Построение и исследование подсистемы планирования траектории перемещения для системы управления автономным подводным аппаратом
Рассмотрение решения задачи плоского перемещения автономного необитаемого подводного аппарата к цели с помощью иерархической системы управления. Оценка траекторного регулятора на основе квадратичных форм. Планирование траектории поисковым алгоритмом.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 28.07.2017 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Построение и исследование подсистемы планирования траектории перемещения для системы управления автономным подводным аппаратом
Б.В. Гуренко, И.О. Шаповалов, В.В. Соловьев, М.А. Береснев
Южный федеральный университет, Таганрог
Аннотация
иерархический автономный необитаемый квадратичный
В данной работе предлагается решение задачи плоского перемещения автономного необитаемого подводного аппарата к цели с помощью иерархической системы управления. Для планирования траектории используется поисковый А*-алгоритм. Перемещение аппарата по траектории обеспечивается позиционно-траекторным регулятором на основе квадратичных форм. Рассматриваемый тип аппарата имеет торпедообразную форму с двумя маршевыми движителями и подруливающим устройством, расположенным в носовой части.
Ключевые слова: математическая модель, необитаемый подводный аппарат, планирование, позиционно-траекторное управление, А*-алгоритм.
Введение
Современные подводные аппараты способны выполнять широкий круг задач, в который входят экологический и климатический мониторинг, океанологические исследования, обслуживание глубоководных систем и устройств подводных мест, поиск подводных месторождений, охрана акваторий и др. Все эти задачи могут быть наиболее эффективно решены в классе автономных необитаемых подводных аппаратов (АНПА). Причина заключается в снижении стоимости эксплуатации и вероятности ошибки за счет уменьшения степени участия человека-оператора, повышения времени непрерывной работы мобильных систем, уменьшение массогабаритных параметров техники и другие. Однако для проектирования и создания системы управления такого сложного объекта, необходимо построить математическую модель, которая смогла бы в полной мере учесть всю нестационарность параметров, нелинейность динамики и многосвязность подводного аппарата (ПА), как объекта управления, с учетом всех сил взаимодействия корпуса с вязкой средой.
Специфика использования подводного аппарата для точной отработки траекторий на высоких скоростях требует обязательного учета, а также оценки или измерения, нестационарности его параметров (присоединенные моменты и массы и т.п.) [3-6], кроме того, при неопределенности среды функционирования необходима разработка структуры и алгоритмов подсистемы планирования перемещений [7-10].
Математическая модель АНПА
Для описания математической модели АНПА будем использовать две прямоугольные системы координат, показанные на рис. 1. Математическая модель на базе известных уравнений твердого тела может быть представлена в следующем векторно-матричном виде:
(1)
(2)
, (3)
где - диагональная матрица постоянных времени исполнительных устройств (ИУ); _ вектор нелинейных функций правых частей уравнений ИУ; - вектор управляющих воздействий на элементы АНПА, формируемый ИУ;- вектор управлений, формируемый системой управления АНПА, где х - m-вектор внутренних координат (координат состояния);М - (mЧm)-матрица массо-инерционных параметров, элементами которой являются масса, моменты инерции, присоединенные массы АНПА; - m-вектор управляющих сил и моментов, здесь l - вектор конструктивных параметров; - m-вектор нелинейных элементов динамики АНПА; - m-вектор измеряемых и неизмеряемых внешних возмущений; - n-вектор положения P и ориентации (выходных координат) связанной системы координат относительно базовой, ; - n-вектор кинематических связей; - вектор линейных скоростей связанной системы координат относительно базовой; - вектор угловых скоростей связанной системы координат относительно базовой.
Рис. 1. - Системы координат K(OX0Y 0Z0) и K(OX Y Z)
Позиционно-траекторный регулятор АНПА
Для проведения исследования иерархической системы управления АНПА был разработан регулятор перемещения на основе ПД-закона. Регулятор реализован в дискретной форме с вычислением Д-составляющей по формуле трапеций.
Выходом регулятора является вектор скоростей вращения движителей. Управляемые переменные - угол рыскания и продольная скорость перемещения. Результирующий вектор желаемых скоростей вращения винтов вычисляется по формуле
. (4)
Составляющие выражения (4) вычисляются следующим образом:
, (5)
, (6)
, (7)
где i - номер шага вычисления управляющего воздействия; kpj, kdj, j= 1, 2, 3 - коэффициенты пропорциональной и дифференцирующей составляющих;,_ вычисленные регулятором проекции желаемой скорости перемещения; , _ проекции скорости перемещения;_ заданная глубина плавания, _ шаг дискретизации.
В процессе перемещения по траектории регулятор вычисляет проекции желаемой скорости перемещения по формуле:
, (8)
где _ угол между осью 0X и прямой, соединяющей начало координат со следующей точкой траектории; - максимальная скорость перемещения АНПА.
При торможении в окрестности целевой точки проекция желаемой скорости определяется в соответствии с выражением (выражение для аналогично):
, (9)
где a, b - параметры, определяющие форму экспоненциальной функции.
Планирование траектории перемещения
Для проверки эффективности работы алгоритма планирования с учетом ограничений, накладываемых на перемещение АНПА, использовался распространенный подход в виде комбинации -алгоритма и модифицированного метода динамического окна. Построение оптимальной траектории осуществляется с помощью А* - алгоритма по разведанному участку сцены, а с помощью метода динамического окна траектория модифицируется таким образом, чтобы при движении на максимально возможной скорости АНПА не приближался к препятствиям на недопустимые расстояния.
Смысл планирования траектории на основе А*-алгоритма заключается в следующем. Создается карта местности. Для этого плоскость функционирования разбивается на квадратные ячейки. Каждой ячейке присваивается значение, характеризующее ее либо как свободную, либо как занятую препятствием, либо как стартовую (целевую). Первоначально все ячейки считаются свободными, затем по мере получения данных от лазерного дальномера, карта обновляется. -алгоритм запускается каждый раз, как только обновляется значение какой-либо ячейки, находящейся на построенной траектории, либо при изменении задаваемых параметров движения.
Безопасность перемещения по траектории обеспечивается путем обозначения прилегающих к препятствию ячеек как непроходимых. Количество ячеек с виртуальными препятствиями определяется размером ячеек и заданным минимально допустимым расстоянием между АНПА и препятствием. Чтобы избежать попадания АНПА в локальные минимумы, ячейки, которые робот при перемещении по траектории посещает несколько раз, обозначаются как занятые препятствием.
После создания или обновления карты создаются два списка ячеек. В первый список, называемый открытым, помещаются ячейки, для которых необходимо рассчитать длину траектории движения АНПА. Во второй список, называемый закрытым, помещаются ячейки, для которых эта длина уже рассчитана.
Затем на сформированной карте рассматривается ячейка, в которой в настоящий момент находится подвижный объект и окружающие ее восемь ячеек, как показано на рис. 2.
Рис. 2. -Блок ячеек кандидатов для добавления в открытый список
Стартовая ячейка, от которой начинается построение участка траектории, добавляется в открытый список. Затем проверяются все ячейки вокруг нее. Ячейки добавляются в открытый список, если в них не находятся препятствия и они не выходят за границы сцены. Для каждой из добавляемых в открытый список ячеек: запоминаются координаты предыдущей (родительской) ячейки, вычисляется значение функции f, характеризующей длину траектории через данную ячейку. Стартовая ячейка добавляется в закрытый список. Затем из открытого списка берется ячейка с наименьшим значением f, и так далее.
Значение функции эффективности вычисляется по формуле
f=g+h, (10)
где g- мера стоимости перемещения АНПА из стартовой ячейки в данную ячейку, h- мера стоимости перемещения АНПА из текущей ячейки в целевую.
Значение g определяется как сумма стоимости перемещения ПО из стартовой ячейки в родительскую и стоимости перемещения из родительской ячейки в текущую. Например, для случая формы ячеек, приведенных на рис. 3, принимаем, что стоимость перемещения из центральной ячейки в ячейку, смещенную только по вертикали или только по горизонтали, равна 10. А стоимость перемещения в ячейку, смещенную по диагонали относительно центральной, равна 14.
Значение h определяется как стоимость перемещения по вертикали и по горизонтали между текущей ячейкой и целевой, равная произведению количества проходимых ячеек на 10.
A*-алгоритм планирования траектории можно представить в виде следующей последовательности шагов:
Стартовая ячейка добавляется в открытый список.
Повторяются следующие шаги:
Поиск в открытом списке ячейки с наименьшей величиной f. Обозначение найденной ячейки как текущей.
Помещение текущей ячейки в закрытый список и удаление из открытого списка.
Для каждой из окружающих восьми ячеек выполняется:
если в ячейке находится препятствие или она находится в закрытом списке, то она игнорируется.
если ячейка еще не в открытом списке, то она в него вносится. Текущая ячейка становится родительской для рассматриваемой ячейки. Рассчитываются значения f, g и h для рассматриваемой ячейки.
если ячейка уже в открытом списке, то проверяется длина пути траектории через эту ячейку. Для проверки используется величина g. Уменьшение значения g указывает на то, что траектория будет короче. В этом случае текущая ячейка становится родительской для рассматриваемой ячейки, и пересчитываются g и f.
Прекращение работы, если целевая ячейка добавлена в открытый список (в этом случае траектория спланирована) или открытый список пуст, а целевая ячейка не достигнута, тогда построение траектории невозможно.
Сохранение траектории.
Моделирование
Результаты моделирования перемещения АНПА по пяти сценам с учетом динамических ограничений приведены на рисунке3.
а б
в г
д
Рис. 4.- Траектория АНПА при проходе сцены
Моделирование проводилось в программе Simulink. На карте расставлялись препятствия (обозначены кругами) и задавалась точка выхода АНПА (0,0). Синим цветом обозначена рассчитанная планировщиком траектория движения.
Выводы
Результаты моделирования показали эффективность подхода на основе А*-алгоритма для планирования перемещения и позиционно-траекторного ПД-регулятора. Приведенный гибридный подход к управлению горизонтальным перемещением позволяет АНПА достигать цели даже на сложных сценах, за исключением сцен с П-образными препятствиями.
Благодарности
Работа поддержана Министерством образования и науки РФ, НИР №114041540005 по государственному заданию ВУЗам и научным организациям в сфере научной деятельности и грантом Президента Российской Федерации №НШ-3437.2014.10.
Литература
1. Пятницкий Е.С. Управляемость классов лагранжевых систем с ограниченными управлениями // АиТ. 1996. №12. C. 29-37.
2. Пшихопов В.Х., Медведев М.Ю. Структурный синтез автопилота для подвижных объектов с оцениванием возмущений // Информационно-измерительные и управляющие системы. 2006. №1. C.103-109.
3. Пшихопов В.Х. Позиционно-траекторное управление подвижными объектами. Таганрог: Изд-во ТТИ ЮФУ, 2009. 183 с.
4. Пшихопов В.Х., Сиротенко М.Ю., Гуренко Б.В. Структурная организация систем автоматического управления подводными аппаратами для априори неформализованных сред // Информационно-измерительные и управляющие системы. Интеллектуальные и адаптивные роботы. 2006. № 1-3. т.4. C. 73-79.
5. Управление подвижными объектами. Библиографический указатель. В 3-х выпусках. Вып. 3. Морские объекты. М.: 2011. 150 с.
6. Лукомский Ю.А., Чугунов В.С. Системы управления морскими подвижными объектами: Учебник. Л: Судостроение, 1988. 272 с.
7. Medvedev M. Y., PshikhopovV.Kh., Robust control of nonlinear dynamic systems // Proceedings of 2010 IEEE Latin-American Conference on Communications (ANDERSON). 2010. Pp.1-7.
8. Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R., Gurenko B., Krukhmalev V. Airship autopilot design// SAE Technical Paper №2011-01-2736. 2011. 5 p.
9. Федоренко Р.В. Алгоритмы автопилота посадки роботизированного дирижабля // Инженерный вестник Дона, 2011, №1. URL: ivdon.ru/magazine/archive/n1y2011/371.
10. Кульченко А.Е. Структурно-алгоритмическая организация автопилота робота-вертолета // Инженерный вестник Дона, 2011, №1. URL: ivdon.ru/magazine/archive/n1y2011/330.
References
11. Pyatnitskiy E.S. AiT. 1996. №12. pp. 29-37.
12. Pshikhopov V.Kh., MedvedevM.Yu. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. 2006. №1. pp. 103-109.
13. Pshikhopov V.Kh. Pozitsionno-traektornoe upravlenie podvizhnymi ob"ektami [Position-path management of mobile objects]. Taganrog: Izd-vo TTI YuFU, 2009. 183 p.
14. PshikhopovV.Kh., SirotenkoM.Yu., Gurenko B.V. Informatsionno-izmeritel'nye i upravlyayushchie sistemy. Intellektual'nye i adaptivnye roboty. 2006. № 1-3. Vol.4. pp. 73-79.
15. Upravlenie podvizhnymi ob"ektami. Bibliograficheskiy ukazatel'. V 3-kh vypuskakh. Vyp. 3. Morskie ob"ekty [Mobile object management: In 3 volumes. Vol. 3. Underwater objects]. M.: 2011. 150 p.
16. LukomskiyYu.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnymi ob"ektami: Uchebnik [Control systems for marine mobile objects]. L: Sudostroenie, 1988. 272 p.
17. Medvedev M. Y., PshikhopovV.Kh., Robust control of nonlinear dynamic systems. Proceedings of 2010 IEEE Latin-American Conference on Communications (ANDERSON). 2010. Pp.1-7.
18. Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R., Gurenko B., Krukhmalev V. Airship autopilot design. SAE Technical Paper №2011-01-2736. 2011. 5 p.
19. Fedorenko R.V. Inћenernyj vestnik Dona (Rus), 2011, №1, URL: ivdon.ru/magazine/archive/n1y2011/371.
20. Kulchenko A.E. Inћenernyj vestnik Dona (Rus), 2011, №1, URL: ivdon.ru/magazine/archive/n1y2011/330.
Размещено на Allbest.ru
...Подобные документы
Отличительные черты способов, применяемых для планирования и генерации желаемых векторов углов в сочленениях манипулятора. Кубические законы изменения углов в сочленениях. Ограничения, относящиеся к траекториям сочленений. Допустимые траектории движения.
реферат [352,9 K], добавлен 24.11.2010Исследование движения механизма перемещения желоба. Проектирование маховика как регулятора движения системы. Расчеты скорости и ускорения начального звена. Кинетостатический расчет реакций в связях и уравновешивающего момента. Равновесие моментов сил.
курсовая работа [174,2 K], добавлен 06.03.2012Исходные данные для разработки робототизированного технологического комплекса. Анализ возможных вариантов компоновок комплекса. Построение и расчет элементов траектории захватного устройства. Расчет допустимых скоростей перемещения заготовки (детали).
дипломная работа [1,2 M], добавлен 26.10.2014Рассмотрение основных особенностей моделирования адаптивной системы автоматического управления, характеристика программ моделирования. Знакомство со способами построения адаптивной системы управления. Этапы расчета настроек ПИ-регулятора методом Куна.
дипломная работа [1,3 M], добавлен 24.04.2013Структурная схема электродвигателя постоянного тока с редуктором. Синтез замкнутой системы управления, угла поворота вала с использованием регуляторов контура тока, скорости и положения. Характеристика работы скорректированной системы управления.
курсовая работа [1,8 M], добавлен 09.03.2012Автоматизированные информационные системы, оценка эффективности. Системы управления ресурсами на предприятии, динамическое планирование с учетом результатов. Технология планирования, ориентированная на применение информационных систем предприятия.
курсовая работа [184,7 K], добавлен 29.11.2009Синтез системы автоматического управления волновым насосом для аппарата "Искусственное сердце". Выбор и обоснование выбора элементной базы локального режима управления. Расчет датчика обратной связи. Построение желаемой ЛАЧХ и ЛФЧХ дискретной системы.
курсовая работа [1,8 M], добавлен 11.03.2012Состав локальной системы автоматического управления (САУ). Выбор термоизмерительного датчика давления. Расчет датчика перемещения обратной связи локальной системы управления. Выбор усилителя мощности, двигателя, редуктора. Расчет передаточной функции САУ.
курсовая работа [1,1 M], добавлен 20.10.2013Определение параметров корректирующего устройства на вход системы. Синтез нечеткого регулятора на базовом режиме работы системы. Сравнительная оценка качества управления системы прототипа и нечеткой системы регулирования при возмущающем воздействии.
контрольная работа [963,5 K], добавлен 24.12.2014Получение эквивалентной передаточной функции. Построение годографа Михайлова для сочетания параметров регулятора. Их выбор по заданным показателям установившегося и переходного процесса. Построение частотных и временных характеристик замкнутой системы.
курсовая работа [439,9 K], добавлен 28.06.2011Требования к электроприводу и программируемому контроллеру. Разработка функциональной схемы системы управления вертикально-фрезерным станком. Расчет и выбор электродвигателей. Анализ преобразователей частоты и датчиков перемещения. Алгоритм работы станка.
дипломная работа [3,1 M], добавлен 28.06.2013Исследование автоматизированного электропривода типовых производственных механизмов и технологических комплексов. Определение показателей качества математической модели электропривода, оптимизирования регулятора. Анализ поведения системы без регулятора.
курсовая работа [1,1 M], добавлен 07.06.2011Назначение и состав изделия, входящие в его состав системы и элементы. Обоснование выбранной схемы самоходного подводного аппарата. Описание и работа составных частей. Гидродинамические расчеты: гидродинамического сопротивления, кабельной линии связи.
дипломная работа [1,5 M], добавлен 11.07.2011Исследование устойчивости САУ. Построение АЧХ, ФЧХ, АФЧХ. Численные методы интегрирования. Анализ системы с использованием спектрального метода (базис Лягерра). Анализ системы с использованием спектрального метода. Синтез регулятора матричным методом.
курсовая работа [683,1 K], добавлен 22.12.2008Использование робототехнических комплексов в процессах проведения рутинных, монотонных работ на конвейере, требующих высокой точности. Синтез систем формирования желаемой траектории и скорости движения манипулятора по заданным сплайнам в среде Matlab.
дипломная работа [1010,9 K], добавлен 23.01.2015Бумага как упругопластический, капиллярно-пористый листовый материал, состоящий из мелких волокон. Знакомство с особенностями проектирования подсистемы автоматизированной системы управления напорным ящиком БДМ. Анализ напорного ящика закрытого типа.
курсовая работа [1,3 M], добавлен 27.12.2014Исследование принципов работы системы управления влажностью бумажного полота сушильной части БДМ №1; построение функциональной схемы на базе логического программируемого контроллера. Разработка математической модели системы, анализ ее устойчивости.
дипломная работа [1,5 M], добавлен 27.12.2014Описание технологического процесса изготовления системы регулирования позиционного перемещения манипулятора. Характеристика действующих координатных возмущений. Расчёт численных значений времени и коэффициентов преобразования. Методы оценки устойчивости.
курсовая работа [120,6 K], добавлен 01.03.2010Выбор регуляторов системы автоматического управления электроприводом электродвигателя постоянного тока. Применение модального, симметричного оптимума, поконтурной оптимизации в процессе синтеза. Моделирование на базе программного пакета Simulink в Matlab.
курсовая работа [2,0 M], добавлен 04.04.2012Построение дерева иерархии, ременно-контактного чертежа, циклограммы, сложной сети Петри, проведение расчета дублеров, составление бесконтактной логической схемы с целью организации управления гибким производственным комплексом на основе системы ЧПУ.
курсовая работа [134,2 K], добавлен 28.03.2010