Оборудование автоматизированного производства

Суть перспективности предприятий машиностроительного производства. Основные положения теории производительности устройств и труда. Применение роторных машин и одношпиндельных автоматов. Состав, параметры и классификация роботов. Анализ гибкости системы.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 06.09.2017
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Количество манипуляторов у роботов в большинстве случаев ограничено одним. Однако в зависимости от назначения существуют конструкции роботов с 2, 3 и совсем редко 4 манипуляторами. Манипулятор может быть оснащен двумя схватами (рабочими органами), что повышает эффективность его работы.

Тип и параметры рабочей зоны манипулятора определяют область окружающего робот пространства, в пределах которой он может осуществлять манипуляции, не передвигаясь, т. е. при неподвижном основании. Рабочая зона манипулятора -- это пространство, в котором может находиться его рабочий орган при всех возможных положениях звеньев манипулятора. Форма рабочей зоны определяется системой координат, в которой осуществляется движение рабочего органа манипулятора, и числом степеней подвижности манипулятора.

Подвижность робота определяется наличием или отсутствием у него системы передвижения. В первом случае роботы называют мобильными, а во втором - стационарными

По способу размещения стационарные и мобильные роботы бывают

· напольными,

· подвесными (мобильные роботы этого типа обычно перемещаются по поднятому монорельсу),

· встраиваемыми в другое оборудование (например, с размещением на станине обслуживаемого им станка).

Исполнение робота по назначению зависит от внешних условий, в которых он должен функционировать. Различают исполнение

· нормальное,

· пылезащитное,

· теплозащитное,

· влагозащитное,

· взрывобезопасное и т. д.

Классификация роботов по способу управления. По этому признаку различают роботы с

программным,

адаптивным и

интеллектуальным управлением.

Управление движением по отдельным степеням подвижности может быть непрерывным и дискретным. В последнем случае управление движением осуществляется заданием последовательности точек с остановкой в каждой из них. Простейшим вариантом дискретного управления является цикловое (например , робот ЦПР-1), при котором количество точек позиционирования по каждой степени подвижности минимально - чаще всего ограничено двумя - начальной и конечной.

Классификация роботов по быстродействию и точности движений. Эти параметры взаимосвязаны и характеризуют динамические свойства Быстродействие манипулятора определяется скоростью перемещения его рабочего органа и может быть разбито на 3 диапазона в зависимости от линейной скорости:

· малое -- до 0,5 м/с;

· среднее -- от 0,5 до 1--3 м/с;

· высокое -- при больших скоростях.

Наибольшая скорость манипуляторов современных роботов достигает 10 м/с и выше.

Точность манипулятора и системы передвижения робота характеризуется погрешностью позиционирования. Чаще всего точность роботов характеризуют абсолютной погрешностью. Точность роботов общего применения можно разбить на 3 диапазона в зависимости от линейной погрешности:

· малая -- от 1 мм и более;

· средняя -- от 0,1 до 1 мм;

· высокая -- при меньшей погрешности.

Наименьшую точность имеют роботы, предназначенные для выполнения наиболее грубых, например, транспортных движений, а наибольшую, микронную, - роботы, используемые, например, в электронной промышленности.

Рассмотренные ранее параметры роботов относятся к классификационным, т. е. используются при формировании типажа роботов и, соответственно, их наименований.

Параметры, определяющие технический уровень роботов.

К параметрам, определяющим технический уровень относятся параметров, которые могут иметь количественное выражение, такие, как из ранее рассмотренных: быстродействие, точность.

К параметрам относятся, в частности,

· удельная грузоподъемность, отнесенная к массе робота,

· выходная мощность манипулятора (произведение грузоподъемности на скорость перемещения), отнесенная к мощности его приводов;

· размер рабочей зоны, отнесенный к габаритам робота.

Другими ранее не упоминавшимися параметрами, характеризующими технический уровень роботов, являются

· число одновременно работающих степеней подвижности,

· надежность,

· способы и время программирования.

Манипуляционные системы

Сегодня основным типом манипуляционных систем роботов являются механические манипуляторы. Они представляют собой пространственные механизмы в виде кинематических цепей из звеньев, образующих кинематические пары с угловым или поступательным относительным движением и системой приводов обычно раздельных для каждой степени подвижности. Манипуляторы заканчиваются рабочим органом.

Степени подвижности манипулятора делятся на

· переносные - для перемещения рабочего органа в рабочей зоне манипулятора,

· ориентирующие - для угловой ориентации рабочего органа.

Минимально необходимое число переносных степеней подвижности для перемещения рабочего органа в пространстве рабочей зоны равно 3. Однако для расширения манипуляционных возможностей обычно снабжают несколькими избыточными переносными степенями подвижности, Современные манипуляторы в среднем имеют 4--6 степеней подвижности, но существуют манипуляторы и с 8--9 такими степенями.

Максимально необходимое число ориентирующих степеней подвижности равно 3. Они реализуются кинематическими парами с угловым перемещением, обеспечивающими поворот рабочего органа манипулятора относительно его продольной и 2 других взаимно перпендикулярных осей.

Анализ кинематических схем переносных манипуляторов позволяет у большинства роботов выделить три основные формы рабочих зон: параллелепипед, цилиндр, сфера.

На рис. 7.2 - 7.5 показаны конструкции манипуляторов с 3 переносными степенями подвижности в различных системах координат и их рабочие зоны.

Манипуляторы, работающие в прямоугольной системе координат (рис. 7.2), имеют рабочую зону в форме параллелепипеда. Здесь все перемещения только поступательные.

В манипуляторах, работающих в цилиндрической системе координат (см. рис. 7.3), наряду с поступательными перемещениями осуществляется одно угловое перемещение (по окружности). Соответственно, рабочая зона ограничена цилиндрическими поверхностями.

В сферической системе координат (рис. 7.4) осуществляются уже 2 угловых перемещения и рабочая зона ограничена сферическими поверхностями. Манипуляторы с такой системой координат, как правило, сложнее, чем с цилиндрической системой, однако компактнее.

Рис. 7.2. Манипулятор с прямоугольной системой координат (а) и его рабочая зона (б)

Рис. 7.3. Манипулятор с цилиндрической системой координат (а) и его рабочая зона (б)

Рис. 7.4. Манипулятор со сферической системой координат (а) и его рабочая зона (б)

Показанный на рис. 7.5 манипулятор с угловой системой координат производит только угловые перемещения, т. е. все его звенья представляют собой шарниры. Поэтому часто такие манипуляторы называют шарнирными и антропоморфными. Роботы с такого типа манипуляторами благодаря возможности последних складываться, не выступая практически за габариты основания робота, обладают наибольшей компактностью, хотя и наиболее сложны в управлении.

Представленные на рис. 7.2 - 7.5. манипуляторы имеют всего по 3 переносных степени подвижности. Однако поскольку манипуляторы реальных роботов содержат большее число степеней подвижности, в них часто используются различные комбинации рассмотренных ранее основных типов систем координат.

Рис. 7.5. Манипулятор с угловой системой координат (а) и его рабочая зона (б)

Механические системы современных манипуляторов представляют собой, как правило, разомкнутые кинематические цепи из подвижно соединенных звеньев. Соседние звенья образуют вращательные и поступательные кинематические пары, обычно с одной степенью подвижности. Применяются и более сложные кинематические схемы манипуляторов, содержащие параллельно соединенные звенья.

На рис. 7.6 показаны варианты кинематических схем с параллельным соединением звеньев, нашедших применение в манипуляторах для повышения их жесткости и маневренности. Схема на рис. 7.6, б, называемая платформой Стюарта, состоит из 2 пластин, шарнирно соединенных несколькими (минимально 3) поступательными парами.

Рис. 7.6. Варианты параллельных кинематических схем

При изменении длины этих пар происходит пространственное перемещение верхней пластины относительно нижней. Последовательное соединение нескольких таких конструкций позволяет создавать многостепенные манипуляционные системы, способные принимать весьма сложные положения. (Такие конструкции, в частности, применяются в станкостроении.) На рис. 7.6, в показан еще один вариант такого типа

кинематической схемы, работающей в одной плоскости. Конструкция манипуляторов определяется, прежде всего, их кинематической схемой, существенное значение имеют также тип и размещение приводов и механизмов передачи движения от них к звеньям манипулятора.

Размещение приводов и механизмов передачи движения от двигателя к звену манипулятора с точки зрения простоты передачи лучше всего, конечно, размещать двигатели непосредственно у перемещаемых ими звеньев. Однако такая компоновка манипулятора приводит к существенному увеличению его габаритов и массы.

Предельным вариантом компоновки манипулятора является компоновка, когда все двигатели размещены в одном кожухе на его основании, а передача движения от них к звеньям манипулятора осуществляется через вставленные друг в друга трубчатые валы и конические зубчатые передачи в шарнирах манипулятора. Такая компоновка применяется в копирующих манипуляторах, предназначенных для работы в экстремальных условиях (например, радиация), с тем, чтобы освободить приводы от работы в этих условиях. Подобная компоновка обеспечивает минимальные габариты манипулятора,

Другой предельный случай -- размещение двигателей непосредственно при приводимых ими звеньях -- нашел применение в манипуляторах с безредукторными электрическими приводами (прямыми приводами) и линейными электрическими приводами. Отсутствие в этом случае редукторов и механических передач позволяет обеспечить высокую точность благодаря повышенной жесткости и отсутствию зазоров.

Особую группу манипуляционных систем образуют манипуляторы с управляемой деформацией. На рис. 7.7. приведены примеры их кинематических схем. Схема на рис. 7.7, а состоит из набора сферических дисков. В дисках имеются центральное отверстие и 4 отверстия по периферии. Через эти отверстия пропущены тросы. Их концы с одной стороны закреплены на последнем (верхнем) диске. С другой стороны нижние концы периферийных тросов попарно присоединены к двум приводам, вращение которых вызывает деформацию всей конструкции и перемещение ее конца, на котором укреплен рабочий орган этой манипуляционной системы. Центральный трос соединен внизу с пружиной, которая осуществляет ее натяжение, центрируя всю систему дисков.

Рис. 7.7. Кинематические схемы устройств с управляемой деформацией

Последовательное соединение нескольких таких наборов дисков со своей системой приводов позволяет создавать манипуляционные системы типа хобота, способные принимать волнообразные пространственные конфигурации и перемещать рабочий орган при наличии препятствий и ограничений.

На рис. 7.7, б показано аналогичное пространственно изгибающееся устройство, но на пневматике. Оно состоит из трех жестко скрепленных эластичных трубок. Верхний конец трубок закрыт, а снизу подведен сжатый воздух. При одинаковом давлении во всех трубках устройство находится в вертикальном положении. При разных значениях давления в трубках оно изгибается в сторону трубок с меньшим давлением. Как и в предыдущем устройстве, последовательное соединение таких секций со своей системой подачи воздуха позволяет получать более сложные пространственные конфигурации с перегибами.

На рис. 7.7, в приведены 2 примера звена манипуляционной системы, в котором применен биметаллический элемент, деформируемый при нагревании пропускаемым через него электрическим током. В первой схеме реализуется поступательное перемещение конца звена, а во второй - вращательное. Манипуляционные системы составляются из таких последовательно соединенных элементов.

На рис. 7.7, г показан подвижный элемент, основанный на эффекте памяти формы. Этот эффект, которым обладают некоторые металлические сплавы, состоит в следующем. Если деформировать (согнуть, закрутить) стержень из такого материала, а затем нагреть его до определенной температуры, то деформация исчезнет, а при остывании стержня она восстановится. На рис. 7.7, г показан пример такого подвижного элемента в виде пружины, которая при нагреве электрическим током осуществляет поступательное (х) или вращательное (ф) перемещение в зависимости от вида предварительной деформации пружины.

Общей особенностью приведенных на рис. 7.7 схем является то, что их элементы активные, т. е. в них подвижное звено манипулятора совмещено с приводом. Другая связанная с этим же особенность -- эти схемы не имеют конечного числа степеней подвижности.

Ранее были описаны следующие 3 типа кинематических схем, которые используются в механических манипуляторах:

1. разомкнутые кинематические цепи из жестких звеньев (основной тип для современных манипуляторов);

2. кинематические цепи, включающие параллельно соединенные звенья;

3. кинематические схемы с управляемой деформацией.

Рабочие органы манипуляторов

Рабочие органы манипуляторов служат для непосредственного взаимодействия с объектами внешней среды и делятся на захватные устройства и специальный инструмент. Рабочие органы могут быть постоянными и съемными, в том числе с возможностью их автоматической замены в ходе выполнения технологической операции.

Захватные устройства. Они предназначены для того, чтобы брать объект, удерживать его в процессе манипулирования и освободить по окончании этого процесса. Существуют следующие основные типы захватных устройств - схваты:

· механические,

· пневматические,

· электромагнитные.

Схваты могут быть нерегулируемыми и регулируемыми. Нерегулируемые схваты требуют дополнительных устройств для съема деталей.

Схват -- это механическое захватное устройство, аналог кисти руки человека. Самые простые двухпальцевые схваты напоминают обычные плоскогубцы, снабженные приводом. На рис. 7.8 показана конструкция подобного схвата с пневматическим приводом. В зависимости от объектов манипулирования применяют схваты с 3, 4 и реже с большим числом пальцев. На рис. 7.9 показан пневматический схват с 5 гибкими надувными пальцами. За счет разной жесткости пальцев в сечении при подаче в них сжатого воздуха они изгибаются, захватывая находящиеся в их зоне предметы.

Схваты часто очувствляют с помощью контактных датчиков, датчиков проскальзывания, усилия и дистанционных датчиков (ультразвуковых, оптических и др.), выявляющих предметы вблизи схвата и между его пальцами.

Рис. 7.8. Двухпальцевый схват: 1; 2 -- пальцы (губки);

Рис. 7.9. Пневматический схват с 5 гибкими надувными пальцами:

В наиболее распространенном типе вакуумного захватного устройства использованы вакуумные присоски, которые удерживают объекты за счет разряжения воздуха при его отсосе из полости между присоской и захватываемым объектом. Для захватывания объектов сложной формы применяют вакуумные захватные устройства с несколькими присосками.

Магнитные захватные устройства используются для взятия ферромагнитных объектов. В роботах нашли применение в основном захватные устройства с электромагнитами, но имеются устройства и с

постоянными магнитами. (Для освобождения захваченного предмета они снабжены специальными механическими выталкивателями.)

Захватные устройства бывают универсальными и специальными (для работы с хрупкими и протяженными предметами и т. д.).

Захватные устройства часто присоединяют к последнему звену манипулятора через промежуточные, податливые конструктивные элементы. С их помощью осуществляется компенсация возможных неточностей позиционирования и устраняются возникающие при этом механические напряжения в звеньях манипулятора.

Рабочий инструмент. В случаях, когда объектом манипулирования является рабочий инструмент, с помощью которого робот выполняет основные технологические операции (нанесение покрытий, сварка, завинчивание гаек, зачистка поверхностей и т. п.), как правило, не берется захватным устройством, а непосредственно крепится к манипулятору вместо него. Часто при этом к инструменту необходимо обеспечить подвод энергии или какого-либо рабочего тела. Для окрасочного робота -- это краска и воздух к пульверизатору, для сварочного робота -- сварочный ток к сварочным клещам при точечной сварке или проволочный электрод, газ и охлаждающая вода при дуговой сварке и т. д. Для этого требуется разработка

Классификация приводов роботов

Привод включает двигатель и устройство управления им. Кроме того, в состав привода могут входить различные механизмы для передачи и преобразования движения (редукторы, преобразователи вращательного движения в поступательное и наоборот), тормоз и муфта.

К приводам, применяемым в роботах, предъявляют весьма жесткие специфические требования:

· должны встраиваться в исполнительные системы робота -- в манипуляторы и системы передвижения,

· габариты и масса приводов должны быть минимальными

· так как приводы в роботах работают в основном в неустановившихся режимах и с переменной нагрузкой, то приводы в переходных процессах должны быть практически неколебательными

Важными параметрами приводов роботов являются также надежность, стоимость, удобство эксплуатации. Скорость поступательного движения на выходе приводов роботов должна составлять от долей до нескольких м/с при погрешности отработки перемещения, равной долям миллиметра.

В роботах нашли применение все известные типы приводов: электрические, гидравлические и пневматические; с поступательным и вращательным движением; регулируемые (по положению и скорости) и нерегулируемые; замкнутые (с обратной связью) и разомкнутые; непрерывного и дискретного действия (в том числе шаговые).

Устройство управления может быть непрерывного действия, релейным, импульсным или цифровым.

Применение пневматических приводов в робототехнике объясняется их дешевизной, простотой и соответственно надежностью. Правда, эти приводы плохо управляемы и поэтому используются в основном как нерегулируемые с цикловым управлением. Пневматические приводы характеризуются высоки скоростями перемещений элементов робота, поэтому для снижения скорости в роботах с цикловым управление применяются демпферы. Пневматические приводы применяют только в роботах небольшой грузоподъемности -- до 10кг, реже 20кг.

Гидравлические приводы наиболее сложны и дороги по сравнению с пневматическими и электрическими. Однако при мощности 500--1000 Вт и выше они обладают наилучшими массогабаритными характеристиками и поэтому являются основным типом привода для тяжелых и сверхтяжелых роботов. Гидравлические приводы хорошо управляются, поэтому они нашли также применение в роботах средней грузоподъемности, для которых требуются высококачественные динамические характеристики.

Электрический привод, несмотря на его хорошую управляемость, простоту подвода энергии, больший к.п.д. и удобство эксплуатации имеет худшие массогабаритные характеристики, чем пневматический и гидравлический приводы. Основная область применения электрических приводов в робототехнике -- это роботы средней грузоподъемности (десятки килограмм), легкие роботы с высококачественным управлением и мобильные роботы. машиностроительный одношпиндельный роторный робот

В промышленных роботах нашли применение электроприводы следующих типов:

§ на двигателях постоянного тока традиционных коллекторных и бесколлекторных (вентильных);

§ на асинхронных двигателях как нерегулируемых (с цикловым управлением), так и с частотным управлением;

· на шаговых двигателях;

§ на различного типа регулируемых муфтах в сочетании с нерегулируемым асинхронным двигателем или двигателем постоянного тока;

· на электромагнитах (соленоидных и других типов).

В основном применяются традиционные электроприводы с угловым перемещением, т. е. вращающиеся. Однако в роботах с поступательными перемещениями наряду с вращающимися двигателями в комбинации с механизмами, преобразующими вращательное движение в поступательное (типа передачи шестерня-рейка и т. п.), нашли применение и специальные линейные приводы постоянного и переменного тока.

Электроприводы для роботов в общем случае включают электродвигатель, снабженный датчиками обратной связи по положению и скорости, механическую передачу, часто тормоз, иногда муфту (например, для защиты двигателя от перегрузки) и устройство управления.

К перспективным разработкам электрических приводов относятся

· высокомоментные безредукторные двигатели,

· приводы с непосредственным цифровым управлением,

· бездатчиковые приводы с расчетом значений перемещения и скорости по измеряемым электрическим переменным двигателя.

Сенсорные системы

Сенсорные системы предназначены для получения информации о внешней среде и положении робота в ней. В отдельных системах роботов имеются также различные чувствительные устройства -- датчики, необходимые для функционирования этих систем (например, датчики обратной связи в приводах, во вторичных источниках питания и т. п.). Эти устройства, ориентированные на внутренние параметры робота, не специфичны для него в целом и не относятся к сенсорным системам робота.

По выявляемым свойствам и параметрам сенсорные системы можно разделить на следующие 3 группы.

Системы, дающие общую картину окружающей среды с последующим выделением отдельных объектов, значимых для выполнения роботом его функций.

Системы, определяющие различные физико-химические свойства внешней среды и ее объектов.

Системы, определяющие координаты местоположения робота и параметры его движения, включая его координаты относительно объектов внешней среды и усилия взаимодействия с ними.

К первой группе сенсорных системам относятся системы технического зрения и различного типа локаторы.

Вторая группа сенсорных систем наиболее многообразна. Это измерители геометрических параметров, плотности, температуры, оптических свойств, химического состава и т. д.

Третья группа сенсорных систем определяет параметры, относящиеся к самому роботу. Это измерители его географических координат в пространстве от спутниковых систем до использующих магнитное поле Земли, измерители угловых координат (гироскопы), измерители перемещения и скорости, в том числе и относительно отдельных объектов внешней среды вплоть до фиксации соприкосновения с ними. В составе робота все эти сенсорные системы ориентированы на обслуживание 2 исполнительных систем - передвижения и манипуляционной. Это определяет и основные требования к сенсорным системам -- дальность действия, точность, быстродействие и т. д.

Сенсорные системы, используемые в системах передвижения робота, подразделяются на системы, обеспечивающие:

· навигацию в пространстве,

· безопасность движения (предотвращение столкновений с препятствиями и опрокидываний на уклонах, попадания в недопустимые для робота внешние условия и т. п.).

Сенсорные системы, обслуживающие манипуляторы, образуют две подгруппы:

· системы, входящие в контур управления движением манипулятора,

· системы, очувствления его рабочего органа.

В число современных систем часто входят размещенные у рабочего органа манипулятора системы технического зрения и измерители усилий.

Важным параметром сенсорных систем является дальность действия. По этому показателю сенсорные системы роботов можно разделить на контактные, бесконтактные, ближнего, дальнего и сверхдальнего действия.

Контактные сенсорные системы применяются для очувствления рабочих органов манипуляторов и корпуса (бампера) мобильных роботов. Они позволяют фиксировать контакт с объектами внешней среды (тактильные сенсоры), измерять усилия, возникающие в месте взаимодействия (силомоментные сенсоры), определять проскальзывание объектов при их удержании захватным устройством, определять размеры объектов (путем их ощупывания). Они реализуются с помощью концевых выключателей, герметизированных магнитоуправляемых контактов, на основе токопроводящей резины ("искусственная кожа") и т. д.

Сенсорные системы ближнего действия обеспечивают получение информации об объектах, расположенных в непосредственной близости от рабочего органа манипулятора или корпуса робота, т. е. на расстояниях, соизмеримых с их размерами. Такие бесконтактные устройства технически сложнее контактных, но позволяют роботу выполнять задание с большей скоростью, заранее выдавая информацию о различных объектах до соприкосновения с ними.

Сенсорные системы дальнего действия служат для получения информации о внешней среде в объеме всей рабочей зоны манипуляторов роботов и окружающей среды мобильного робота.

Сенсорные системы сверхдальнего действия применяются главным образом в мобильных роботах. К ним относятся различные навигационные системы, локаторы и другие сенсорные системы соответствующей дальности действия. Эти устройства находят применение и в стационарных роботах при работе с подвижными объектами, чтобы заранее предвидеть их появление в рабочей зоне.

В бесконтактных сенсорных системах для получения требуемой информации используются излучаемые ими специальные сигналы (оптические, радиотехнические, ультразвуковые и т. д.) и естественные излучения среды и ее объектов. В зависимости от этого различают активные и пассивные сенсорные системы.

Активные сенсорные системы имеют передатчик, излучающий первичный сигнал, и приемник, регистрирующий прошедший через среду прямой сигнал или вторичный сигнал, отраженный от объектов среды.

Пассивные системы имеют только приемное устройство, а роль излучателя играют сами объекты внешней среды. Поэтому пассивные сенсорные системы технически обычно проще и дешевле активных, но менее универсальны.

Сенсорные системы роботов можно разделить на системы с фиксированным направлением восприятия и с переменным (сканирующие).

В настоящее время для очувствления роботов наиболее широкое применение получили системы технического зрения, локационные, силомоментные и тактильные. Наиболее универсальными из них являются системы технического зрения. Видеосистемы в составе роботов, должны работать в реальном масштабе времени и иметь высокую надежность при невысокой стоимости.

Системы технического зрения могут быть монокулярными, бинокулярными (стереозрение) и многоракурсными (с большим числом "точек зрения"). Специфическим для роботов вариантом является применение подвижных видеосенсорных устройств, в том числе размещаемых непосредственно на манипуляторах.

Конструктивно сенсорные устройства размещают на рабочих органах манипуляторов (устройства ближнего действия), на корпусе робота или вне робота (устройства дальнего и сверхдальнего действия).

Устройства управления роботов

Устройство управления робота осуществляет автоматическое управление его исполнительными системами -- манипуляционными и передвижения, образуя в совокупности с ними как объектами управления систему автоматического управления робота. Кроме того, устройства управления роботов часто используют и для управления различными другими объектами (технологическим оборудованием, транспортными устройствами и т. п.), которые работают совместно с роботом, образуя с ним единый технологический комплекс.

По способу управления различают следующие системы управления роботов и соответствующие устройства управления:

· программные устройства, в которых управление осуществляется по заранее составленной и остающейся неизменной в процессе реализации управляющей программе;

· адаптивные устройства, в которых управление осуществляется в функции от информации о текущем состоянии внешней среды и самого робота, получаемой в процессе управления от сенсорных устройств;

· интеллектуальные устройства, в которых для адаптации и выполнения других функций робота используются методы искусственного интеллекта.

По степени участия человека в процессе управления существуют системы:

· автоматического,

· автоматизированного,

· ручного управления.

По типу движения:

· непрерывного (контурные),

· дискретные позиционные (позиционные), (шаговые «от точки к точке»),

· дискретные цикловые (с одним шагом по каждой координате),

Устройства управления могут быть индивидуальными, входящими в состав каждого робота, и групповыми, управляющими несколькими роботами. Конструктивно индивидуальные устройства управления выполняют обычно отдельно от механической части робота, значительно реже в общем корпусе, а у мобильных роботов обычно такое устройство состоит их 2 частей -- бортовой и входящей в состав пульта оператора (или в дополнение к нему).

Подавляющее большинство роботов имеет электронные устройства управления, выполненные на микропроцессорной базе. Однако существуют и неэлектрические устройства управления роботов, чаще всего реализуемые на пневмонике и предназначенные для применения в особых взрыво- и жароопасных условиях.

Тема 7. Гибкие производственные системы (ГПС)

История гибкой автоматизации началась в 1955 г. С появления станков с ЧПУ. Именно такого типа автоматическое технологическое оборудование с быстросменяемыми программами работы является основой для создания гибких, т. е. быстро перестраиваемых на выпуск новой продукции, производств.

Необходимые компоненты для развития гибких автоматизированных производств:

· технологическое оборудование с программным управлением,

· микропроцессоры как универсальное гибкое средство для обработки информации

· роботы как универсальное гибкое средство для манипуляционных действий, требующихся как для выполнения ряда основных технологических операций (сборка, сварка, окраска и т. П.), так и многочисленных вспомогательных операций по обслуживанию различного технологического оборудования.

Терминология

Согласно принятой в СССР терминологии (ГОСТ 26228--85) гибкой производственной системой (ГПС) называют совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик (при этом заданный интервал времени устанавливается по согласованию с заказчиком ГПС).

По организационным признакам различают следующие виды ГПС: гибкая автоматизированная линия, гибкий автоматизированный участок, гибкий автоматизированный цех. В перспективе появятся и гибкие автоматизированные заводы (ГАЗ).

Гибкая автоматизированная линия (ГАЛ) -- это гибкая производственная система, в которой технологическое оборудование расположено в принятой последовательности технологических операций.

Гибкий автоматизированный участок (ГАУ) -- это гибкая производственная система, функционирующая по технологическому маршруту, в котором предусмотрена возможность изменения последовательности использования технологического оборудования.

Гибкий автоматизированный цех (ГАЦ) -- это гибкая производственная система, представляющая собой в различных сочетаниях совокупность гибких автоматизированных линий, роботизированных технологических линий, гибких автоматизированных участков, роботизированных технологических участков для изготовления изделий заданной номенклатуры.

Основной составной частью ГПС. Является гибкий производственный модуль (ГПМ), которым называют единицу технологического оборудования для производства изделий произвольной номенклатуры в установленных пределах значений их характеристик с программным управлением, автономно функционирующую, автоматически осуществляющую все функции, связанные с их изготовлением, имеющую возможность встраивания в гибкую производственную систему.

Таким образом, ГПМ -- это способная автономно функционировать, осуществляя многократные циклы, единица технологического оборудования с автоматизированным устройством программного управления (с ЧПУ), оснащенная автоматизированными устройствами (роботами) загрузки заготовок и удаления деталей (узлов), удаления отходов (например, стружки), подачи и замены инструментов, измерений и контроля в процессе обработки (сборки), а также диагностики неполадок и отказов в работе. ГПМ обладает способностью автоматизированной переналадки на выпуск разных изделий в пределах освоенной номенклатуры и своих технических возможностей, а также способностью встраиваться в ГПС.

Кроме ГПМ в состав ГПС (ГАЛ, ГАУ и ГАЦ) входят роботизированные технологические комплексы, системы обеспечения функционирования ГПС, автоматизированные транспортно-складские системы и автоматизированные системы инструментального обеспечения.

Роботизированный технологический комплекс (РТК) - это совокупность единицы технологического оборудования, промышленного робота и средств оснащения, автономно функционирующая и осуществляющая многократные циклы.

Система обеспечения функционирования ГПС -- это совокупность в общем случае взаимосвязанных автоматизированных систем, обеспечивающих проектирование изделий, технологическую подготовку их производства, управление гибкой производственной системой с помощью ЭВМ и автоматическое перемещение предметов производства и технологической оснастки.

Автоматизированная транспортно-складская система (АТСС) -- это система взаимосвязанных автоматизированных транспортных и складских устройств для укладки, хранения, временного накопления, разгрузки и доставки предметов труда, технологической оснастки.

Автоматизированная система инструментального обеспечения (АСИО) - это система взаимосвязанных элементов, включающая участки подготовки инструмента, его транспортирования, накопления, устройства смены и контроля качества инструмента, обеспечивающие подготовку, хранение, автоматическую установку и замену инструмента.

В состав ГПС (ГАЦ и ГАЗ) могут входить также роботизированные технологические линии и участки.

Роботизированная технологическая линия - это совокупность роботизированных технологических комплексов, связанных между собой транспортными средствами и системой управления, или нескольких единиц технологического оборудования, обслуживаемых одним или несколькими промышленными роботами для выполнения операций в принятой технологической последовательности.

Роботизированный технологический участок - это совокупность роботизированных технологических комплексов, связанных между собой транспортными средствами системой управления, или нескольких единиц технологического оборудования, обслуживаемых одним или несколькими промышленными роботами, в которой предусмотрена возможность изменения последовательности использования технологического оборудования.

Из приведенных определений следует, что гибкая производственная линия или участок -- это комплекс из нескольких (двух и более) взаимосвязанных гибких производственных модулей, объединенных комплексной автоматизированной системой управления (КАСУ), автоматизированной транспортно-складской системой (АТСС) и автоматизированной системой инструментального обеспечения (АСИО), синхронизацию работы которых осуществляет (как и управление всем производственным циклом) единая управляющая ЭВМ (или сеть ЭВМ), обеспечивающая автономное функционирование ГАЛ или ГАУ в течение заданного интервала времени в условиях быстрых переходов на обработку любой другой детали (узла) в пределах технических возможностей оборудования, ГАЛ и ГАУ обладают способностью встраиваться в систему более высокого уровня, например, ГАЦ и ГАЗ.

Аналогичным образом гибкий автоматизированный цех (завод) -- это производственная система, состоящая из нескольких (двух и более) взаимосоединенных гибких производственных линий или участков, объединенных единой системой управления производством и АТСС (КАСУ) с гибкой автоматизированной инженерной и технической подготовкой производства, обеспечивающей быструю перестройку технологии производства на выпуск новых изделий за счет интеграции систем автоматизированного проектирования объекта производства (САПР К), технологии и средств технологического обеспечения (САПР Т), а также автоматизированных систем научных исследований (АСНИ), управления технологическими процессами (АСУТП), производством (АСУП) и автоматизированной системы технологической подготовки производства (АСТПП).

Структурная схема гибких производственных систем любого вида показана на рис. 5.1. В состав технических средств гибких производств равноправно входят ГПМ, ГАУ, ГАЛ и ГАЦ как первого (для основного производства), так и второго (для осуществления технической подготовки производства) уровней.

Все они вместе с автоматизированными складами и связанными с ними автоматизированными участками комплектования всем необходимым для работы объединены комплексной автоматизированной транспортно-складской системой, являющейся объединяющим стержнем всего гибкого производства. Целесообразнее выполнять АТСС в виде единой системы, хотя она может состоять и из нескольких подсистем, например, подсистемы транспортирования спутников с заготовками, подсистемы (системы) инструментального обеспечения (АСИО) и других транспортных подсистем, в составе которых могут быть промышленные роботы и манипуляторы, а также специальные автоматические транспортные тележки.

Рис, 5.1. Структурная схема гибких производственных систем

Роль ГПМ, ГАУ и ГАЦ второго порядка могут выполнять ГПМ, ГАУ и ГАЦ первого порядка, когда их используют, например, для изготовления инструмента и технологической оснастки и, наоборот, когда ГПМ, ГАУ и ГАЦ второго порядка выпускают изделия основного производства).

Вся инженерная подготовка производства в ГПС автоматизирована и осуществляется с помощью связанных между собой систем автоматизированного проектирования как изделий основного производства, так и изделий технической подготовки производства (инструмента, оснастки и т. П.).

Комплексное управление всеми техническими средствами ГПС осуществляет комплексная автоматизированная система управления, опирающаяся на мощное информационное, организационное, математическое и программное обеспечение, используемое для решения всех задач управления, включая задачи АСУТП и АСУП нижнего уровня (планирование, диспетчирование, учет, транспортные и другие расчеты, выполняемые для получения оптимальных решений).

Так как ГПМ является основной составной частью ГПС и первым уровнем автоматизации. ГАЛ, ГАУ, ГАЦ - средний или основной уровень автоматизации, а гибкие автоматизированные заводы (ГАЗ) - высшая и наиболее сложная форма ГПС, одновременно являющаяся и высшей формой интеграции всех видов технических и информационных средств производства.

Накопленный опыт показывает, что гибкая автоматизация наиболее эффективна в случае применения ее на уровне линии или участка и на более высоком уровне.

Оценка гибкости системы

Понятие гибкости производственной системы является многокритериальным и неоднозначным. В зависимости от конкретно решаемых задач разработчики ГПС на первый план выдвигают различные аспекты гибкости, например, такие, как:

- машинная гибкость - простота перестройки технологического оборудования ГПС для производства заданного множества деталей;

-технологическая гибкость - способность производить заданное множество типов деталей разными способами;

- структурная гибкость - возможность расширения системы за счет введения новых технологических модулей;

- производственная гибкость - способность продолжать обработку заданного множества деталей при отказах отдельных технологических элементов ГПС;

- маршрутная гибкость - возможность изменения порядка выполнения операций;

- гибкость по продукту - способность быстрого переключения на выпуск новых деталей;

- гибкость по объему - способность ГПС эффективно функционировать при различных объемах производства;

- гибкость по номенклатуре - способность производить разнообразные изделия.

Многообразие технических, производственных и других задач, решаемых методами гибкой автоматизации, не дает возможности сформулировать единые методы комплексной численной оценки гибкости, позволяющие сравнивать различные системы. Поэтому целесообразно оценивать три формы гибкости: структурную, технологическую и организационную.

Структурная гибкость имеет общее значение и охватывает несколько возможностей:

· свободу в выборе последовательности обработки;

· возможность при выходе из строя любой из единиц оборудования выполнять обработку на аналогичном оборудовании;

· возможность наращивания системы на основе модульного принципа.

Технологическая гибкость определяется по способности на имеющемся оборудовании выполнять несколько технологических задач, что обеспечивается использованием многоцелевых и многоинструментальных станков, наличием технологических модулей, охватывающих широкий спектр производственных операций и по возможности обработки группы различных деталей без механической переналадки оборудования (или с незначительными затратами на переналадку).

Организационная гибкость определяет структуру ГПС. При проектировании организационно-производственной структуры возникает противоречие между стремлением максимально загрузить оборудование и стремлением обеспечить минимальный производственный цикл. Стремление к сокращению производственного цикла приводит к производственной структуре, ориентированной на изделие, т.е. на предметный принцип, который неизбежно вызывает нерациональное использование оборудования и трудовых ресурсов.

Альтернативой служит производственная структура, ориентированная на средства производства, т. е. на технологический принцип, что обеспечивает наиболее эффективное использование оборудования, позволяет сократить численность работающих, но может приводить к удлинению производственного цикла, увеличению незавершенного производства.

Для систем с широкой и непрерывно изменяющейся номенклатурой обрабатываемых деталей при отсутствии стабильных групп последовательно выполняемых операций наиболее приемлемым является технологический принцип организации структуры. Для устранения недостатков, присущих системам, построенным по этому принципу, необходимо иметь высокоэффективную гибкую систему календарного планирования и оперативно-диспетчерского управления с централизованным распределением работ. Отдельные обрабатывающие модули должны быть оперативно связаны материальными и информационными потоками через гибкую автоматическую транспортную систему и каналы связи с автоматическим складом и центром управления.

Формы организации ГПС

Объединяя в определенных сочетаниях РТК, ГПМ, отдельные единицы технологического оборудования, автоматизированные складские, транспортные и накопительные устройства, создают различные варианты ГПС: ГАУ и ГАЛ. Гибкие производственные участки и линии, работают в автоматическом режиме в течение заданного времени, обеспечивают комплексную обработку исходного материала или заготовок с возможностью автоматизированной переналадки на производство изделий широкой номенклатуры.

Схемы планировки ГПС классифицируются в зависимости от типа автоматизированной транспортно-складской системы (АТСС) и других взаимосвязанных автоматизированных систем: инструментального обеспечения, очистки (мойки) изделий и техоснастки, контроля геометрических и других параметров изделий, удаления отходов производства.

ГПС строят по принципу специализации:

· технологической,

· предметной,

· подетальной.

В основу функционирования ГПС, построенных по технологическому принципу (рис. 5.2.), положен принцип "верни на место". Поэтому центральным элементом ГПС является автоматизированный межоперационный склад, через который изготовляемые детали транспортируются от одного технологического модуля к другому. Последние укомплектованы группами взаимозаменяющего оборудования (многоцелевых станков). Технологический принцип формирования производственных подразделений, характеризующийся выполнением однотипных операций технологического процесса и использованием однотипного технологического оборудования эффективен при значительной номенклатуре изготовляемых изделий

Преимущества такой схемы следующие:

· более полная загрузка оборудования благодаря концентрации всего объема обработки в технологическом модуле ГПС;

· возможность изменения номенклатуры деталей без перепланировки ГПС.

Недостатки:

· длинные и сложные технологические маршруты обработки заготовок;

· многократное их транспортирование между оборудованием и складом;

· необходимость заделов заготовок, инструмента и приспособлений для обеспечения бесперебойной работы ГПС на протяжении определенного времени (смена, сутки, недели и т.д.), для чего должны быть увеличены вместимость склада и объем незавершенного производства.

Предметная специализация ГПС (рис. 5.3.) устраняет указанные недостатки, так как осуществляется обработка заготовок комплектов деталей для одного или нескольких однородных изделий. При этом технологические модули ГПС комплектуют из взаимодополняющего оборудования, располагающегося по маршруту изготовления комплектов деталей. В таких ГПС уменьшает-ся объем транспортных и складских работ. Однако наличие взаимодополняющих единиц оборудования снижает способность ГПС к перестройке на выпуск изделий других наименований. Требуются значитель-ные затраты на перепланировку оборудования.

Подетальная специализация ГПС обладает преимуществами двух рассмотренных схем. Такие ГПС работают по групповой технологии, их модули располагаются согласно маршруту изготовления деталей и обладают универсальностью, аналогичной модулям ГПС, которая построена по технологическому принципу. С повышением номенклатуры изготовляемых изделий становится целесообразным использовать подетальную специализа-цию ГПС

Расположение технологического оборудования в ГПС

Продольное расположении (рис.5.5) оборудование вдоль транспорт-ной трассы удобно для обслуживания.

Рис. 5.5. Схема ГПС с продольным расположением модулей

Поперечное расположение (рис.5.6) применяют в случае, когда может быть достигнуто лучшее использование площади или когда при продольном расположении получаются слишком длинные линии.

Под углом к транспортной трассе технологическое оборудование располагают (рис. 5.7.) в случае, когда длина оборудования значительно превышает его ширину, например для расточных, продольно-фрезерных, продольно-строгальных, прутковых автоматов и револьверных станков.

Рис. 5.6. Схема ГПС с поперечным расположением модулей (а) и схема ГПС с поперечным расположением модулей относительно транспортной магистрали, совмещенной со складом

Рис. 5.7. Схема ГПС с диагональным расположением модулей

Такое расположение оборудования обеспечивает лучшее использова-ние площадей. Револьверные станки и автоматы при прутковой работе ставят под углом 15--20° или несколько больше в зависимости от ширины и длины отводимой под них площади; при этом их располагают загрузочной стороной к транспортной магистрали.

Кольцевое расположение технологического оборудования (рис 5.8) целесообразно для многостаночного обслуживания с помощью промышленных роботов, работающих в цилиндрической системе координат, но создает трудности для использования межоперационного транспорта и инженерных коммуникаций, а также требует больших площадей

Рис. 5.8. Схема ГПС с кольцевым расположением модулей сгруппированных в РТК

Производственно-техническая структура и основные элементы гибких автоматизированных систем

При выборе структуры, а также компоновочных решений ГПС и входящих в нее оборудования необходимо учитывать ряд факторов, например: потребную площадь, удобство обслуживания, сложность вспомогательного оборудования и его стоимость, изменение производственной мощности, удобство контроля за работой оборудования.

Наряду с этим на структурные и компоновочные решения накладывают ограничения технологические возможности и некоторые особенности используемого оборудования, например, на направление удаления стружки в металлорежущих станках, схему организации движения материальных потоков и т. д.

Схема с жестким примыканием обрабатывающих модулей к автоматическому складу (см. рис. 5.6, б) является наиболее простой по набору технических средств. Такая компоновочная схема, однако, не обладает необходимой гибкостью, ограничивает возможность последующего расширения системы.

Наибольшей гибкостью обладают структуры, базирующиеся на использовании транспортных систем с подвижными роботами (например робокарами).

Гибкие технологические комплексы (ГАУ, ГАЛ), входящие в состав ГПС, различаются составом и количеством технологического оборудования (ГМ, РТК), способами использования средств робототехники, организацией взаимодействия обрабатывающих станков и модулей со складом, способом подачи заготовок и т. д.

В ГПС используются гибкие технологические комплексы в виде ГАУ, ГАЛ шести типов.

Первые пять типов ГТК отличаются непосредственным (без технологического спутника) закреплением обрабатываемых деталей в зажимное приспособление станка.

На последней ГТК обработка ведется на спутниках, на которых вне зоны обработки закрепляются заготовки.

Ниже рассматриваются типичные структурно-компоновочные решения, положенные в основу ГПС.

Рис. 5.10. Общий вид ГТК-1

Рис. 5.11. Основные фазы функционирования ГТК

ГТК-1 предназначен для обработки ротационных деталей средней сложности и точности, малой партионности. Для него характерен кольцевой тип компоновки, при котором обрабатывающий комплекс (рис. 5.10), образуется из трех РТК, в состав которых входят три промежуточных (буферных) накопителя, сгруппированных вокруг обслуживающего их робота. Причал для транспортного робота с устройствами командообмена является терминальным устройством транспортной системы. Доставка заготовок со склада и деталей на склад осуществляется в транспортной таре на поддоне посредством транспортного робота.

...

Подобные документы

  • Понятие и специфические признаки гибкого автоматизированного производства, оценка его главных преимуществ. Классификация производств по степени их гибкости. Основы роботизации промышленного производства. Особенности лазерной и мембранной технологии.

    реферат [32,9 K], добавлен 25.12.2010

  • Понятие о токарных автоматах, их классификация и разновидности, сферы и особенности применения. Порядок настройки токарно-револьверных одношпиндельных автоматов. Оптимизация режимов резания при обработке деталей инструментами из сверхтвердых материалов.

    курсовая работа [2,1 M], добавлен 25.05.2010

  • Проектирование производственных участков и вспомогательных подразделений цеха машиностроительного производства. Разработка производственной структуры цеха и схемы управления. Составление объемно-планировочных решений и расчет планировки оборудования.

    курсовая работа [1,2 M], добавлен 27.07.2010

  • Характеристика промышленных роботов как автономного устройства, состоящего из механического манипулятора и перепрограммируемой системы управления. Типы управления промышленными роботами. Классификация и конструктивно-технологические параметры ПР.

    реферат [23,4 K], добавлен 29.01.2010

  • Погрузка породы как трудоемкая операция проходческого цикла. Классификация погрузочных машин, их модификации, параметры и узлы. Производительность погрузочных машин, безопасность при их эксплуатации. Безопасность при механизации горного производства.

    курсовая работа [1,5 M], добавлен 23.06.2011

  • Применение инноваций в машиностроении. История предприятия и его роль в экономике страны. Технологические процессы заготовительного, обрабатывающего и сборочного производства. 3D-принтеры на службе у промышленности. Анализ системы менеджмента качества.

    курсовая работа [912,9 K], добавлен 25.03.2017

  • Уровень надежности. Надежность станков. Надежность промышленных роботов. Быстрое и многократное усложнение машин. Важнейшие тенденции развития станкостроения. Повышение точности, производительности и уровня автоматизации станков.

    реферат [22,5 K], добавлен 20.01.2007

  • Роботизированный технологический комплекс как автономно действующая автоматическая станочная система. Применение РТК в кузнечно-прессовом производстве, виды роботизированных комплексов, требования к ним. Способы крепления оборудования на фундаменте.

    контрольная работа [1,7 M], добавлен 07.09.2012

  • Технологический процесс изготовления детали "муфта кулачковая". Проектирование роботизированной технологической ячейки. Составление подетального плана производства. Анализ транспортных средств. Пространственная планировка автоматизированного участка.

    курсовая работа [1,8 M], добавлен 13.02.2014

  • Характеристика объекта. Классификация помещения. Характеристика окружающей среды производственного помещения. Степень защиты оборудования. Схема распределительной и питающей сети. Прокладка и монтаж внутрицеховой силовой сети и заземляющих устройств.

    курсовая работа [176,3 K], добавлен 03.12.2007

  • Технологические параметры производства твердых сычужных сыров с низкой температурой. Оборудование для постановки сырного зерна. Материальный баланс по стадиям производства. Производительность сыродельной ванны. Расчет насоса для откачки сыворотки.

    курсовая работа [564,6 K], добавлен 19.11.2014

  • Рассмотрение механических производств по выпуску машиностроительной продукции в Костромском регионе. Система машин и технологий машиностроительного предприятия. Изучение современного автоматизированного оборудования для выработки хлопчатобумажной пряжи.

    лабораторная работа [5,3 M], добавлен 20.09.2019

  • Способы бактериального обезвреживания молока. Технологическая схема производства пастеризованных сливок. Способы размещения труб в теплообменниках. Расчет фланцевых соединений. Построение графика зависимости коэффициента гибкости от гибкости ребра опоры.

    курсовая работа [1,8 M], добавлен 19.11.2014

  • Общие подходы к созданию гибких производственных систем. История развития, основные преимущества, структура и составные части гибких производственных систем. Система обеспечения функционирования и управления. Оборудование для изготовления заготовок.

    реферат [465,7 K], добавлен 30.03.2013

  • Принципы организации механосборочного производства, их классификация, состав и задачи проектирования. Методика выбора структуры цеха в условиях массового и крупносерийного производства. Основные требования по расположению оборудования и рабочих мест.

    курсовая работа [44,7 K], добавлен 23.01.2010

  • Анализ детали, определение технического маршрута поверхности в зависимости от точности размеров и шероховатости. Расчёт коэффициента закрытия операций и определение типа производства. Сравнение двух вариантов выполнения одной операции обработки резаньем.

    курсовая работа [24,1 K], добавлен 02.06.2010

  • Анализ существующих технологий производства изделия, номенклатура, характеристика, состав сырьевой смеси. Выбор и обоснование технологического способа производства. Контроль производства и качества выпускаемой продукции. Охрана труда на предприятии.

    курсовая работа [60,7 K], добавлен 30.04.2011

  • Основные понятия производства и технологических процессов. Классификация производства на категории: тип, вид, часть, массовое, серийное и единичное. Методы и средства контроля качества машин. Погрешности сборочных процессов. Виды обработки заготовок.

    лекция [35,0 K], добавлен 08.04.2009

  • Особенности проектирования технологических процессов в условиях автоматизированного производства. Построение циклограмм функционирования робототехнических комплексов. Основные классификационные признаки промышленных роботов в современном машиностроении.

    шпаргалка [1,4 M], добавлен 11.10.2009

  • Химический и минеральный состав томатов, их полезные свойства и влияние на здоровье человека. Технология производства томатного пюре, его этапы и особенности. Характеристика оборудования, применяемого в производстве, расчет его производительности.

    курсовая работа [230,6 K], добавлен 22.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.