Исследование областей, задающих множества разрешенных конфигураций при нахождении механизма мобильного манипулятора в близости от запретных зон

Исследованы области пространства конфигураций, задающих совокупность достижимых точек рабочей зоны манипулятора с учетом положения запретных зон. Для аналитического задания областей использована теория множеств и совокупность поверхностей второго порядка.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 28.07.2017
Размер файла 443,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование областей, задающих множества разрешенных конфигураций при нахождении механизма мобильного манипулятора в близости от запретных зон

Ф.Н. Притыкин, Д.И. Нефедов, А.В. Рингельман

Омский государственный технический университет, Омск

Аннотация

конфигурация точка манипулятор запретный

Исследованы области пространства конфигураций, задающих совокупность достижимых точек рабочей зоны манипулятора с учетом положения запретных зон. Для аналитического задания областей использована теория множеств и совокупность поверхностей второго порядка.

Ключевые слова: синтез движений роботов, конфигурационное пространство, запретные зоны, интеллектуальные системы управления роботами.

Интеллектуальное управления робототехническими системами позволяет обеспечить их автономное функционирование в сложно организованных средах [1-3]. Одной из задач при этом является сокращение времени расчета, связанного с определением значения вектора приращений обобщенных координат на каждом шаге расчетов. Указанный вектор приращений вычисляют с учетом обеспечения заданного удаления исполнительного механизма манипулятора от запретных зон [4-6]. В работах [7,8] разработаны алгоритмы построения движений механизмов роботов основанные на использовании анализа точек конфигурационного пространства, задающих разрешенные конфигурации. Исследованию области конфигурационного пространства Q задающей множество разрешенных конфигураций для исполнительного механизма манипулятора мобильного робота «Варан» посвящена работа [9]. Запретная зона при этом была задана горизонтальной плоскостью, располагающейся сверху механизма манипулятора мобильного робота (для случая, когда движение осуществляется внутри туннеля). Параметры, задающие форму одной из областей 5 (форму одного из эллиптических цилиндров, который используется для определения области ) для этого случая определялись как функции от параметра высоты туннеля, в котором осуществляет движение мобильный робот [9]. В качестве указанных функций были использованы полиномы Лагранжа. Исследуем форму области , когда запретная зона Р ограничивается двумя плоскостями и положения которых определяются параметрами xop и zop (см. рис. 1a). Длины звеньев механизма манипулятора равны следующим значениям O1O2 = 900 мм, O2O3 = 700 мм и O3O4 = 500 мм. Минимальные и максимальные значения обобщенных координат, соответственно, равны (-30о, -120о, -120о) и (120о, 120о, 120о), интервал сетки, задающей исследуемые точки в пространстве Q, был принят равным ?qi = 15°. На рисунке 1б изображено множество разрешенных конфигураций при наличии запретной зоны Р при значении параметров xop = 500мм и zop = 500мм.

а б

Рис. 1 Механизм манипулятора мобильного робота «Варан»:

а - взаимное положение манипулятора мобильного робота и запретной зоны P, б - множество разрешенных конфигураций

Параметр Nkol на рисунке 1б определяет количество указанных конфигураций. В таблице приведены сечения области при q1 = 0 и различном расположении плоскостей и заданных значениями xop = 600мм , zop = 800мм и xop = 1200мм, zop = 800мм. Сечения построены в системах координат Oqq3q4 при заданных фиксированных значениях обобщенной координаты q2 (-120о, -105о, …, 120о).

Таблица - Изображение сечений области при различных положениях плоскостей и

Анализ сечений области показывает, что при задании запретной зоны Р двумя плоскостями и (см. рис. 1а, рис. 2) запрещенные конфигурации в сечениях области задаются точками, располагающимися внутри областей по форме близких к форме областей заданных эллипсами. Начальные положения центров эллипсов и значения длин большой и малой полуосей при этом изменяются при изменении xop , zop и q2. На основе экспериментальных исследований вычислены координаты указанных центров эллипсов, заданных точками Оэл определяемых координатами и (см. рис. 2). Верхние индексы 5-3 и 5-4 определяют принадлежность параметров области 5. Начальные положения центров эллипсов задают функции = f1 (xор, zор), = f2 (xор, zор), которые определены в результате построения множеств сечений области . Графики этих функций представлены на рис. 3аб.

Соответственно начальные численные значения большой и малой осей эллипсов определяют функции = f3 (xор, zор ) и = f4 (xор, zор). Угол наклона большой оси эллипса 5 по отношению к оси Oq q3 (эллипсы находятся в плоскостях параллельных плоскости Oq q3q4 конфигурационного пространства) для различных значений xop , zop и q2 не изменяется и равен 5 110о (см. рис. 2). Указанные зависимости представлены на рис.3в-г. Как видно из анализа рисунков представленных в таблице размеры большой a5 и малой b5 осей эллипсов в сечениях области зависят от обобщенной координаты q2 и изменяются не линейно.

Рис. 2 Параметры формы и положения эллипсов располагающихся в сечениях области

а б

в г

Рис. 3 Графики-функции: а - = f1 (xор, zор );

б - = f2 (xор, zор ); в - = f3 (xор, zор ); г - = f4 (xор, zор)

В связи с этим было принято значения параметров , , a5 и b5 задавать в виде полиномов третей степени:

q5-3 =;

q5-4 =;

a5 = ; (1)

b5 = ,

где , , …, , , определяют коэффициенты полиномов (1), задающих область 5. Значения данных коэффициентов получены экспериментальным путем на основе получения множества сечений при различных значениях xор, zор и q2. Значения указанных коэффициентов для двух положений запретной зоны Р заданы в первом столбце таблицы.

Неравенство, определяющее область 5 пространства Q задающее запрещенные конфигурации имеет следующий вид [9]:

(2)

Неравенство (2) используется в зависимости [9,10]:

((((((1) 2) 3) 4 ) 5) 6 ) 0. (3)

В данном неравенстве, область - определяет параллелепипед, заданный предельными значениями обобщенных координат, 1, 5 - области, точки которых находятся снаружи эллиптических цилиндров [9]. Области 2, 3, 4 задают полупространства, определяемые плоскостями. 6 - область, определяемая параболическим цилиндром [9]. Использование неравенства (3) позволяет вычислять в приближенном виде запрещенные конфигурации при нахождении механизма манипулятора мобильного робота в непосредственной близости от запретной зоны. На рис. 4 представлены графики t = f1(k) и t = f2(k) определяющие зависимость времени вычисления разрешенных конфигураций при использовании двух различных способов расчета. При проведении исследований использовался компьютер на базе процессора Dual Core Intel Core I3-540, оперативная память DDR3 4 Гб, видеоадаптер дискретный Zotac GeForce GTX 560 с объемом памяти 2Гб. Параметр k определяет число итераций при вычислении разрешенных конфигураций при синтезе движений по вектору скоростей.

Рис. 4. Графики-зависимости t = f2(k) и t = f1(k)

Данный параметр используется при вычислении вектора обобщенных скоростей при наличии двигательной избыточности. Первый способ t = f2(k) основан на использовании неравенств (2,3) определяющих область . Второй способ t = f1(k) основан на определении пересечений трехмерных примитивов задающих звенья механизмов с запретной зоной. Как видно из графиков функций первый способ расчета разрешенных конфигураций требует на несколько порядков меньше времени вычислений, чем второй.

Разработанное программное обеспечение и полученные аналитические зависимости могут быть использованы как составная часть интеллектуальных систем управления, которые позволяют планировать траектории перемещения манипуляторов в заранее известном сложно организованном пространстве, с целью обеспечения автономного функционирования роботов.

Литература

1. Ющенко, А. С. Интеллектуальное планирование в деятельности роботов // Мехатроника, автоматизация, управление. 2005. №3. С. 5 18.

2. Макаров, И. М., Лохин В. М., Манько С. В., Романов М. П., Евстигнеев Д. В., Семенов А. В. Интеллектуальные робототехнические системы: принципы построения и примеры реализации. Часть 1 // Мехатроника, автоматизация, управление. 2004. №11. С. 14 23.

3. Егоров, А. С., Лопатин П.К. Использование алгоритма полиномиальной аппроксимации в задаче управления манипулятором в среде с неизвестными препятствиями // Мехатроника, автоматизация, управление. 2013. №3. С. 2429.

4. Притыкин, Ф. Н. Виртуальное моделирование движений роботов, имеющих различную структуру кинематических цепей: монография; ОмГТУ - Омск: Изд-во ОмГТУ, 2014. - 172 с.: ил.

5. Притыкин, Ф. Н., Осадчий А.Ю. Способ кодирования информации при задании геометрических моделей исполнительных механизмов роботов // Инженерный вестник Дона, 2014, № 2. URL: indon.ru/ magazine//archive/n2y2014/2363/.

6. Ляшков, А.А., Завьялов А.М. Семейство поверхностей, заданное формулами преобразования координат, и его огибающая // «Инженерный вестник Дона», 2013, №1. URL: ivdon.ru/magazine/archive/n1y2013/1512/.

7. Isto P. A parallel motion planner for systems with many degrees of freedom // Proc. of the 10th Intemat. Conf. on Advanced Robotics (ICAR 2001), August 22--25, 2001, Hotel Mercure Buda, Budapest, Hungary. pp. 339--344.

8. Lopatin P. K. Algorithm of a manipulator movement amidst unknown obstacles // Proc. of the 10th International Conference on Advanced Robotics (ICAR 2001). August 22--25. 2001. Hotel Mer- cure Buda, Budapest, Hungary. pp. 327--331.

9. Притыкин, Ф.Н., Осадчий А.Ю. Исследование областей пространства конфигураций, задающих совокупность достижимых точек рабочей зоны манипулятора с учетом положения запретных зон // Омский научный вестник. 2014. № 3 (133). С. 70 74.

10. Рвачев, В. Л. Методы алгебры логики в математической физике - Киев; 1974. - 256 с.

11. References

1. Yushchenko, A. S. Mekhatronika, avtomatizatsiya, upravlenie. 2005. №3. pp. 5 - 18.

2. Makarov, I. M.., Lokhin V. M., Man'ko S. V., Romanov M. P., Evstigneev D. V., Semenov A. V. Mekhatronika, avtomatizatsiya, upravlenie. 2004. №11. pp. 14 - 23.

3. Egorov, A. S. Mekhatronika, avtomatizatsiya, upravlenie. 2013. №3. pp. 24 - 29.

4. Pritykin, F. N. Virtual'noe modelirovanie dvizheniy robotov, imeyushchikh razlichnuyu strukturu kinematicheskikh tsepey [Virtual modeling movements of robots with different structures kinematic chains]: monografiya. OmGTU. Omsk: Izd-vo OmGTU, 2014. 172 p. : il.

5. F. N. Pritykin, A. Yu. Osadchiy. Inћenernyj vestnik Dona (Rus), 2014, № 2 ivdon.ru/magazine/archive/n2y2014/2363

6. A.A. Lyashkov, A.M. Zav'yalov. Inћenernyj vestnik Dona (Rus), 2013, №1 ivdon.ru/magazine/archive/n1y2013/1512

12. 9. F. N. Pritykin, A.Yu. Osadchiy. Omskiy nauchnyy vestnik. 2014. № 3 (133). pp. 70 - 74.

13. 10. Rvachev, V. L. Metody algebry logiki v matematicheskoy fizike [Methods of algebra of logic in mathematical physics]. Kiev; 1974. 256 p.

Размещено на Allbest.ru

...

Подобные документы

  • Структурная схема механизма робота-манипулятора в пространстве. Определение степени подвижности механизма робота-манипулятора. Анализ движения механизма робота-манипулятора и определения время цикла его работы. Определение и построение зоны обслуживания.

    курсовая работа [287,4 K], добавлен 06.04.2012

  • Структурный, кинематический и динамический анализ манипулятора. Расчет параметров зоны обслуживания устройства, скоростей и ускорений. Определение геометрических характеристик поперечного сечения звеньев манипулятора с учетом характера и вида нагружения.

    курсовая работа [908,4 K], добавлен 19.06.2012

  • Выбор оптимальной системы электропривода механизма выдвижения руки манипулятора, выбор передаточного механизма и расчет мощности электродвигателя. Моделирование режимов работы и процессов управления, разработка электрической схемы конструкции привода.

    курсовая работа [1,9 M], добавлен 09.01.2010

  • Кинематическая схема механизма захвата, технические данные манипулятора. Энергетический баланс механической части электропривода. Передаточное число редуктора, номинальная скорость вращения выбранного двигателя и скорость движения исполнительного органа.

    курсовая работа [1,4 M], добавлен 22.05.2019

  • Описание конструкции и принципа действия манипулятора. Разработка гидропривода подвода захвата манипулятора. Определение потерь давления в аппаратах на этапе перемещения комплектов. Разработка технологического процесса изготовления приводной шестерни.

    дипломная работа [483,5 K], добавлен 22.03.2018

  • Выбор рабочей жидкости манипулятора. Расчет мощности и подачи насосов. Определение параметров распределителя. Выбор регулирующей и направляющей гидроаппаратуры. Расчет диаметров трубопроводов, потерь давления во всасывающем трубопроводе. Выбор фильтров.

    курсовая работа [969,7 K], добавлен 09.06.2012

  • Манипулятор - механизм для управления пространственным положением орудий и объектов труда, характеристика его оснащения. Расчёт параметров механической системы манипулятора типа ВПП. Процесс работы манипулятора, его кинематическая система и мощность.

    курсовая работа [48,4 K], добавлен 27.08.2012

  • Патентно-информационное исследование и разработка структуры пневмопривода. Использование промышленного робота МП-9С для автоматизации технологических процессов, где необходимо осуществить захват, перенос и установку детали по координатам рабочей зоны.

    курсовая работа [3,1 M], добавлен 23.07.2012

  • Использование промышленных роботов в процессе производства с опасными условиями труда. Разработка манипулятора: структурная схема механизма: определение уравнений движения, скорости и ускорения; расчёты параметров робота, построение зоны обслуживания.

    курсовая работа [541,9 K], добавлен 06.04.2012

  • Автоматическая машина, состоящая из манипулятора и устройства программного управления его движением. Назначение и применение промышленного робота. Структурная схема антропоморфного манипулятора. Задачи механики манипуляторов и ее кинематический анализ.

    реферат [179,3 K], добавлен 09.12.2010

  • Описание схемы и расчет дифференциальных уравнений движения манипулятора с двумя степенями свободы. Кинематический анализ схемы и решение уравнений движения звеньев и угловых скоростей механизма. Реакции связей звеньев и мощность двигателя управления.

    курсовая работа [3,2 M], добавлен 06.08.2013

  • Пространственные механизмы со многими степенями свободы. Синтез четырехзвенного манипулятора. Выбор передачи редуктора для требуемых звеньев. Расчет мощности привода четвертого звена. Расчет вала на прочность. Основные параметры и подбор подшипников.

    курсовая работа [1,3 M], добавлен 05.01.2013

  • Описание технологического процесса изготовления системы регулирования позиционного перемещения манипулятора. Характеристика действующих координатных возмущений. Расчёт численных значений времени и коэффициентов преобразования. Методы оценки устойчивости.

    курсовая работа [120,6 K], добавлен 01.03.2010

  • Организация надзора за безопасной эксплуатацией грузоподъемных кранов-манипуляторов. Признаки и нормы браковки стальных канатов. Назначение, допуск к самостоятельному выполнению работ в качестве оператора крана-манипулятора. Оказание первой помощи.

    шпаргалка [155,1 K], добавлен 22.11.2011

  • Технические характеристики манипулятора. Структура технического оборудования. Функциональная и электрическая схемы. Характеристика применяемых датчиков. Словесный алгоритм технологического цикла. Блок-схема алгоритма программы управления манипулятором.

    курсовая работа [1,8 M], добавлен 20.12.2012

  • Определение закона движения механизма. Кинестетический силовой расчет основного рычажного механизма. Проектирование цилиндрической эвольвентной зубчатой передачи. Построение графика углового ускорения звена приведения в функции обобщенной координаты.

    курсовая работа [1,1 M], добавлен 05.12.2012

  • Расчет степени свободы и класса структурного анализа механизма. Кинематическое исследование рычажного механизма: определение положения всех звеньев и точек в зависимости от положения ведущего звена. Определение моментов и сил инерции звеньев механизма.

    контрольная работа [401,3 K], добавлен 04.11.2013

  • Параметры манипулятора по представлению Денавита-Хартенберга (система координат, параметры звеньев и сочленение). Однородные матрицы преобразований для всех переходов системы координат. Решение прямой задачи кинематики с реализацией в среде SimMechanics.

    курсовая работа [1,1 M], добавлен 25.12.2013

  • Расчет металлоконструкции крана с целью облегчения собственного веса крана. Обоснование параметров крана-манипулятора. Гидравлические схемы для механизмов. Выбор сечений и определение веса несущих узлов металлоконструкции. Расчет захватных устройств.

    дипломная работа [2,2 M], добавлен 11.08.2011

  • Описание конструкции манипулятора защитной трубы. Модернизация узлов машины. Расчет нагрузок, мощности привода вращения стрелы и перемещения каретки, реечной передачи. Показатели, критерии технико-экономической и финансовой эффективности проекта.

    дипломная работа [1,7 M], добавлен 07.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.