Полноцикловой пилотный комплекс переработки природного и попутного нефтяного газов в синтетическую нефть

Разработка полноциклового пилотного комплекса конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша, включающего все основные стадии технологии GTL. Синтез моторных топлив из "модельного" состава газа.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.07.2017
Размер файла 223,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова

Полноцикловой пилотный комплекс переработки природного и попутного нефтяного газов в синтетическую нефть

И.Н. Зубков

Аннотация

газ конверсия нефть углеводород

Разработан полноцикловой пилотный комплекс конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша, включающий все основные стадии технологии GTL. Проведены экспериментальные исследования по синтезу моторных топлив из «модельного» состава газа. Наличие стадии предриформинга обусловлено необходимостью удаления углеводородов С2+, приводящих к дезактивации катализатора конверсии. Показано, что получаемый синтез-газ на стадии конверсии может быть использован в синтезе углеводородов по методу Фишера-Тропша. Разработанный композитный катализатор позволяет осуществить однореакторное получение высококачественных моторных топлив, объединив стадии синтеза углеводородов из СО и Н2, их гидрокрекинга и гидроизомеризации.

Ключевые слова: попутный нефтяной газ, технология GTL, синтез Фишера-Тропша, синтетические жидкие углеводороды.

В настоящее время крайне актуальна проблема рационального использования попутного нефтяного газа (ПНГ), так как его сжигаемые объемы, по разным оценкам международных экспертных агентств, на факельных установках достигают 20-50 млрд. м3/год [1, 2]. В соответствии с постановлением РФ от 8 ноября 2012 г. № 1148 степень переработки ПНГ должна быть не менее 95 %. Основной задачей развития газовой промышленности является создание технологий, обеспечивающих глубокую переработку добываемых газов, позволяющих получать из него продукцию с высокой добавленной стоимостью. Технология GTL (Gas to Liquids - «газ в жидкость») позволяет перерабатывать ПНГ в синтетические жидкие топлива (СЖТ), аналогичные минеральной нефти.

Этот способ переработки ПНГ дает возможность получать широкий набор продуктов: олефины, масла, синтетическое бензиновое и дизельное топливо. Последние могут использоваться непосредственно на месторождении [3, 4].

В основу реализованных технологий получения СЖТ положена трёхстадийная схема: 1 - получение синтез-газа; 2 - синтез длинноцепочечных углеводородов из СО и Н2 по методу Фишера-Тропша; 3 - гидрооблагораживание продуктов. Современные исследования направлены на сокращение технологически стадий, получение продуктов заданного фракционного и группового состава [5]. Это возможно при использовании бифункциональных (композитных, гибридных) каталитических систем, позволяющих объединить стадии синтеза Фишера-Тропша (ФТ) и гидрооблагораживания [6 - 8].

Для отработки технологии однореакторного получения высококачественных моторных топлив на основе бифункционального катализатора в НИИ «Нанотехнологии и новые материалы» ЮРГПУ (НПИ) имени М.И. Платова создан полноцикловой пилотный комплекс (ППК) конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу ФТ (рис. 1).

Комплекс включает все основные стадии технологии GTL: очистку исходного газа от сернистых соединений, предриформинг, основной риформинг, охлаждение и осушку синтез-газа, синтез углеводородов по методу Фишера-Тропша, разделение газообразных, жидких и твёрдых продуктов.

ППК предназначен для проведения длительных испытаний, исследований взаимовлияния основных стадий процесса, отработки технологических режимов, получения исходных данных для проектирования промышленных установок.

Одной из проблем переработки ПНГ в синтез-газ являются углеводороды С2+ в его составе, которые приводят к дезактивации катализатора риформинга [3]. Решение этой проблемы возможно путем предварительного проведения низкотемпературной паровой конверсии углеводородов С2+ при температуре 300-500 °C (стадия предриформинга). Такой вариант переработки ПНГ исключает вероятность зауглероживания катализатора риформинга, а образующийся на стадии предриформинга диоксид углерода является дополнительным окислителем на стадии риформинга.

Рис. 1. - Полноцикловой пилотный комплекс конверсии природных и попутных нефтяных газов в синтетические углеводороды по методу Фишера-Тропша

Синтез ФТ является определяющей частью технологии GTL, позволяющей получать высококачественные моторные топлива. Они обладают высокими экологическими и эксплуатационными свойствами, содержат минимальное количество соединений серы, азота и ароматических углеводородов [9, 10]. Синтез ФТ сильно экзотермический процесс. Для отвода тепла реакции на этой стадии разработан трубчатый реактор, в котором тепло реакции отводится за счет фазового перехода воды в пар в межтрубном пространстве реактора [11, 12]. В ППК применяется однотрубный реактор с длиной каталитической зоны 2000 мм. Для интенсификации теплообмена и увеличения производительности катализатора используется циркуляция газа. Это позволяет вести процесс синтеза ФТ в квазиизотермическом режиме при высоких объемных скоростях газа (до 3000 ч-1). Производительность пилотного комплекса по синтетическим углеводородам - 1,5 л/сутки, максимальное рабочее давление - 6,0 МПа.

В данной работе представлены экспериментальные исследования процесса конверсии «модельного» состава ПНГ в синтетические углеводороды топливных фракций. Для проведения эксперимента использован «модельный» газ следующего состава, % об.: СН4 - 4,4; С2Н6 - 12,2; С3Н8 - 67,2; н-С4Н10 - 13,8; н-С5Н12 - 0,5; СО2 - 1,8; Н2S - 0,1.

Для удаления сернистых соединений из газа использовали цинковый поглотитель марки НИАП-02-02 при объемной скорости газа (ОСГ) 600 ч-1 и температуре 400°С. На стадии предриформинга применяли никелевый катализатор производства ООО «НИАП-Катализатор», а для основного риформинга - катализатор НИАП-03-01Ш.

На стадии предриформинга было исследовано влияние ОСГ на основные показатели процесса при T=500 °С, P=0,1 МПа и соотношении пар/газ=5. Результаты исследований представлены в таблице 1.

Таблица 1

Влияние объёмной скорости газа на состав конвертируемого газа на стадии предриформинга

ОСГ, ч-1

Состав газа, % об.

Конверсия

углеводородов С2+, %

C2+

CH4

CO

H2

CO2

250

0,0

31,0

2,6

45,6

20,8

100,0

650

0,1

29,1

2,4

46,6

21,9

99,5

950

0,1

28,6

2,5

49,0

19,8

99,1

Во всем исследованном интервале ОСГ наблюдается высокая степень конверсии гомологов метана, вплоть до полного их превращения в метан при ОСГ 250 ч-1. Большое количество водорода в получаемом газе свидетельствует о протекании конверсии метана при данной температуре.

В дальнейшем состав газа, полученный при ОСГ 950 ч-1 , из реактора предриформинга направлялся на стадию основного риформинга (T=800 °С; ОСГ 1000 ч-1 , P=2,0 МПа). Состав синтез-газа на выходе из реактора риформинга представлен в таблице 2.

Таблица 2

Состав конвертируемого газа, получаемого на стадии риформинга

ОСГ, ч-1

Состав газа, % об.

Степень

превращения СН4, %

CH4

CO

H2

CO2

1000

1,2

25,6

69,9

3,3

93,5

Полученный синтез-газ состоит на 95,5 % из смеси Н2 и СО (Н2/СО=2,7), что дало возможность использовать его в процессе синтеза ФТ. Использование стадии предриформинга позволило стабилизировать работу катализатора риформинга и конвертировать почти все углеводороды С2+.

Для получения топливных фракций на стадии синтеза углеводородов был выбран композитный катализатор [Co-Al2O3/SiO2]/ZSM-5, методика приготовления которого описана в работе [13].

Синтез ФТ осуществляли при ОСГ 1500 ч-1 , давлении 2,0 МПа и температуре 240 ?С. Результаты исследований представлены в таблице 3.

Таблица 3

Каталитические характеристики композитного катализатора

ХСО, %

Селективность, %

GC5+, кг/(м3•ч)

СН4

С2-С4

С5+

СО2

88,1

16,2

9,2

72,7

1,9

180,0

Синтез ФТ проводили в условиях, близких к изотермическим. Для этого использовали циркуляцию газа (кратность циркуляции ? 50), при этом градиент температуры по слою катализатора не превышал 5 °С. Селективность, в отношении углеводородов С5+, составила 72,7 %, а достигнутая производительность - 180кг/(м3•ч).

Состав полученных продуктов и их молекулярно-массовое распределение представлены в таблице 4 и на рис. 2.

Таблица 4

Групповой состав топливных фракций

Углеводороды

Содержание, % мас.

С5-С10

С11-С18

С19+

н-алканы

11,3

22,5

5,5

изо-алканы

1,2

0,9

0,2

н-алкены

21,3

1,5

0,0

изо-алкены

34,4

1,2

0,0

Сумма

68,2

26,1

5,7

Рис.2. - Молекулярно-массовое распределение продуктов синтеза ФТ

Полученные СЖТ на 94 % состоят из бензиновой и дизельной фракций, содержание которых составляет 68 и 26 % соответственно. Стоит отметить, что состав углеводородов бензиновой фракции более чем на 50 % из состоит алкенов разветвленного типа, что, по-видимому, обусловлено использованием циркуляции газа. Дизельная фракция включает 85% н-алканов, что обеспечивает высокое цетановое число моторному топливу.

Разработанный полноцикловой комплекс и проведенные на нем испытания конверсии ПНГ модельного состава показали принципиальную возможность применения технологии GTL для его утилизации. Использование отечественных катализаторов на стадии предриформинга, риформинга и синтеза ФТ позволяет осуществить однореакторное получение легкой синтетической нефти и высококачественных моторных топлив на её основе.

Авторы выражают благодарность ООО «НИАП-КАТАЛИЗАТОР» в лице А.В. Дульнева за предоставленные образцы катализаторов предриформинга и риформинга.

Литература

David A. Wood, Chikezie N., Brian F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas // Journal of Natural Gas Science and Engineering. 2012. Vol. 9. pp. 196-208.

Khodakov A., Chu W., Fongarland P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels// Chem. Rev. 2007. Vol.107. pp. 1692-1744.

Яковенко Р.Е., Нарочный Г.Б., Шурыгин Д.Н., Савостьянов А.П. Переработка углей и природных органических веществ в синтетические углеводороды. Часть 4. Утилизация попутного нефтяного газа методом GTL // Известия вузов. Северо-Кавказский регион. 2014. № 5 С. 77-83.

Лапидус А.Л. Газохимия: Учебное пособие / Лапидус А.Л., Голубева И.А., Жагфаров Ф.Г. М.: - ЦентрЛитНефтеГаз, 2008. 450 с.

Хасин А.А. Обзор известных технологий получения синтетических жидких углеводородов по методу Фишера-Тропша // Газохимия. 2008. №2. С.28-36.

Yao M., Yao N., Liu B., LiS., Xu L. Effect of SiO2/Al2O3 ratio on the activities of CoRu/ZSM-5 Fischer-Tropsch synthesis catalysts // Catal. Sci. Technol. 2015. V.5. pp. 2821-2828.

Асалиева Е.Ю., Синева Л.В., Жукова Е.А., Мордкович В.З., Булычев Б.М. Фазовый состав, физико-химические и каталитические свойства кабальт-алюминий-цеолитных систем // Известия Академии наук. Серия химическая. 2015. №10. С. 2371-2376.

Hanaoka T., Miyazawa T., Shimura K., Hirata S. Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts // Chemical Engineering Journal. 2015. V. 263. pp. 178-185.

Елисеев О.Л. Технологии «газ в жидкость» // Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 6. С. 53-62.

Кривенцева Е.В., Грязнов К.О., Хатькова Е.Ю., Синева Л.В., Мордкович В.З. Влияние типа цеолита как компонента композитного кобальтового катализатора на состав продуктов синтеза Фишера-Тропша // Вестник МИТХТ. 2016. Т. 8, № 6 С. 9-16.

Нарочный Г.Б., Яковенко Р.Е., Савостьянов А.П. Исследование процесса теплопередачи в трубчатом реакторе в условиях интенсивного синтеза углеводородов из СО и Н2 // Инженерный вестник Дона, 2015, №4 URL: ivdon.ru/uploads/article/pdf/IVD_14_Yakovenko.pdf_2983fc7ae6.pdf

Ладоша Е.Н. Имитация рабочего процесса поршневых двигателей на основе моделей химических реакций, турбулентности и теплообмена // Инженерный вестник Дона, 208, №2 URL: ivdon.ru/ru/magazine/archive/n2y2008/78

Савостьянов А.П., Яковенко Р.Е., Нарочный Г.Б., Салиев А.Н., Зубков И.Н., Митченко С.А. Переработка углей и природных органических веществ в синтетические углеводороды. Часть 5. Композитный катализатор для получения моторных топлив из СО и Н2 по методу Фишера-Тропша // Известия вузов. Северо-Кавказский регион. Технические науки. 2016.№ 3.C. 92-99.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие нефтяных попутных газов как смеси углеводородов, которые выделяются вследствие снижения давления при подъеме нефти на поверхность Земли. Состав попутного нефтяного газа, особенности его переработки и применения, основные способы утилизации.

    презентация [693,7 K], добавлен 10.11.2015

  • Технология переработки компонентов природного газа и отходящих газов С2-С5 нефтедобычи и нефтепереработки в жидкие углеводороды состава С6-С12. Особенности расчета технологических параметров ректификационной колонны, ее конденсатора и кипятильника.

    контрольная работа [531,6 K], добавлен 06.11.2012

  • Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа [25,1 K], добавлен 02.05.2011

  • Основные компоненты, химическая переработка и утилизация попутных газов. Выcoкoтеxнoлoгичнoе ocвoение меcтopoждений нефти для ликвидации неблагоприятных последствий и возврата в оборот углеводородного сырья. Применение мембранной углеводородной установки.

    презентация [185,5 K], добавлен 18.04.2015

  • Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат [175,4 K], добавлен 11.02.2014

  • Нефть как природная маслянистая горючая жидкость. Углеводороды как основные компоненты нефти и природного газа. Анализ технологии добычи и переработки нефти. Первичный и вторичный процесс. Термический крекинг, каталитический реформинг, гидроочистка.

    презентация [2,5 M], добавлен 29.09.2013

  • Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.

    реферат [232,2 K], добавлен 27.11.2009

  • Компрессоры, используемые для транспортировки газов. Предел взрываемости нефтяного газа. Расчет годового экономического эффекта от внедрения блочных компрессорных установок для компрессирования и транспорта нефтяного газа. Удельный вес газа на нагнетании.

    курсовая работа [2,7 M], добавлен 28.11.2010

  • Технология переработки природного газа. Реакция паровой конверсии монооксида углерода - следующая стадия в схеме получения водорода после конверсии метана. Состав катализатора низкотемпературной конверсии, обеспечивающий оптимизацию температурного режима.

    курсовая работа [704,8 K], добавлен 16.12.2013

  • Использование попутного нефтяного газа (ПНГ) и его влияние на природу и человека. Причины неполного использования ПНГ, его состав. Наложение штрафов за сжигание ПНГ, применение ограничений и повышающих коэффициентов. Альтернативные пути использования ПНГ.

    реферат [544,7 K], добавлен 20.03.2011

  • Пути утилизации попутного нефтяного газа. Использование сжигания попутного нефтяного газа для отопительной системы, горячего водоснабжения, вентиляции. Устройство и принцип работы. Расчет материального баланса. Физическое тепло реагентов и продуктов.

    реферат [658,7 K], добавлен 10.04.2014

  • Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.

    презентация [3,6 M], добавлен 26.06.2014

  • Переработка нефти и её фракций для получения моторных топлив, химического сырья. Общая характеристика процесса крекинга нефти и природного газа: история появления, оборудование. Виды нефтепеработки: каталитический и термический крекинг, катализаторы.

    курсовая работа [587,5 K], добавлен 05.01.2014

  • Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.

    дипломная работа [628,4 K], добавлен 06.02.2014

  • Общее описание газотурбинной электростанции. Внедрение улучшенной системы регулирования на подогреве попутного нефтяного газа, расчет для этой системы коэффициентов регулирования. Описание физических процессов при подогреве попутного нефтяного газа.

    дипломная работа [3,7 M], добавлен 29.04.2015

  • Попутный нефтяной газ как смесь газов и парообразных углеводородистых и не углеводородных компонентов природного происхождения, особенности его использования и утилизации. Сепарация нефти от газа: сущность, обоснование данного процесса. Типы сепараторов.

    курсовая работа [778,0 K], добавлен 14.04.2015

  • Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.

    контрольная работа [208,4 K], добавлен 11.06.2013

  • Применение газов в технике: в качестве топлива; теплоносителей; рабочего тела для выполнения механической работы; среды для газового разряда. Регенераторы и рекуператоры для нагрева воздуха и газа. Использование тепла дымовых газов в котлах-утилизаторах.

    контрольная работа [431,9 K], добавлен 26.03.2015

  • Основы процесса каталитического крекинга. Совершенствование катализаторов процесса каталитического крекинга. Соответствие качества отечественных и зарубежных моторных топлив требованиям европейских стандартов. Автомобильные бензины, дизельные топлива.

    курсовая работа [1,6 M], добавлен 11.12.2014

  • Группы лесных товаров как строительных материалов. Сортность лесоматериалов и стойкость пород древесины к поражению и растрескиванию. Виды жидких и газообразных топлив, их характеристика и области применения. Физико-химические свойства природных газов.

    контрольная работа [167,8 K], добавлен 17.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.