостью. Технология GTL (Gas to Liquids - «газ в жидкость») позволяет перерабатывать ПНГ в синтетические жидкие топлива (СЖТ), аналогичные минеральной нефти.
Этот способ переработки ПНГ дает возможность получать широкий набор продуктов: олефины, масла, синтетическое бензиновое и дизельное топливо. Последние могут использоваться непосредственно на месторождении [3, 4].
В основу реализованных технологий получения СЖТ положена трёхстадийная схема: 1 - получение синтез-газа; 2 - синтез длинноцепочечных углеводородов из СО и Н2 по методу Фишера-Тропша; 3 - гидрооблагораживание продуктов. Современные исследования направлены на сокращение технологически стадий, получение продуктов заданного фракционного и группового состава [5]. Это возможно при использовании бифункциональных (композитных, гибридных) каталитических систем, позволяющих объединить стадии синтеза Фишера-Тропша (ФТ) и гидрооблагораживания [6 - 8].
Для отработки технологии однореакторного получения высококачественных моторных топлив на основе бифункционального катализатора в НИИ «Нанотехнологии и новые материалы» ЮРГПУ (НПИ) имени М.И. Платова создан полноцикловой пилотный комплекс (ППК) конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу ФТ (рис. 1).
Комплекс включает все основные стадии технологии GTL: очистку исходного газа от сернистых соединений, предриформинг, основной риформинг, охлаждение и осушку синтез-газа, синтез углеводородов по методу Фишера-Тропша, разделение газообразных, жидких и твёрдых продуктов.
ППК предназначен для проведения длительных испытаний, исследований взаимовлияния основных стадий процесса, отработки технологических режимов, получения исходных данных для проектирования промышленных установок.
Одной из проблем переработки ПНГ в синтез-газ являются углеводороды С2+ в его составе, которые приводят к дезактивации катализатора риформинга [3]. Решение этой проблемы возможно путем предварительного проведения низкотемпературной паровой конверсии углеводородов С2+ при температуре 300-500 °C (стадия предриформинга). Такой вариант переработки ПНГ исключает вероятность зауглероживания катализатора риформинга, а образующийся на стадии предриформинга диоксид углерода является дополнительным окислителем на стадии риформинга.
Рис. 1. - Полноцикловой пилотный комплекс конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша
Синтез ФТ является определяющей частью технологии GTL, позволяющей получать высококачественные моторные топлива. Они обладают высокими экологическими и эксплуатационными свойствами, содержат минимальное количество соединений серы, азота и ароматических углеводородов [9, 10]. Синтез ФТ сильно экзотермический процесс. Для отвода тепла реакции на этой стадии разработан трубчатый реактор, в котором тепло реакции отводится за счет фазового перехода воды в пар в межтрубном пространстве реактора [11, 12]. В ППК применяется однотрубный реактор с длиной каталитической зоны 2000 мм. Для интенсификации теплообмена и увеличения производительности катализатора используется циркуляция газа. Это позволяет вести процесс синтеза ФТ в квазиизотермическом режиме при высоких объемных скоростях газа (до 3000 ч-1). Производительность пилотного комплекса по синтетическим углеводородам - 1,5 л/сутки, максимальное рабочее давление - 6,0 МПа.
В данной работе представлены экспериментальные исследования процесса конверсии «модельного» состава ПНГ в синтетические углеводороды топливных фракций. Для проведения эксперимента использован «модельный» газ следующего состава, % об.: СН4 - 4,4; С2Н6 - 12,2; С3Н8 - 67,2; н-С4Н10 - 13,8; н-С5Н12 - 0,5; СО2 - 1,8; Н2S - 0,1.
Для удаления сернистых соединений из газа использовали цинковый поглотитель марки НИАП-02-02 при объемной скорости газа (ОСГ) 600 ч-1 и температуре 400°С. На стадии предриформинга применяли никелевый катализатор производства ООО «НИАП-Катализатор», а для основного риформинга - катализатор НИАП-03-01Ш.
На стадии предриформинга было исследовано влияние ОСГ на основные показатели процесса при T=500 °С, P=0,1 МПа и соотношении пар/газ=5. Результаты исследований представлены в таблице 1.
Таблица 1
Влияние объёмной скорости газа на состав конвертируемого газа на стадии предриформинга
ОСГ, ч-1 |
Состав газа, % об. |
Конверсия углеводородов С2+, % |
|||||
C2+ |
CH4 |
CO |
H2 |
CO2 |
|||
250 |
0,0 |
31,0 |
2,6 |
45,6 |
20,8 |
100,0 |
|
650 |
0,1 |
29,1 |
2,4 |
46,6 |
21,9 |
99,5 |
|
950 |
0,1 |
28,6 |
2,5 |
49,0 |
19,8 |
99,1 |
Во всем исследованном интервале ОСГ наблюдается высокая степень конверсии гомологов метана, вплоть до полного их превращения в метан при ОСГ 250 ч-1. Большое количество водорода в получаемом газе свидетельствует о протекании конверсии метана при данной температуре.
В дальнейшем состав газа, полученный при ОСГ 950 ч-1 , из реактора предриформинга направлялся на стадию основного риформинга (T=800 °С; ОСГ 1000 ч-1 , P=2,0 МПа). Состав синтез-газа на выходе из реактора риформинга представлен в таблице 2.
Таблица 2
Состав конвертируемого газа, получаемого на стадии риформинга
ОСГ, ч-1 |
Состав газа, % об. |
Степень превращения СН4, % |
||||
CH4 |
CO |
H2 |
CO2 |
|||
1000 |
1,2 |
25,6 |
69,9 |
3,3 |
93,5 |
Полученный синтез-газ состоит на 95,5 % из смеси Н2 и СО (Н2/СО=2,7), что дало возможность использовать его в процессе синтеза ФТ. Использование стадии предриформинга позволило стабилизировать работу катализатора риформинга и конвертировать почти все углеводороды С2+.
Для получения топливных фракций на стадии синтеза углеводородов был выбран композитный катализатор [Co-Al2O3/SiO2]/ZSM-5, методика приготовления которого описана в работе [13].
Синтез ФТ осуществляли при ОСГ 1500 ч-1 , давлении 2,0 МПа и температуре 240 ?С. Результаты исследований представлены в таблице 3.
Таблица 3
Каталитические характеристики композитного катализатора
ХСО, % |
Селективность, % |
GC5+, кг/(м3•ч) |
||||
СН4 |
С2-С4 |
С5+ |
СО2 |
|||
88,1 |
16,2 |
9,2 |
72,7 |
1,9 |
180,0 |
Синтез ФТ проводили в условиях, близких к изотермическим. Для этого использовали циркуляцию газа (кратность циркуляции ? 50), при этом градиент температуры по слою катализатора не превышал 5 °С. Селективность, в отношении углеводородов С5+, составила 72,7 %, а достигнутая производительность - 180кг/(м3•ч).
Состав полученных продуктов и их молекулярно-массовое распределение представлены в таблице 4 и на рис. 2.
Таблица 4
Групповой состав топливных фракций
Углеводороды |
Содержание, % мас. |
|||
С5-С10 |
С11-С18 |
С19+ |
||
н-алканы |
11,3 |
22,5 |
5,5 |
|
изо-алканы |
1,2 |
0,9 |
0,2 |
|
н-алкены |
21,3 |
1,5 |
0,0 |
|
изо-алкены |
34,4 |
1,2 |
0,0 |
|
Сумма |
68,2 |
26,1 |
5,7 |
Рис.2. - Молекулярно-массовое распределение продуктов синтеза ФТ
Полученные СЖТ на 94 % состоят из бензиновой и дизельной фракций, содержание которых составляет 68 и 26 % соответственно. Стоит отметить, что состав углеводородов бензиновой фракции более чем на 50 % из состоит алкенов разветвленного типа, что, по-видимому, обусловлено использованием циркуляции газа. Дизельная фракция включает 85% н-алканов, что обеспечивает высокое цетановое число моторному топливу.
Разработанный полноцикловой комплекс и проведенные на нем испытания конверсии ПНГ модельного состава показали принципиальную возможность применения технологии GTL для его утилизации. Использование отечественных катализаторов на стадии предриформинга, риформинга и синтеза ФТ позволяет осуществить однореакторное получение легкой синтетической нефти и высококачественных моторных топлив на её основе.
Авторы выражают благодарность ООО «НИАП-КАТАЛИЗАТОР» в лице А.В. Дульнева за предоставленные образцы катализаторов предриформинга и риформинга.
Литература
David A. Wood, Chikezie N., Brian F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas // Journal of Natural Gas Science and Engineering. 2012. Vol. 9. pp. 196-208.
Khodakov A., Chu W., Fongarland P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels// Chem. Rev. 2007. Vol.107. pp. 1692-1744.
Яковенко Р.Е., Нарочный Г.Б., Шурыгин Д.Н., Савостьянов А.П. Переработка углей и природных органических веществ в синтетические углеводороды. Часть 4. Утилизация попутного нефтяного газа методом GTL // Известия вузов. Северо-Кавказский регион. 2014. № 5 С. 77-83.
Лапидус А.Л. Газохимия: Учебное пособие / Лапидус А.Л., Голубева И.А., Жагфаров Ф.Г. М.: - ЦентрЛитНефтеГаз, 2008. 450 с.
Хасин А.А. Обзор известных технологий получения синтетических жидких углеводородов по методу Фишера-Тропша // Газохимия. 2008. №2. С.28-36.
Yao M., Yao N., Liu B., LiS., Xu L. Effect of SiO2/Al2O3 ratio on the activities of CoRu/ZSM-5 Fischer-Tropsch synthesis catalysts // Catal. Sci. Technol. 2015. V.5. pp. 2821-2828.
Асалиева Е.Ю., Синева Л.В., Жукова Е.А., Мордкович В.З., Булычев Б.М. Фазовый состав, физико-химические и каталитические свойства кабальт-алюминий-цеолитных систем // Известия Академии наук. Серия химическая. 2015. №10. С. 2371-2376.
Hanaoka T., Miyazawa T., Shimura K., Hirata S. Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts // Chemical Engineering Journal. 2015. V. 263. pp. 178-185.
Елисеев О.Л. Технологии «газ в жидкость» // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 6. С. 53-62.
Кривенцева Е.В., Грязнов К.О., Хатькова Е.Ю., Синева Л.В., Мордкович В.З. Влияние типа цеолита как компонента композитного кобальтового катализатора на состав продуктов синтеза Фишера-Тропша // Вестник МИТХТ. 2016. Т. 8, № 6 С. 9-16.
Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П. Исследование процесса теплопередачи в трубчатом реакторе в условиях интенсивного синтеза углеводородов из СО и Н2 // Инженерный вестник Дона, 2015, №4 URL: ivdon.ru/uploads/article/pdf/IVD_14_Yakovenko.pdf_2983fc7ae6.pdf
Ладоша Е.Н. Имитация рабочего процесса поршневых двигателей на основе моделей химических реакций, турбулентности и теплообмена // Инженерный вестник Дона, 208, №2 URL: ivdon.ru/ru/magazine/archive/n2y2008/78
Савостьянов А.П., Яковенко Р.Е., Нарочный Г.Б., Салиев А.Н., Зубков И.Н., Митченко С.А. Переработка углей и природных органических веществ в синтетические углеводороды. Часть 5. Композитный катализатор для получения моторных топлив из СО и Н2 по методу Фишера-Тропша // Известия вузов. Северо-Кавказский регион. Технические науки. 2016.№ 3.C. 92-99.
Размещено на Allbest.ru
...Подобные документы
Понятие нефтяных попутных газов как смеси углеводородов, которые выделяются вследствие снижения давления при подъеме нефти на поверхность Земли. Состав попутного нефтяного газа, особенности его переработки и применения, основные способы утилизации.
презентация [693,7 K], добавлен 10.11.2015Технология переработки компонентов природного газа и отходящих газов С2-С5 нефтедобычи и нефтепереработки в жидкие углеводороды состава С6-С12. Особенности расчета технологических параметров ректификационной колонны, ее конденсатора и кипятильника.
контрольная работа [531,6 K], добавлен 06.11.2012Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Основные компоненты, химическая переработка и утилизация попутных газов. Выcoкoтеxнoлoгичнoе ocвoение меcтopoждений нефти для ликвидации неблагоприятных последствий и возврата в оборот углеводородного сырья. Применение мембранной углеводородной установки.
презентация [185,5 K], добавлен 18.04.2015Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.
реферат [175,4 K], добавлен 11.02.2014Нефть как природная маслянистая горючая жидкость. Углеводороды как основные компоненты нефти и природного газа. Анализ технологии добычи и переработки нефти. Первичный и вторичный процесс. Термический крекинг, каталитический реформинг, гидроочистка.
презентация [2,5 M], добавлен 29.09.2013Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.
реферат [232,2 K], добавлен 27.11.2009Компрессоры, используемые для транспортировки газов. Предел взрываемости нефтяного газа. Расчет годового экономического эффекта от внедрения блочных компрессорных установок для компрессирования и транспорта нефтяного газа. Удельный вес газа на нагнетании.
курсовая работа [2,7 M], добавлен 28.11.2010Технология переработки природного газа. Реакция паровой конверсии монооксида углерода - следующая стадия в схеме получения водорода после конверсии метана. Состав катализатора низкотемпературной конверсии, обеспечивающий оптимизацию температурного режима.
курсовая работа [704,8 K], добавлен 16.12.2013Использование попутного нефтяного газа (ПНГ) и его влияние на природу и человека. Причины неполного использования ПНГ, его состав. Наложение штрафов за сжигание ПНГ, применение ограничений и повышающих коэффициентов. Альтернативные пути использования ПНГ.
реферат [544,7 K], добавлен 20.03.2011Пути утилизации попутного нефтяного газа. Использование сжигания попутного нефтяного газа для отопительной системы, горячего водоснабжения, вентиляции. Устройство и принцип работы. Расчет материального баланса. Физическое тепло реагентов и продуктов.
реферат [658,7 K], добавлен 10.04.2014Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.
презентация [3,6 M], добавлен 26.06.2014Переработка нефти и её фракций для получения моторных топлив, химического сырья. Общая характеристика процесса крекинга нефти и природного газа: история появления, оборудование. Виды нефтепеработки: каталитический и термический крекинг, катализаторы.
курсовая работа [587,5 K], добавлен 05.01.2014Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.
дипломная работа [628,4 K], добавлен 06.02.2014Общее описание газотурбинной электростанции. Внедрение улучшенной системы регулирования на подогреве попутного нефтяного газа, расчет для этой системы коэффициентов регулирования. Описание физических процессов при подогреве попутного нефтяного газа.
дипломная работа [3,7 M], добавлен 29.04.2015Попутный нефтяной газ как смесь газов и парообразных углеводородистых и не углеводородных компонентов природного происхождения, особенности его использования и утилизации. Сепарация нефти от газа: сущность, обоснование данного процесса. Типы сепараторов.
курсовая работа [778,0 K], добавлен 14.04.2015Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.
контрольная работа [208,4 K], добавлен 11.06.2013Применение газов в технике: в качестве топлива; теплоносителей; рабочего тела для выполнения механической работы; среды для газового разряда. Регенераторы и рекуператоры для нагрева воздуха и газа. Использование тепла дымовых газов в котлах-утилизаторах.
контрольная работа [431,9 K], добавлен 26.03.2015Основы процесса каталитического крекинга. Совершенствование катализаторов процесса каталитического крекинга. Соответствие качества отечественных и зарубежных моторных топлив требованиям европейских стандартов. Автомобильные бензины, дизельные топлива.
курсовая работа [1,6 M], добавлен 11.12.2014Группы лесных товаров как строительных материалов. Сортность лесоматериалов и стойкость пород древесины к поражению и растрескиванию. Виды жидких и газообразных топлив, их характеристика и области применения. Физико-химические свойства природных газов.
контрольная работа [167,8 K], добавлен 17.09.2009