Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых
Добыча полезных ископаемых методом подземного выщелачивания. Изучение классификации геотехнологических скважин. Факторы, определяющие выбор буровых агрегатов. Технология бурения геотехнологических скважин. Технология вскрытия продуктивных горизонтов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 01.08.2017 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6.3 Технические средства для цементирования скважин
Для приготовления тампонажных растворов и паст для гидроизоляции применяются цементно-смесительные машины и агрегаты. В качестве монтажной и транспортной базы цементно-смесительных машин и агрегатов используются платформы автомобилей типа КрАЗ, ЗИЛ-131, полуприцепы, металлические передвижные основания. Используются механические, гидравлические и пневматические способы приготовления растворов, а также комбинации этих способов.
Для закачки и продавки тампонажных растворов и паст применяются специальные цементировочные агрегаты. В качестве монтажных и транспортных баз цементировочных агрегатов используются платформы автомобилей и передвижные металлические сани.
На платформе монтируются буровые насосы с приводом, водоподающие насосы для подачи воды в смесительные машины, не имеюшие водоподающих блоков, а также мерники и система обвязки.
6.4 Технические средства и технология гидроизоляции зон движения рабочих и продуктивных растворов
К оборудованию технологических скважин ПВ предъявляются специфические требования, связанные с необходимостью гидроизоляции зон движения рабочих и продуктивных растворов. Надежная изоляция зон движения растворов повышает технико-экономические показатели добычи и является важным мероприятием охраны природы и в частности подземных вод.
Осуществляется гидроизоляция по самым разнообразным схемам с применением различных материалов. Одним из самых распространенных способов гидроизоляции рабочих и продуктивных растворов является способ с использованием кислотостойких резиновых манжет с впаянным в основание металлическим кольцом, которое обеспечивает необходимую прочность и жесткость. С помощью специальных кислотостойких штифтов манжета присоединяется к телу трубы, изготовленной обычно из полиэтилена или другого кислотостойкого материала. Место установки манжеты соответствует переходу ствола скважины на уменьшенный диаметр бурения. Схема гидроизоляции показана на рис. 6, а.
Гидроизоляционный материал заливается в этом случае обычно поверх манжеты через заливочные трубки, которые опускаются в затрубное пространство или внутрь эксплуатационной (обсадной) колонны.
В последнее время технологические скважины ПВ оборудуются фильтрами с гравийной обсыпкой, очень часто с предварительным расширением призабойной зоны. Применение гравийных фильтров способствует повышению производительности технологических скважин и увеличению срока службы. Гидроизоляционный материал при сооружении таких скважин заливается поверх слоя гравия (рис.5,б).
Интервал гидроизоляции обычно равен высоте от манжеты или верхнего уровня гравийного слоя до, статического (откачных скважин) или динамического (для нагнетательных скважин) уровня подземных вод. Остальная часть скважины обычно заполняется инертным (очень часто песчаным) материалом, а устье скважин на глубину 2 - 3 м цементируется, что предотвращает попадание растворов с поверхности в затрубное пространство.
Гидроизоляция с помощью манжет выполняется с небольшими затратами средств и обеспечивает при качественной посадке манжеты достаточно высокую надежность перекрытия зон движения растворов.
Однако следует отметить и значительные недостатки гидроизоляции с использованием манжет, главным из которых является проникновение цементных растворов или других гидроизоляционных материалов под манжету, что приводит иногда к цементированию фильтров. В большинстве случаев это обусловливается отсутствием достаточного уступа при переходе на меньший диаметр скважины и его размывом при промывке скважин через фильтр.
При заливе гидроизоляционного материала поверх гравийного слоя также не всегда обеспечивается надежная изоляция, так как возможны перетоки растворов вверх по стволу скважины и проникновение материала гидроизоляции в слой гравия. Перетоки растворов по стволу скважины могут быть обусловлены двумя обстоятельствами:
а) недостаточным сцеплением цементных и других растворов, используемых в качестве гидроизоляционного материала с поверхностью полиэтиленовых труб и стенками скважины;
б) разрушением материала гидроизоляции в результате длительного воздействия агрессивных выщелачивающих растворов и образованием в гидроизоляционном материале каналов, пор, по которым
могут циркулировать выщелачивающие растворы.
Важным недостатком существующих способов сооружения технологических скважин с гравийными фильтрами, формируемыми на забое, является невозможность осуществления гравийной обсыпки фильтров при наличии пакерных гидроизоляционных устройств.
При применении одноколонных конструкций скважин, в том числе и с гравийной обсыпкой, гидроизоляцию затрубного пространства можно производить с помощью гидравлических пакеров, которые позволяют разобщить зону продуктивного пласта от вышележащих пород (рис.15). Привод пакера в рабочее состояние производится путем закачки воды в его полость через обратный клапан по бурильным трубам, опускаемым в эксплуатационную колонну.
После разобщения зафильтрового пространства затрубное пространство поверх пакера заполняют гидроизоляционным материалом. Такая схема гидроизоляции позволяет применять одноколонные конструкции скважин и оборудовать их фильтрами с гравийной обсыпкой, что позволяет повысить производительность и срок службы технологических скважин. Материал гидроизоляции в этом случае заливают в зону выше пакера после засыпки гравия в прифильтровую зону скважины.
Рис. 15 Гидроизоляция растворов с помощью гидравлических пакеров: 1 - цементное кольцо; 2 - тампонажный слой глины; 3 - глиноизвестковый раствор; 4 - полиэтиленовая колонна; 5 - гидравлический пакер; 6 - клапан; 7 - фильтр; 8 - отстойник; 9 - направляющий фонарь
Можно выделить некоторые особенности сооружения таких скважин. Бурение их обычно осуществляется долотами уменьшенных диаметров - 151 - 243 мм. При применении фильтров с гравийной обсыпкой производится при необходимости расширение призабойной зоны скважин с целью получения уширенного контура гравийной обсыпки.
Данный способ оборудования технологических скважин и создание гидроизоляции имеет следующие преимущества: 1) уменьшается диаметр скважин; 2) сокращается время на их сооружение; 3) не требуется производить дорогостоящие и трудоемкие работы по цементированию скважин; 4) уменьшается стоимость оборудования скважин.
В качестве гидроизоляционного материала при сооружении технологических скважин ПВ применяются растворы сульфастойких и кислостойких цементов, а также различные пасты и специальные растворы.
При создании гидроизоляционных оболочек важным условием является также доставка гидроизоляционных материалов в зону скважины. Доставка этих материалов в скважину, оборудованную неметаллическими колоннами, осуществляется заливкой материала по трубам или шлангам, опущенным в зазор между стенками скважины и эксплуатационной (обсадной) колонной или опущенными внутрь колонны, по аналогии с технологией цементирования скважин. В последнем случае потребуется применение специальных цементировочных устройств.
7. Технология вскрытия продуктивных горизонтов
Вскрытие продуктивных горизонтов при сооружении технологических скважин ПВ металлов является одним из мероприятий повышения производительности и срока службы скважин, снижения эксплуатационных затрат. При вскрытии продуктивных пластов, сложенных мелкозернистыми песками, практически всегда происходит нарушение их естественных фильтрационных свойств, что выражается прежде всего в уменьшении проницаемости пород приствольной зоны в результате образования зоны кольматации - участка скважины, в поры которого проникли частицы дисперсной фазы промывочной жидкости. Выделяют две зоны кольматации: зону, примыкающую к приствольной части скважины, обусловленную проникновением частиц бурового шлама и ПЖ, а также зону фильтрата ПЖ, чаще всего глинистого раствора, в породы продуктивного горизонта.
Возникновение зоны кольматации является неизбежным, если в ПЖ присутствуют твердые частицы и бурение осуществляется с депрессией на пласт.
Величина зоны кольматации зависит от перепада давления в процессе бурения, продолжительности бурения и от соотношения размеров твердой фазы ПЖ и размеров пор и трещин. При попадании твердых частиц в поры и трещины продуктивного пласта площадь сечения их уменьшается, что приводит к резкому снижению проницаемости.
Глубина проникновения глинистого раствора в поры продуктивного горизонта зависит от свойств пород и глинистого раствора.
При увеличении зоны интенсивной кольматации возрастает и сложность ее разрушения. Снятие корки со стенок скважины с помощью механических расширителей и гидроразмыва большой сложности не представляет, но удаление глинистых частиц полностью из пласта представляет собой значительные трудности.
Воздействие фильтрата ПЖ на пласт вызывает следующие изменения в породах продуктивных горизонтов:
· наличие химических веществ, содержащихся в фильтрате жидкости, приводит к уменьшению эффективных сечений пор и каналов продуктивных пластов, а также их проницаемости за счет увеличения гидрофильности пород и толщины гидратных оболочек;
· глинистые минералы, содержащиеся в продуктивных пластах, гидратируют под влиянием водного фильтрата и увеличиваются в объеме, что также способствует снижению проницаемости;
· наличие в фильтрате ПЖ растворенных химических элементов способствует при взаимодействии с веществами продуктивного пласта образованию нерастворимых осадков.
Таким образом, при воздействии фильтрата проницаемость пласта также снижается.
Но это снижение обычно меньше, чем при кольматации, воздействие фильтрата на пласт следует уменьшать, так как глубина проникновения фильтра в пласт во много раз больше толщины зоны кольматации.
Вращательное бурение с прямой промывкой является наиболее распространенным способом при вскрытии продуктивных горизонтов.
В качестве очистных агентов для вскрытия продуктивных горизонтов при вращательном бурении могут применяться:
Техническая вода. Является самым дешевым очистным агентом, ее применение предотвращает загрязнение пород продуктивных горизонтов, способствует резкому уменьшению их кольматации.
Применение воды способствует также повышению скоростей бурения и снижению стоимости сооружения скважин. Однако вода является по отношению к породам приствольной зоны скважин самой агрессивной промывочной жидкостью и приводит к размыву песчано-глинистых пород, набуханию и обвалам скважин. Применение воды для вскрытия продуктивных горизонтов возможно только в том случае, когда обеспечивается устойчивость разбуриваемых пород, их высокая сопротивляемость размывающему действию потока промывочной жидкости.
Высокие технико-экономические показатели вскрытия продуктивных горизонтов, сложенных песками различной зернистости, могут быть получены при вращательном бурении с прямой промывкой скважин технической водой путем поддержания на пласт постоянного противодавления. Этот метод вскрытия водоносных пластов требует постоянного подлива воды в скважину и поддержания уровня жидкости на устье скважины [7].
Из недостатков этого способа вскрытия следует также отметить большой расход воды.
Глинистые растворы обеспечивают высокую устойчивость стенок скважин, сложенных неустойчивыми породами. Однако содержащиеся в глинистом растворе твердые частицы, а зачастую и химические реагенты способствуют кольматации пород продуктивных горизонтов и резкому снижению их проницаемости. Глинистые растворы целесообразно применять для вскрытия напорных водоносных пластов.
Глинистые растворы, применяемые для вскрытия продуктивных пластов при ПВ, должны удовлетворять следующим основным требованиям:
1) обеспечивать минимальное проникновение раствора в породы продуктивного пласта;
2) предотвращать образование осадков (механических, химических), закупоривающих поры пласта и отверстия в рабочей части фильтра;
3) способствовать быстрому удалению продуктов кольматации в зоне пласта;
4) обеспечивать необходимую стабильность при изменении температуры и давления.
Меловые растворы. Применение меловых растворов для вскрытия продуктивных пластов приводит к образованию корки толщиной 3 - 5 мм, которая легко удаляется при воздействии растворами серной или соляной кислот. Содержащиеся в кольматирующем слое глинистые частицы дезинтегрируют и легко удаляются при откачках.
Основной недостаток меловых растворов - трудоемкость приготовления и низкая технологичность в процессе их использования. Поэтому меловые растворы в качестве ПЖ находят ограниченное применение.
Ингибированные растворы. Для вскрытия продуктивных горизонтов при сооружении скважин ПВ могут найти применение известковые, кальциевые и гипсовые растворы. Получают ингибированные растворы путем добавления к малоглинистым растворам соответствующих ингибирующих компонентов: СаС12, КС1 и др. Зона кольматации продуктивных пластов при применении ингибированных растворов легко разрушается под действием кислоты в процессе освоения скважин и подготовки их к эксплуатации.
Однако образование труднорастворимых осадков при обработке продуктивных пластов кислотными растворами может привести к закупориванию пор и трещин и снижению проницаемости пластов. Поэтому для определения эффективности применения ингибированных растворов для вскрытия продуктивных горизонтов потребуется проведение исследований.
Буровые растворы с низким содержанием твердой фазы. К числу таких растворов можно отнести растворы с добавками гидролизованных продуктов акрилатного типа К-4, К-6, К-9, а также гипан.
Их применение способствует резкому уменьшению поглощения ПЖ и повышению устойчивости прифильтровой зоны скважин. Зона кольматации в виде корки толщиной 5 - 7 мм легко разрушается в процессе освоения скважин. При этом время освоения скважин сокращается.
Основным недостатком реагентов К-4, К-9, К-6 является их плохое растворение в воде в холодное время года. Кроме того, все они имеют высокую стоимость.
Приготовление растворов с реагентами в виде гидролизованного полиакриламида К-4, К-9, К-6 осуществляется в зумпфе путем тщательного перемешивания определенного количества воды и реагента с помощью гидросмесителя или бурового насоса.
Водогипановые растворы обладают повышенной вязкостью, что способствует улучшению условий выноса шлама при бурении скважин большого диметра с использованием буровых насосов с небольшой подачей, т.е. при малых скоростях восходящего потока ПЖ.
Кроме того, их применение позволяет предотвратить аварии и осложнения при бурении в поглощающих и неустойчивых, склонных к обрушениям пластах.
Водогипановые растворы обладают кольматирующими свойствами, что объясняется их способностью коагулировать при контакте с электролитами, содержащими ионы железа, кальция и магния и с выделением нерастворимого осадка.
Наличие слоя кольматации в виде корки небольшой толщины способствует при сооружении технологических скважин ПВ повышению устойчивости пород продуктивных пластов, обычно сложенных мелкозернистыми песками, что является положительным фактором. В процессе освоения скважин слой кольматации легко разрушается, а проницаемость продуктивных пластов и приемистость нагнетательных скважин восстанавливаются.
Водогипановые растворы приготовляются перемешиванием с помощью гидросмесителя или непрерывным подливанием тонкой струйкой на храпок всасывающего шланга.
Аэрированные растворы. К ним относятся все типы глинистых, безглинистых и других буровых растворов, аэрированных воздухом или другим газообразным агентом. Аэрация - это процесс насыщения бурового раствора пузырьками воздуха или газом.
Аэрированные воздухом буровые растворы обладают пониженной плотностью (800 - 900 кг/м3), повышенной текучестью и подвижностью.
Аэрированные ПЖ способствуют уменьшению гидростатического давления на продуктивный пласт, улучшению условий очистки забоя скважины от шлама, повышению скорости бурения и проходки на ПРИ.
Применение аэрированных растворов обеспечивает высокие показатели вскрытия продуктивных пластов за счет сохранения естественного состояния призабойной зоны скважин, исключения проникновения в пласт воды и твердой фазы.
Сжатый воздух. Использование сжатого воздуха позволяет во. многих случаях повысить скорость бурения и проходку на долото, а также снизить стоимость бурения. За счет низкого гидростатического давления сжатого воздуха на продуктивный пласт при его вскрытии обеспечивается сохранение естественной проницаемости пластов и снижение затрат на освоение скважин и поддержание их в работоспособном состоянии в период эксплуатации.
Однако применение сжатого воздуха для бурения скважин различного целевого назначения ограничено устойчивыми породами, в которых водопритоки отсутствуют или незначительны. Важным условием применения сжатого воздуха является герметизация устья скважин.
Вскрытие продуктивных горизонтов с помощью обратной промывки. Применение обратной промывки при сооружении технологических скважин для ПВ металлов является важным: фактором повышения эффективности вскрытия пластов и производительности скважин. При этом способе бурения в качестве ПЖ может быть использована вода, которая поступает на забой по зазору между стенками скважины и бурильными трубами, а образовавшаяся в процессе бурения пульпа поднимается на поверхность по БТ с помощью вакуумных насосов, эрлифтов и гидроэлеваторов. Наличие столба жидкости в скважине обеспечивает необходимую устойчивость стенок скважины.
В процессе вскрытия продуктивных пластов вследствие всасывания пульпы с забоя скважины сохраняются их естественные условия пористости и проницаемости.
Применение обратной промывки наиболее эффективно при сооружении скважин диаметром 500 мм и более, пробуренных в однородных по составу породах.
Однако при сооружении технологических скважин ПВ способ вскрытия продуктивных пластов с обратной промывкой пока не нашел широкого применения по следующим причинам:
· отсутствие серийно выпускаемых бурового оборудования и инструмента;
· небольшие диаметры технологических скважин;
· значительная глубина и наличие зон поглощения ПЖ;
· требуется значительное количество воды.
8. Забойное и устьевой оборудование
8.1 Основные требования к фильтрам
Фильтры технологических скважин предназначены для свободного пропуска в продуктивный пласт выщелачивающих растворов и свободного, без механических примесей, извлечения из пласта продуктивных растворов.
К фильтрам технологических скважин ПВ предъявляются следующие основные требования: 1) высокая стойкость материалов, из которых изготовлен фильтр, к химически агрессивным средам; 2) повышенная механическая прочность в условиях горного давления и гидродинамических нагрузок; 3) высокая удерживающая способность, - фильтр должен обеспечивать прохождение в скважину раствора, не содержащего песка. Это условие имеет большое значение на последующих стадиях переработки промышленных растворов; 4.) сохранение работоспособности в течение всего срока эксплуатации скважины; 5) должна обеспечиваться необходимая площадь фильтрующей поверхности для пропуска требуемого количества раствора при допустимых входных скоростях и сопротивлениях; 6) возможность обеспечения быстрой замены или ремонта; 7) небольшая стоимость фильтров и невысокая трудоемкость их изготовления.
8.2 Типы фильтров
При сооружении технологических скважин ПВ находят применение трубчатые с круглой и щелевой перфорацией, сетчатые, проволочные, дисковые и гравийно-обсыпные фильтры. Наиболее широкое применение находят трубчатые со щелевой перфорацией, дисковые и гравийно-обсыпные фильтры, иногда с уширенным контуром гравийной обсыпки.
В качестве каркасов при изготовлении фильтров используются полиэтиленовые, полипропиленовые, полихлорвиниловые, фанерные, нержавстальные и эмалированные трубы, а также стальные трубы с антикоррозионным покрытием. Стеклопластиковые трубы в качестве фильтров широкого применения не нашли из-за нарушения сплошности волокна навивки при сверлении отверстий или образовании щелей, что снижает прочность каркаса фильтра и увеличивает его кольматацию. Возможно применение в качестве каркаса фильтров бипластмассовых труб. При этом диаметр отверстий или размер щелей в полиэтиленовой оболочке должен быть меньше, чем в наружной, стеклопластиковой оболочке.
Трубчатые фильтры с круглой и щелевой перфорацией. Трубчатые фильтры с круглой перфорацией находят ограниченное применение из-за трудностей изготовления отверстий с размерами в соответствии с гранулометрическим составом рудовмещающих пород. Чаще всего они используются при сооружении технологических скважин в скальных месторождениях, при отработке пластовых месторождений они применяются при оборудовании прифильтровой зоны с гравийной обсыпкой.
Скважность таких фильтров зависит от материала труб и колеблется в широких пределах (5 - 25 %). Размеры отверстий и расстояния между ними выбираются в зависимости от диаметра и материала каркаса, назначения скважин и гранулометрического состава скважины можно производить свабирование путем опускания и подъема бурильных труб с пакером, что повышает эффективность освоения.
Щелевые фильтры являются самыми распространенными при сооружении технологических скважин ПВ. Щелевые фильтры изготавливают в основном их полиэтиленовых труб, реже из фанерных и труб из нержавеющей стали с различной величиной щели. Общий вид щелевого фильтра из нержавеющей стали дан на рис. 16.
Рис. 16 Щелевой фильтр из нержавеющей стали: 1 - труба; 2 - отверстия в трубе; 3 - вкладыши; 4 - щели во вкладыше
В основном применяются фильтры с вертикальными прямоугольными щелями, которые расположены отдельными поясами по длине каркаса. Это обеспечивает по сравнению с другими возможными вариантами расположения щелей небольшие затраты времени на изготовление фильтров и более высокую надежность в работе в период эксплуатации вследствие более равномерного распределения нагрузки на отдельные пояса в период возникновения критических давлений (периоды интенсивной закачки или откачки растворов).
При оборудовании глубоких скважин (350 - 600 м) для предохранения фильтра от смятия под действием горного давления применяются каркасы фильтров из нержавеющей стали. Однако при наличии в продуктивном горизонте тонкозернистых песков нарезка отверстий необходимого размера в металлических трубах из нержавеющей стали представляет значительную трудность. Получить отверстия размером 0,3 - 1 мм с различной конфигурацией можно с помощью вставных планок (см. рис 16). В этом случае проектные отверстия на каркасе выполнены на боковых сторонах планок, закрепленных в щелях, нарезанных на фильтровой трубе. Крепление планок в щели может выполняться склеиванием, сваркой, припоем, на хомутах и др.
Фильтры проволочные каркасные и каркасно-стержневые. Проволочные фильтры являются разновидностью щелевых фильтров, горизонтальные щели которых получаются в результате навивки проволоки на опорный каркас в виде перфорированной трубы с круглой или щелевой перфорацией или стержней, закрепленных по образующей опорных поясов. В качестве каркаса проволочных фильтров могут применяться стержни и трубы из нержавеющей стали, полиэтиленовые, полипропиленовые, фанерные трубы, а также трубы стальные, покрытые эмалью или другими коррозионно-стойкими материалами. В качестве навивочного материала используется проволока из нержавеющей стали, полихлорвиниловый жгут и стальная проволока, покрытая коррозионностойкими пастами и пластмассовыми оболочками.
Применяются проволочные фильтры преимущественно при сооружении высокодебитных откачных скважин и технологических скважин глубиной свыше 300 м.
Сетчатые фильтры выполняются путем намотки фильтрующей сетки на продольные стержни, уложенные по образующей поверхности трубчатого перфорированного каркаса.
Сетчатые фильтры разработаны с каркасами из нержавеющей стали, полиэтиленовых и фанерных труб и фильтрующими сетками из пластмасс и нержавеющей стали.
Сетчатые фильтры не нашли широкого применения, так как не предотвращают пескования и быстро кольматируются. Очистка же сетчатых фильтров представляет значительную трудность из-за малой прочности фильтрующей поверхности и возможности разрыва сетки как при спуске фильтра в скважину, так и в период эксплуатации.
Дисковые фильтры нашли широкое применение. Они состоят из набора конусных дисков из ударопрочного полистирола, собранных в отдельные звенья (рис. 17). Диски имеют переменную конусность 5-10°. Собранные в отдельные звенья, они закрепляются с помощью шпилек, имеющих на конце болты, посредством которых диски плотно прижимаются друг к другу. Соединение отдельных звеньев при сборке фильтров осуществляется посредством полиэтиленовых патрубков с помощью резьбы или сварки.
Общее время освоения скважин, оборудованных дисковыми фильтрами, обычно меньше, чем для скважин, оборудованных щелевыми фильтрами, а производительность откачки на момент освоения - выше.
Рис. 17 Дисковый фильтр: 1 - полиэтиленовый патрубок; 2 - стягивающие шпильки; 3 - диски
8.3 Оборудование скважин фильтрами с гравийной обсыпкой
При наличии в продуктивном горизонте мелкозернистых песков гравийно-обсыпные фильтры являются наиболее эффективными. Они позволяют увеличить проницаемость прифильтровой зоны скважины путем замены песков продуктивных горизонтов более крупным материалом, подаваемым извне. Это способствует также увеличению эффективного диаметра скважин.
Применение фильтров с песчано-гравийными обсыпками на месторождениях ПВ способствует увеличению дебита в момент освоения скважин. При этом увеличиливается продолжительность работы скважин между циклами освоении и работоспособность насосно-подъемного оборудования.
Гравийные фильтры могут быть изготовлены на поверхности а затем опущены в скважины, но чаще применяются гравийные фильтры, сооруженные непосредственно на забое скважины.
Существует два способа сооружения фильтров непосредственно на забое скважины: 1) способ, основанный на силах гравитации при котором гравий осаждается вокруг фильтра при свободном падении частиц на забой в межтрубном пространстве под действием сил тяжести; 2) способ принудительного осаждения гравия путем закачки его на забои потоком ПЖ с использованием различных приспособлений.
Сооружение гравийных обсыпок в восходящем потоке жидкости. Из способов укладки гравия под действием сил гравитации наиболее широко применяемым является доставка гравия в восходящем потоке жидкости. Отсортированный гравий засыпается непосредственно в зазор между стенками скважины и эксплуатационной колонной или доставляется в прифильтровую зону по бурильным трубам малого диаметра, опущенным в этот зазор. При формировании фильтра в восходящем потоке по повышению давления на манометре бурового насоса фиксируются гравийные пробки. В этом случае предотвращается загрязнение прифильтровой зоны и фильтров мелкими глинистыми частицами со стенок скважины, а также частицами отделившимися от песчано-гравийной смеси.
При доставке гравия в восходящем потоке важным является определение интенсивности засыпки и средней скорости восходящего потока, величины которых устанавливаются с учетом площади за трубного пространства. Интенсивность загрузки должна регулироваться в зависимости от крупности частиц гравия. Скорость восходящего потока должна быть не менее 0,6 м/с и не более 3 - 4 м/с. При большей скорости восходящего потока наблюдается вынос частиц гравия.
Однако способ доставки гравия в восходящем потоке во многих случаях не обеспечивает высокого качества гравийной обсыпки Доставка гравия затруднена из-за налипания последнего на стенки скважины, образования пробок в местах сужения ствола скважины скапливания гравия в кавернах. Кроме того, отсутствует гарантия плотной и равномерной укладки гравия по высоте и периметру водоприемной части фильтра. Это может привести к длительному пескованию и обрушению пород в фильтровой области.
Глубины скважин, где можно применять подачу гравия в зону продуктивного пласта в восходящем потоке жидкости обычно не превышают 250 - 300 м. Кроме того, при доставке гравия в прифильтровую зону имеют место значительные затраты времени на оборудование скважин.
Сооружение гравийных обсыпок в нисходящем потоке жидкости. Более прогрессивным способом создания обсыпок является доставка гравия в зафильтровую полость в движущемся нисходящем потоке жидкости, которая может осуществляться при открытом или загерметизированном устье скважины. В этом случае обеспечивается принудительное осаждение гравия вокруг фильтра с последующим перераспределением частиц гравия по крупности: более крупный гравий будет находиться в контакте с фильтром, что обусловливается более высокими скоростями входа воды в фильтр.
Принципиальная схема создания гравийной обсыпки в нисходящем потоке жидкости при открытом устье скважины состоит в следующем. После опускания фильтровой колонны на забой внутри нее из труб меньшего диаметра монтируется водоподъемная колонна, нижняя часть которой располагается на 2 - 3 м выше верхней границы отстойника. Около скважины устанавливается емкость для гравия и воды с наклонным подводным желобом к устью или эжектор. Вода из скважины откачивается с помощью центробежного вакуум-насоса или эрлифта. Одновременно с началом откачки к устью скважины подается смесь гравия и воды. Водогравийная смесь потоком обратной циркуляции доставляется в зафильтровое пространство, где происходит отделение твердой фазы и формирование гравия вокруг фильтрового каркаса, а вода через водоподъемные трубы поднимается на поверхность. В процессе формирования гравийного слоя из скважины удаляются мелкие частицы пород, слагающие продуктивный горизонт.
Основным недостатком схемы доставки гравия в призабойную зону скважины является то, что при отсутствии в стволе скважины выше рудного пласта обсадных труб и если вышележащие породы являются неустойчивыми, возможны обвалы стенок скважины из-за резкого изменения динамического уровня при пуске эрлифта в работу, а также засорения гравийной смеси и прифильтровой зоны породами стенок скважины.
При подаче гравия в восходящем или нисходящем потоках жидкости для улучшения условий доставки гравия по межтрубному зазору при применении полиэтиленовых эксплуатационных колонн необходимо предусмотреть их центрирование путем установки направляющих фонарей по длине колонны на расстоянии 10 - 15 м.
Для предотвращения обрушения зоны продуктивного пласта в период подготовки эксплуатационной колонны к спуску и в период ее спуска необходимо поддерживать необходимое гидростатическое давление на продуктивный пласт путем налива воды в скважину.
Сооружение гравийных обсыпок путем подачи гравия по БТ. Для того чтобы улучшить условия доставки гравия в прифильтровую зону скважин, на месторождениях подземного выщелачивания широко применяется способ доставки гравия по БТ, опущенным в зазор между эксплуатационной колонной труб и стенками скважины. Нижний конец колонны БТ располагается выше приемной части фильтра на 0,5 - 1,5 м и служит во многих случаях для определения величины заполнения прифильтровой зоны скважины гравием.
Внутрь эксплуатационной колонны опускаются раствороподъемные трубы эрлифта. Одновременно с подачей по трубам гравия на забой скважины производится откачка жидкости эрлифтом, что способствует более плотной укладке песчано-гравийного материала вокруг фильтра. Для того чтобы стенки скважины были более устойчивыми и не обрушились за счет снижения уровня жидкости в скважине при откачке ее эрлифтом, подачу песчано-гравийной смеси осуществляют в потоке жидкости с помощью эжекторного насоса, установленного на поверхности.
Эта схема доставки гравия в прифильтровую зону скважины позволяет исключить контакт гравийного материала с незакрепленными стенками скважины, а следовательно позволяет исключить потери гравия в кавернах, налипание его на стенки скважины и пробкообразование.
Работа буровой бригады при оборудовании фильтров гравийными обсыпками с подачей гравия в нисходящем потоке по БТ заключается в сортировке на виброситах гравийно-песчаной смеси и загрузке этой смеси в приемный бункер эжекторного насоса.
Интенсивность загрузки определяется режимом работы эжектора. Загружается гравий мерными емкостями с целью определения его количества, подаваемого в скважину. После подачи расчетного количества гравия положение гравийного слоя проверяется с помощью бурильных труб. При необходимости производится дополнительная подача гравия или удаление его потоком воды из призабойной зоны скважины.
Важным узлом при формировании гравийных фильтров является водоструйный эжекторный насос (рис. 18). При работе эжекторного насоса струей воды, истекающей из насадки, в пространстве между насадкой и камерой смешения создается пониженное давление, вследствие чего песчано-гравийная смесь поступает в камеру смешения и далее в диффузор и БТ.
Рис. 18 Схема эжекторного насоса с вертикальным расположением эжектора: 1 - присоединительный переводник; 2 - воронка; 3 - насадка; 4 - окна; 5 - камера смешения; 6 - диффузор
Эжектор с помощью специального переводника подсоединяется к ведущей трубе или буровому насосу, а с другой стороны с помощью переводника и гибких шлангов он подсоединяется к БТ, опущенным в скважину. Разработаны и применяются в практике оборудования технологических скважин ПВ две конструкции эжекторных устройств для подачи гравия - с вертикальным и горизонтальным расположением эжекторных насосов.
Предпочтение следует отдать схеме с вертикальным расположением эжекторного насоса, так как в этом случае упрощается схема его монтажа (см. рис. 18). Эжекторный насос вместе с приемным бункером устанавливается на столе ротора бурового агрегата. Это также улучшает условия транспортирования гравийного материала, так как в горизонтальных и наклонных участках трубопроводов возможно образование песчано-гравийных пробок.
При вертикальном расположении эжектора последний монтируется на столе ротора. Верхняя часть эжектора подсоединяется к ведущей трубе, а нижняя к опущенным в скважину бурильным трубам. Приемный бункер приваривается к корпусу эжектора и в него засыпается песчано-гравийная смесь.
Сооружение гравийных обсыпок при применении пакерных устройств для гидроизоляции. При сооружении скважин важным мероприятием является создание надежной гидроизоляции зон движения рабочих и продуктивных растворов. При оборудовании скважин фильтрами с гравийной обсыпкой материал гидроизоляции заливается поверх слоя гравия до статического (динамического для закачных скважин) уровня подземных вод. Качество гидроизоляции не всегда является высоким, очень часто наблюдаются перетоки раствора вверх по стволу скважины. Более надежным средством гидроизоляции является применение пакерных устройств, например манжет из кислотостойкой резины. Однако их применение невозможно при существующих методах создания гравийных фильтров.
Повысить качество сооружения скважин, оборудованных фильтрами с гравийной обсыпкой, и упростить схему герметизации прифильтрового пространства и зон движения рабочих и продуктивных растворов, а также повысить эффективность эрлифтной откачки в процессе сооружения скважин позволяет следующее устройство (см. рис. 19). В этом устройстве кислотостойкая манжета расположена на втулке (трубе), которая соединена с фильтром посредством соединения, позволяющего перемещать манжету вверх или вниз относительно фильтра. При этом втулка соединена с нижним концом раствороподъемных труб эрлифта, а верхний конец этих труб расположен ниже оголовка скважины. Обсадная колонна имеет в нижней части башмак с упорами для посадки манжеты.
Рис. 19 Схема создания гравийных обсыпок при применении пакерных устройств для гидроизоляции: 1 - обсадная колонна; 2 - фильтр; 3 - манжета из кислотостойкой резины (пакер); 4 - башмак с упором; 5 - подвижная втулка; 6 - соединение; 7 - водоподъемная колонна; в - воздухоподающая колонна; 9 - смеситель; 10 - воронка для засыпки гравия
Устройство работает следующим образом. В пробуренную до продуктивного горизонта скважину опускают обсадную колонну, а ее затрубное пространство цементируют. Затем вскрывают продуктивный горизонт и расширяют его до проектного диаметра. На поверхности собирают фильтр с отстойником и втулкой 5 с закрепленной на ней манжетой. Затем к втулке подсоединяют водоподъемную колонну труб 7 и опускают в скважину на воздухоподающих трубах 8. Длину раствороподающих труб выбирают таким образом, чтобы их верхний конец был ,на 1 - 3 м выше пьезометрического уровня водоносного горизонта После установки фильтра втулку с манжетой перемещают в крайнее верхнее положение так, чтобы пакер вышел из зоны суженной части башмака эксплуатационной колонны, а затем в скважину подают воздух, под действием которого происходит циркуляция жидкости, находящейся в скважине. Одновременно с началом циркуляции жидкости через воронку 10 в скважину подают песчано-гравийную смесь, которая поступает в прифильтровую зону скважины в нисходящем потоке жидкости, и происходит принудительная укладка гравия вокруг фильтрового каркаса. При этом формирование гравийного фильтра будет при меньших затратах мощности и давления на компрессоре.
После засыпки гравия втулку с манжетой перемещают в крайнее нижнее положение до места установки пакера в суженной части башмака эксплуатационной колонны. Манжета заходит в зону башмака обсадной колонны и качественно изолирует пространство между обсадной колонной и фильтром. Происходит разрушение временных креплений, а затем подъем из скважины раствороподъемных и воздухоподающих труб.
Поверх слоя гравия на высоту 15 - 20 м заливается гидроизоляционный материал, после чего скважина готова к эксплуатации.
Сооружение гравийных обсыпок с предварительной подачей гравия на забой скважины. Другим способом создания фильтров с гравийной обсыпкой и установкой манжет для гидроизоляции является способ, при котором в прифильтровую зону вначале подают гравий, а затем осуществляют установку фильтра с пакером для гидроизоляции. Сооружение технологических скважин согласно этому способу осуществляется следующим образом (рис. 20). Вначале производится бурение скважины до продуктивного горизонта. В случае неустойчивых пород пробуренный интервал скважины закрепляется ОТ. Вскрытие продуктивного горизонта осуществляется долотами меньшего диаметра с последующим расширением (при необходимости) ствола скважины в зоне продуктивного пласта. В скважину на бурильных или насосно-компрессорных трубах, соединенных с противоаварийным переходником, установленным в нижней части, опускается фильтр с отстойником. На надфильтровом патрубке в месте перехода на уменьшенный диаметр скважины закрепляется резиновая манжета. Спуск фильтра прекращается не доходя забоя скважины.
Затем по бурильным или насосно-компрессорным трубам на забой скважины подается расчетное количество гравия (рис. 20, а).
Рис. 20 Способ создания гравийных обсыпок с предварительной подачей гравия на забой скважины: а - подача гравия на забой скважины; б - посадка фильтра гидровмывом в гравий: 1 - обсадная колонна; 2 - фильтр; 3 - отстойник; 4 - бурильные трубы; 5 - пакер; 6 - манжета; 7 - надфильтровый патрубок
Фильтр устанавливается на гравий, а по бурильным или насосно-компрессорным трубам начинают подавать воду (рис. 20, б). При подаче воды происходит гидравлический размыв гравия, что позволяет осуществить посадку фильтра на забой скважины. Расход воды должен быть таковым, чтобы предотвратить вынос частиц гравия из скважины. После прекращения подачи жидкости произойдет осаждение гравия вокруг фильтра с образованием контура. При этом манжета устанавливается на уступ в месте перехода на уменьшенный диаметр бурения, осуществляя тем самым гидроизоляцию зон движения растворов.
После посадки фильтра на забой скважины БТ отсоединяются и поднимаются на поверхность, а поверх манжеты заливается гидроизоляционный материал, оборудуется устье скважины и производятся другие работы, связанные с завершением сооружения скважины.
При наличии обсадной колонны, опущенной в скважину до продуктивного пласта, необходимо предусмотреть предварительную установку пакера внутри обсадной колонны, на расстоянии 1 - 2 м выше башмака, а манжету устанавливают на пакер. При этом во избежание повышенного расхода обсадных труб фильтр можно устанавливать впотай.
Описанный способ сооружения гравийных фильтров имеет ряд преимуществ: 1) при посадке фильтра на забой скважины происходит очистка гравийного слоя от глинистых частиц и механических взвесей, которые потоком жидкости выносятся из скважины; 2) позволяет применять пакерные устройства для гидроизоляции зон движения рабочих и продуктивных растворов; 3) сокращается время оборудования скважин фильтрами с гравийной обсыпкой; 4) повышается качество сооружения скважин.
Сооружение гравийных обсыпок в прифильтровой зоне скважин с одновременной установкой фильтров. При этом способе звенья фильтров оборудуются на поверхности кожухами, заполненными песчано-гравийной смесью. Кожухом могут служить легкорастворимые или разрушающиеся под действием растворов серной или соляной кислоты материалы, например хлопчатобумажные или синтетические ткани, сетки из латуни или сталей, не стойкие при действии различных кислот. Звенья фильтра с кожухами, заполненными гравием, собираются в колонну и опускаются в скважину. После спуска фильтра в него опускают промывочный став и производят интенсивную промывку водой прифильтровой зоны, до полного удаления глинистой корки со стенок скважины. Эффект разглинизации при этом увеличивается за счет большей скорости движения воды в зазоре между стенкой скважины и кожухами. Затем в скважину подают растворитель, который разрушает кожух фильтра. При этом песчано-гравийная обсыпка равномерно распределяется в прифильтровой зоне скважины и плотно заполняет кольцевое пространство за фильтром с образованием контура. Последним этапом работ при сооружении технологических скважин по этой схеме является гидроизоляция зон движения растворов путем заливки гидроизоляционных материалов выше слоя гравийной обсыпки.
Применение описанного способа создания гравийно-обсыпных фильтров способствует улучшению качества их сооружения, сокращению затрат времени на оборудование прифильтровой зоны скважин и ее освоение, но требует увеличения диаметра скважины.
Способ сооружения обсыпных фильтров из гранул низкой плотности. При кислотном выщелачивании металлов к материалу песчано-гравийных обсыпок предъявляются специфические требования, связанные с их кислотостойкостью. Наличие в материале обсыпок карбонатных частиц приводит к их растворению с выделением твердого нерастворимого осадка и газа, что может привести в некоторых случаях к выбросам из скважины кислоты в первоначальный момент закачки. Кроме того, многие другие материалы обсыпок растворяются при длительном воздействии кислоты, что приводит к проседаниям песчно-гравийных обсыпок в прифильтровой зоне, уменьшению их контура, а в некоторых случаях и к обнажению участков фильтров.
Ведутся работы по применению в качестве обсыпок нерастворимых в кислотах материалов, таких, как полиэтиленовые гранулы, гранулированный материал группы пиролюзит-псиломелана, плотность которых меньше плотности воды.
Сооружение технологических скважин при применении этих материалов осуществляется следующим образом. При применении одноколонных конструкций скважин на эксплуатационной колонне закрепляется манжета, которая устанавливается на уступе в месте перехода на уменьшенный диаметр скважины, а в случае обсадки ствола скважин до продуктивного горизонта трубами в последних в нижней части (следует предусмотреть установку пакера выше башмака колонны при наличии суженной части (рис. 21). В некоторых случаях для создания уширенного контура обсыпки предусматривается расширение прифильтровой зоны скважины.
В скважину опускается фильтр, а прифильтро-вая зона скважины разобщается с помощью пакера. По насосно-компрессорным или бурильным трубам, соединенным с отстойником фильтра, закачивают фильтрующую обсыпку, которая содержит гранулы полиэтилена или других веществ и воду. Попадая в зафильтровое пространство, гранулы всплывают и удерживаются в зоне фильтра с помощью пакера, а вода через фильтр и обсадную колонну поступает на поверхность. При этом благодаря значительным скоростям движения воды при входе в фильтр происходит плотная укладка гранул вокруг фильтра. После полного заполнения зафильтрового пространства гранулами насосно-компрессорные трубы извлекают, поверх пакера заливается гидроизоляционный материал и производится освоение скважины.
Рис. 21 Сооружение обсыпных фильтров из гранул низкой плотности: 1 - ОТ; 2 - материал гидроизоляции; 3 - разобщающий пакер; 4 - материал обсыпки; 5 - фильтр; 6 - трубы для подачи материала обсыпки
При оборудовании обсыпных фильтров технологических скважин ПВ в качестве материала обсыпки могут применяться кварцевый и кремниевый песок, гранулированный пиролюзит, гранулы полиэтилена и стекла.
В качестве жидкости-носителя материала фильтровой обсыпки применяется техническая вода, а также вода, загущенная синтетическими или натуральными смолами, химическими реагентами типа К-9, К-4 и др. Вязкость жидкостей-носителей должна составлять 50 - 2000 Па·с.
В скважинах с аномально высокими пластовыми давлениями можно использовать рабочую жидкость с высокой плотностью, несущую на забой гравий и предотвращающую открытый выброс при намыве гравийных фильтров. В качестве утяжелителей рекомендуется применять окиси железа. В жидкость-носитель могут добавляться загустители и добавки, снижающие его фильтруемость.
В большинстве случаев нашли применение способы создания цементирующихся гравийных обсыпок, что связано в первую очередь с облегчением замены вышедшего из строя фильтра и сохранением относительно высокой проницаемости.
Укладку гравия вокруг фильтра следует производить с противодавлением на пласт, что снижает кольматацию гравийного слоя песками продуктивного горизонта.
8.4 Оборудование устья технологических скважин
Устья технологических скважин, предназначенных для добычи твердых ПИ, в процессе подготовки и эксплуатации должны быть оснащены специальным оборудованием.
Оборудование устья включает обустройство и герметизацию затрубного и межтрубного пространства обсадных и эксплуатационных колонн и установку специальных оголовков, позволяющих осуществить обвязку эксплуатационных и рабочих колонн.
Основное назначение устьевой арматуры: а) регулирование направления подачи в скважину рабочих агентов (вода, выщелачивающий кислотный раствор, водяной пар, нерастворитель, воздух и др.); б) регулирование отвода от устья скважины и распределение продуктивных растворов; в) предохранение ствола скважины от загрязнения и попадания посторонних предметов, г) обеспечение надежной герметизации устья с целью предотвращения загрязнения окружающей среды и ствола скважины рабочими агентами и продуктивными растворами и обеспечение их раздельного движения; д) осуществление контроля за работой скважины.
К оборудованию устья технологических скважин предъявляются следующие основные требования:
1) основные узлы устьевого оборудования должны быть выполнены из материала, стойкого к длительному контакту с рабочими агентами и продуктивными растворами;
2) основные узлы должны выдерживать максимальное давление
3) подачи рабочих агентов с учетом двукратного запаса прочности;
4) устьевое оборудование должно быть оснащено необходимыми
5) устройствами и приборами для измерения соответствующих параметров работы скважины, а также вентилями и задвижками. При. использовании эрлифтов для подъема продуктивных растворов оголовки должны дополнительно содержать сепараторы для отделения песка и воздуха от растворов;
6) в конструктивном отношении устьевое оборудование должно быть простым, иметь небольшие габариты, легко и быстро монтироваться и демонтироваться.
Большие требования высокой надежности работы предъявляются к устьевому оборудованию технологических скважин ПВ.
Для предохранения попадания рабочих и продуктивных растворов в почвенный слой предусматривается заливка затрубного пространства на устье скважины гидроизоляционными материалами, засыпка специальных материалов, поглощающих и нейтрализующих технологические растворы, а также бетонирование площадок для установки устьевого оборудования и откачных средств.
В качестве гидроизоляционных материалов могут использоваться кислотостойкие цементы и глина с последующей засыпкой доломитовой или мраморной крошки, а иногда и извести. В случае утечек продуктивные или выщелачивающие растворы будут реагировать с материалом засыпки и нейтрализуются с образованием гипса или другой твердой фазы. ПИ, содержащееся в растворе, в дальнейшем также может быть удалено вместе с материалом обсыпки.
В процессе сооружения технологических скважин ПВ применяются оголовки, предназначенные для оборудования устья нагнетательных и откачных скважин. В свою очередь, нагнетательные скважины могут работать в режиме свободного налива и подачи выщелачивающего раствора под давлением до 1,0 - 1,5 МПа.
Конструкция оголовка для нагнетательных скважин, работающих в режиме свободного налива, приведена на рис. 22. Оголовки устанавливаются на эксплуатационной колонне при помощи фланцевого или резьбового соединений. Оголовок, показанный на рис. 22, а, состоит из полого корпуса, в котором размещен поплавок с запорным клапаном, расположенным в патрубке и соединенным с раствароподводящим трубопроводом.
Рис. 22 Оголовки нагнетательных скважин ПВ, работающих в режиме свободного налива: а -при отсутствии газовых выбросов: 1 - корпус; 2 - патрубок; 3 - поплавок; 4 - клапан; 5 - соединительная муфта- 6 - эксплуатационная колонна; б - при наличии газовых выбросов: 1 - корпус; 2 - патрубок; 3, 4 - фланцы; 5 - эксплуатационная колонна; 6 - диафрагма; 7 - втулка; 8 - отверстия во втулке; 9 - шток; 10 - клапан; 11 - поплавок; 12 - запорный орган; 13 - отверстия
...Подобные документы
Назначение, устройство основных узлов и агрегатов буровых установок для глубокого бурения нефтегазоносных скважин. Конструкция скважин, техника и технология бурения. Функциональная схема буровой установки. Технические характеристики буровых установок СНГ.
реферат [2,5 M], добавлен 17.09.2012Задачи, объёмы, сроки проведения буровых работ на исследуемом участке, геолого-технические условия бурения. Обоснование выбора конструкции скважин. Выбор бурового снаряда и инструментов для ликвидации аварий. Технология бурения и тампонирование скважин.
курсовая работа [93,2 K], добавлен 20.11.2011Технические средства направленного бурения скважин. Компоновки низа бурильной колонны для направленного бурения. Бурение горизонтальных скважин, их преимущества на поздних стадиях разработки месторождения. Основные критерии выбора профиля скважины.
презентация [2,8 M], добавлен 02.05.2014Проблема сезонности бурения. Специальные буровые установки для кустового строительства скважин, особенности их новых модификаций. Устройство и монтаж буровых установок и циркулирующих систем. Характеристика эшелонной установки бурового оборудования.
курсовая работа [2,5 M], добавлен 17.02.2015История бурения нефтяных и газовых скважин, способы их бурения. Особенности вращательного бурения. Породоразрушающие инструменты (буровые, лопастные, алмазные долота). Инструмент для отбора керна. Оборудование для бурения, буровые промывочные жидкости.
курсовая работа [2,2 M], добавлен 27.09.2013Геологическое строение нефтегазоконденсатного месторождения. Литологическая характеристика разреза скважины. Регулирование свойств буровых растворов. Расчет гидравлической программы бурения. Выбор породоразрушающего инструмента, промывочной жидкости.
курсовая работа [78,3 K], добавлен 07.04.2016Характеристика залежей нефти и газа, коллекторские свойства продуктивных горизонтов, режим залежи и конструкция скважин Муравленковского месторождения. Охрана труда, недр и окружающей среды в условиях ОАО "Сибнефть", а также безопасность его скважин.
дипломная работа [111,1 K], добавлен 26.06.2010Повышение выхода керна. Отбор проб из скважин ударно-канатного и роторного бурения. Факторы, определяющие способ отбора проб. Объединенные и групповые пробы. Контроль опробования, обработки и анализа проб. Контроль качества геологического опробования.
презентация [615,9 K], добавлен 19.12.2013Особенности производственного процесса в бурении. Производственный цикл в строительстве скважин, его состав и структура. Проектирование работ по строительству скважин. Организация вышкомонтажных работ. Этапы процесса бурения скважин и их испытание.
контрольная работа [23,8 K], добавлен 11.12.2010Схема колонкового бурения с применением буровой установки. Конструкция, назначение и классификация буровых вышек, буров, труб, долот. Причины аварий при различных способах бурения, способы их ликвидации. Режимы бурения нефтяных и газовых скважин.
реферат [662,7 K], добавлен 23.02.2009Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.
курсовая работа [4,0 M], добавлен 29.06.2010Общие сведения и нефтегазоносность Бахметьевского месторождения . Устройство фонтанной арматуры. Преимущества и недостатки газлифта. Эксплуатация скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Бурение, ремонт и исследование скважин.
отчет по практике [2,0 M], добавлен 28.10.2011Знакомство с разработкой системы автоматического управления для подземного выщелачивания урана. Анализ технологических скважин, предназначенных для подачи в недра рабочих растворов. Особенности процесса фильтрации раствора в рудовмещающем горизонте.
дипломная работа [5,7 M], добавлен 07.09.2013Значение буровых растворов при бурении скважины. Оборудование для промывки скважин и приготовления растворов, технологический процесс. Расчет эксплуатационной и промежуточной колонн. Гидравлические потери. Экологические проблемы при бурении скважин.
курсовая работа [1,6 M], добавлен 16.11.2011Текстура и структура как признаки строения осадочных горных пород. Понятие, элементы, виды и назначение буровых скважин, а также их классификация на различных этапах поиска, разведки и разработки нефтяного, газового или газоконденсатного месторождений.
реферат [534,0 K], добавлен 29.06.2010Изучение повышения продуктивности и реанимации скважин с применением виброволнового воздействия. Характеристика влияния упругих колебаний на призабойную зону скважин. Анализ резонансные свойства систем, состоящих из скважинного генератора и отражателей.
дипломная работа [1,6 M], добавлен 17.06.2011Буровая скважина и ее основные элементы. Методика разрушения горной породы на забое. Рассмотрение классификации способов бурения. Задачи автоматизации производственных процессов. Сущность и схема турбинного и роторного процессов бурения скважин.
презентация [1010,8 K], добавлен 25.05.2019Содержание, принципы, основные компоненты организации производственного процесса бурения. Методы организации и производственный цикл процесса бурения. Бурение нефтяных скважин. Меры по охране недр и окружающей среды. Влияние сероводорода на людей.
курсовая работа [72,1 K], добавлен 22.05.2009Проект спирального гидроциклона СМГ-С, предназначенного для отчистки промывочных жидкостей от песка, грубодисперсных частиц, поступающих в раствор вместе с глиной, и частиц выбуренной породы, которыми раствор обогащается в процессе бурения скважин.
курсовая работа [373,0 K], добавлен 12.03.2008Горные машины и оборудование как один из курсов в программе подготовки горного инженера, готовящегося к работе в области технологии вскрытия и разработки месторождений полезных ископаемых. Условия эксплуатации и требования к машинам, их развитие.
реферат [21,1 K], добавлен 25.08.2013