Атомно-кристаллическая структура металлов

Энергетические условия процесса кристаллизации, строение металлического слитка. Пластическая деформация и механические свойства, виды напряжений. Диаграмма состояния железо-цементит: фазы, структурные составляющие. Технология термической обработки стали.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 25.09.2017
Размер файла 250,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Температуры превращения в твердом состоянии называются критическими точками и обозначается буквой А с соответствующими индексами. Ас и Аг не совпадают вследствие теплового гистерезиса (все превращения происходят при некотором нагреве или переохлаждении).

Свойства технического железа при 200 С: НВ 80; 220-250 МПа.

Углерод. В природе встречается в двух аллотропических формах - алмаз и графит, атомный номер 6, плотность 2,5 г/смЗ, атомная масса 12, , атомный радиус 0,77 А, температура плавления 35000 С. Углерод полиморфен. При атмосферном давлении устойчивая модификация графит. Решетка графита гексагональная, структура слоистая. Слабые связи между параллельными слоями атомов и очень прочные (ковалентные) - между атомами внутри слоя.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения карбида железа- цементита, а в высокоуглеродистых сплавах в виде графита.

В системе железо-углерод различают следующие фазы: жидкий сплав, твердые растворы внедрения - феррит и аустенит, химические соединения - цементит и графит.

Феррит(Ф) - твердый раствор внедрения углерода (и других примесей) в железе, решетка, ОЦК. Различают альфа-феррит с максимальной растворимостью углерода 0,025% (при 7270С) и минимальной растворимостью 0,006% (при 200 С), и высокотемпературный - феррит с предельной растворимостью углерода 0,1% (при 14990С).

Атомы углерода располагаются в решетке феррита в центре грани куба, где имеется максимальная пора. Механические свойства альфа -феррита близки к свойствам армко-железа,. До 7680 С ферромагнитен.

Аустенит (А)- твердый раствор внедрения углерода (и других примесей) в гамма-железе решетка ГЦК. Предельная растворимость - 2,14 (при 1147° С). Атомы углерода в решетке гамма - железа располагаются в центре элементарной ячейки, где может поместиться сфера радиусом 0,41 атомного радиуса железа,т.е. близкая к атомному радиусу углерода и в дефектных областях кристалла. Аустенит обладает высокой пластичностью и сравнительно низкой прочностью.

Цементит (Ц) - карбид железа, имеет сложную орторомбическую решетку. Температура плавления из-за его метастабильности при высоких температурах точно не установлена (1250-15500С). До 2210С (А) ферромагнитен.

Цементит имеет очень высокую твердость ( > НВ 800) и практически нулевую пластичность. Он может образовывать твердые растворы замещения и внедрения с другими элементами. При замещении атомов железа атомами других металлов образуется легированный цементит (Fe, W, Сг) . Графит - о его строениях свойствах рассказано выше.

Рис. 6.1. Диаграмма Fe-Fe3C

Ось абсцисс двойная: показано содержание углерода и цементита. Уменьшение содержания углерода на 15% дает содержание цементита в любом сплаве в % по массе. Все сплавы в данной системе можно разбить на две группы: сплавы, содержащие до 2,14% называются сталями, сплавы, содержащие > 2,14% С - чугунами.

Точки А и Д соответствуют температурам плавления железа и цементита. Точки N (13920С) и (9100С) соответствуют полиморфному превращению, в чистом железе.

Линия АВСД - линия ликвидус. Участок АВ показывает температуру начала кристаллизации из жидкого сплава - феррита, ВС - температуру кристаллизации аустенита, СД - температуру кристаллизации первичного цементита (П1).

Линия AHJBECF -линия солидус. Ниже участка АН сплав затвердел и существует только феррит; HJB - линия перетектического превращения (равновесия).

Линия ECF (солидус) - линия эвтектического превращения (равновесия) соответствует кристаллизации из жидкости эвтектики, состоящей из кристаллов А и Ц - ледебурита (Л)

В ледебурите всегда 4,3% углерода, и он образуется при постоянной температуре (11470С). Превращение происходит во всех сплавах, содержащих 2,14 и < 6,67% С (чугунов).

Линии NH и NJ линии первого (высокотемпературного) полиморфного превращения в сплавах. В отличие от чистого железа полиморфные превращения в сплавах происходят в интервале температур.

Линия ES - линия ограниченной растворимости углерода в аустените. Ниже этой линии А пересыщен углеродом и из него выделяется высокоуглеродистая фаза - Ц (цифра II указывает, что Ц выделился из А).

Линия PSK - линия эвтектоидного превращения (равновесия). Это превращение протекает у всех сплавов, при этом аустенит состава S распадается на смесь двух фаз: феррита состава Р и цементита

Аs> (Фр+Ц)-П

Распад происходит при постоянной температуре (7270С ) и в образующемся эвтектоиде - перлите (П), всегда содержится 0,8% углерода.

Линии GS и GP - линии второго полиморфного превращения . Ниже линии GP полиморфное превращение заканчивается и структура сплава ферритная (А--« Ф).

Линия PQ - линия ограниченной растворимости углерода в феррите. Ниже этой линии феррит пересыщен углеродом и из него выделяется И (цифра III указывает, что Ц выделился из феррита).

На всех горизонтальных линиях в равновесии находятся три фазы, система нонвариатна, т.е. С=0.

Перитектическое превращение наблюдается у сплавов, содержащих от 0,1 до 0,5% С, эвтектическое - от 2,14 до 6,67 С и эвтектоидное - у всех сплавов, содержащих > 0,025 С.

Сплавы, содержащие < 0,8 называются доэвтектоидными, > 0,8%С - заэвтектоидными и 0,8%С эвтектоидными сталями. В зависимости от концентрации углерода сплавы, содержащие < 0,3%С называются низкоуглеродистыми, с 0,3 - 0,6%С -среднеуглеродистым, с > 0,7%С - высокоуглеродистыми сталями.

Кристаллизация стали. Все превращения начинаются в жидкости при некотором переохлаждении, т.е. при температурах ниже равновесной, лежащей на соответствующей линии диаграммы.

Перекристаллизация стали (превращения в твердом состоянии). Основа этих превращений - полиморфное превращение ГЦК - ОЦК и изменение растворимости углерода в аустените и феррите при изменении температуры.

6.1 Влияние компонентов и примесей на свойства стали

Сталь - многокомпонентный сплав. Избавиться от примесей затруднительно и дорого. Любая сталь состоит из 2-х фаз - Ф и Ц. Количество цементита возрастает прямо пропорционально содержанию углерода. Частицы Ц служат препятствием движению дислокации, а следовательно повышают прочность, твердость и уменьшают пластичность. Повышение содержания углерода повышает температуру порога хладноломкости (0,1%С повышает температуру порога хладноломкости примерно на 200С). При содержании в стали более 1 - 1,1% С возникает хрупкость в отожженном состоянии.

Кремний и марганец попадают в сталь при раскислении, содержание Si = 0,35 - 0,4 %, Mn = 0,5 - 0,8%. Кремний снижает способность стали к вытяжке, холодной высадке. Поэтому стали, предназначенные для холодной штамповке надо брать с пониженным кремнием.

Сера образует FeS, который в свою очередь образует с железом легкоплавкую эвтектику (Т = 9880С). Располагаясь по границам зерен, она плавится при температурах ковки и штамповки вследствие чего возникает красноломкость. Марганец нейтрализует серу (MnS). Сернистые включения понижают механические свойства. Содержание серы не должно превышать 0,05 - 0,06%.

Фосфор, растворяясь в феррите, искажает кр. решетку (раствор внедрения), резко снижает пластические и вязкие свойства. Каждый 0,01% фосфора повышают порог хладноломкости на 20 - 250С. Склонен к ликвации.

Азот, водород, кислород. Образуют хрупкие неметаллические включения (оксиды, нитриды) по границам зерен, в результате возрастает хрупкость. Водород охрупчивает сталь.

Тема 7. Чугуны

7.1 Белые чугуны

В структуре высокоуглеродистых сплавов, кристаллизующихся по метастабильной системе, нет свободного углерода. Излом их светлый, поэтому такие чугуны называются белыми.

Белые чугуны используются главным образом как передельные чугуны.

Доэвтектический белый чугун, содержащий 2,2 - 2,9%С используется для получения ковкого чугуна, эвтектический белый чугун (легкоплавкий; жидкотекучий) - для получения чугунной дроби, заэвтектический - очень твердый и износостойкий - для отливки шаров, шаровых мельниц.

7.2 Серые чугуны

Структурным признаком серого чугуна является обязательное присутствие графита в структуре свободного углерода - графита; который придает излому серый цвет.

Образование из жидкости аустенита и графита и дальнейший распад аустенита на феррит и графит соответствует минимальному значению свободной энергии, т.е. наиболее стабильному равновесию. При медленном охлаждении, когда кристаллизация проходит в интервале температур 1152-11470 термодинамически более выгодно образование графита . В этом случае кристаллизация происходит по стабильной диаграмме.

При медленном охлаждении выделяющийся графит имеет форму слабо разветвленных розеток с пластиновидными лепестками (ведущая фаза). На нем кристаллизуется аустенит, возникает своеобразный бикристалл - аустенитно-графитная колония. Рост графитовых колоний продолжается до полного исчезновения жидкости.

В зависимости от разреза эвтектической колонии плоскостью шлифа графит иногда выглядит в виде хаотических изолированных пластинок (пластинчатый графит).

В результате первичной кристаллизации серого чугуна вне зависимости от содержания в нем углерода образуется структура А + Г. Окончательная структура чугуна формируется при перекристаллизации и не зависит от % С, а определяется условиями охлаждения.

Кристаллизация при различных условиях охлаждения в интервале температур от 1152 до 200 С.

а) Очень медленное охлаждение до 200 С (охлаждение средних отливок в литейной форме или очень крупных отливок на воздухе). Все превращения идут в соответствии со стабильной диаграммой. Выделяющийся углерод диффундирует к уже имеющимся графитным включениям или образует новые. При эвтектоидном превращении также из аустенита выделяется углерод и конечная структура чугуна Ф + Г - серый чугун на ферритной основе. Свойства низкие.

б) До 750-7400 С чугун охлаждается медленно (среднее и мелкое литье в литейной форме); а затем быстро (выбивка из формы и охлаждение на воздухе). В этом случае эвтектоидное превращение происходит по метастабильной диаграмме (As> П) и образуется структура П+Г -серый чугун на перлитной основе. Прочностные свойства удовлетворительные.

в) При тех условиях (случай б) по различным причинам эвтектоидное превращение идет по стабильной и метастабильной диаграммам. В этом случае образуется структура Ф + П + Г - серый чугун на феррито-перлитной основе (графитные включения окружены ферритной оболочкой). Таким образом формируются различные типы чугунов.

Серый чугун обладает низким комплексом механических свойств: низкие прочностные свойства и практически нулевые пластические (главным образом из-за формы графитных включений ). Однако этот чугун дешев, обладает высокой жидкотекучестью, малой усадкой, хорошо гасит колебания (высокие демпфирующие свойства).

Высокопрочный чугун (ВЧ). Получают его путем модифицирования серого чугуна редкоземельными металлами (Mg, Се) или их лигатурами. Под действием модификатора происходит сфероидизация графитных включений, что приводит к повышению прочности до 1000 МПа и появлению пластичности до 5-10%.

Модификатор обеспечивает глубокую десульфурацию и раскисление, а также выравнивание скорости роста графитных зародышей в различенных направлениях.

Шаровидная форма графита меньше ослабляет металлическую основу по сравнению с графитом в виде пластин, влияющих как острые надрезы.

Высокопрочный чугун также может быть на ферритно-перлитной и перлитной основе.

Ковкий чугун является старым машиностроительным материалом. Его получают из доэвтектического белого чугуна (2,2 - 3,0%С - рис.40) путем термической обработки. Отливки из белого чугуна подвергают графитизирующему отжигу.

При высоких температурах цементит метастабилен. После первой стадии графитизации получаем структуру А+Г. В зависимости от условий охлаждения можно получить структуру П + Г - перлитный ковкий чугун (повышенная прочность) до 450 МПа и пониженная пластичность , или Ф + Г - ферритный ковкий чугун (прочность 300 - 400 МПа, удлинение 6-12%).

Образующийся графит более компактный, чем в сером чугуне, его называют хлопьевидным графитом или углеродом отжига.

Серый чугун широко используется в станкостроении (станины, коробки, колонны и т.д.), т.к. хорошо работает на, сжатие. Высокопрочный чугун - в автостроении, дизелестроении для ряда ответственных изделий (колен, валы, распределительные валики, опоры подшипников и т.д.).

Маркировка: СЧ-21 (предел прочности на растяжение в кг/мм). ВЧ - 60 - 5, 120 - 2 ( д % ) КЧ 30 - 6; КЧ37-12 ( д%).

Влияние примесей. Чугуны как и стали многокомпонентные системы. Примеси могут оказывать существенное влияние на структурообразование чугунов, особенно такие как Si, Mn, S, Р.

Кремний. Очень сильный графитизатор, т.е. в сильной степени способствует выделению углерода как из жидкой фазы так и из аусте-нита и разложению цементита. В литейных чугунах кремния 0,8 - 4,0%. Влияние кремния и углерода на структуру чугуна хорошо иллюстрирует структурная диаграмма (рис.42 ).

Марганец. Карбидообразующий элемент (Mп), препятствует выделению свободного углерода, т.е. способствует получению белого чугуна. Нейтрализует влияние серы, выводя ее из твердого раствора (MnS). Обычное содержание в С Ч - 0.5 - 0.8%.

Сера - придает чугуну, как и стали, красноломкость. - Содержание серы в сером чугуне не должно превышать 0,08%, в высокопрочном - <0.03%.

Фосфор - в чугуне иногда до 1%. Увеличивает жидкотекучесть, способствует хорошему заполнению формы.

Тема 8. Термическая обработка стали

Термообработка может использоваться как промежуточная операция для улучшения технологических свойств (обрабатываемость режущим инструментом, повышение пластичности перед обработкой давлением и др.) и как окончательная операция для придания обрабатываемому материалу комплекса физико-механических и других свойств, обеспечивающих необходимые эксплуатационные характеристики изделия.

В углеродистой стали в зависимости от температуры нагрева и скорости охлаждения возможны следующие основные 4 вида превращений.

1. При нагреве выше температуры Ас1 феррито-цементная смесь - перлит превращается в аустенит П---> А

2. При медленном охлаждении ниже температуры Ас1 однородный твердый раствор углерода в - аустенит диффузонным путем распадается на смесь двух фаз - Ф+Ц) - П, А---> П

3. При быстром охлаждении аустенит превращается в мартенсит - упорядоченный перенасыщенный твердый раствор углерода в Fe-б. Из-за большой скорости охлаждения при превращении не происходит диффузия углерода.

А - (Fe-г) > M -( Fe-б)

Мартенсит структура неустойчивая, неравновесная.

4. При нагреве ниже температуры Ас1 пересыщенный твердый раствор углерода в Fe - б - мартенсит распадается с образованием феррито-цементной смеси - перлита М ?> (Ф+Ц) - П

8.1 Классификация видов термической обработки

Первую классификацию различных видов термической обработки предложил академик А. А. Бочвар была разработана классификация видов и разновидностей термической обработки сталей и цветных металлов, а также соответствующая технология (рис. 45)

Термическая обработка включает в себя 6 основных видов, которые в свою очередь имеют различные разновидности.

1. Отжиг первого рода

При литье, обработке давлением, сварке и других технологических процессах в структуре металлов и сплавов могут возникать отклонения от равновесного состояния. Отжиг 1 рода частично или полностью устраняет эти отклонения. Основные параметры - температура нагрева и время выдержки. Скорость нагрева и охлаждения имеют подчиненное значение. Его проведение не обусловлено фазовыми превращениями в твердом состоянии, т. е. для железоуглеродистых сплавов нагрев производиться до температур лежащих ниже Ас1).

Для Fe-C сплавов в зависимости от назначения дорекристализационный и рекристализационный отжиг и отжиг для снижения внутренних (остаточных) напряжений. Этот вид обработки применим к любым металлам и сплавам.

2. Отжиг второго рода

Используется при необходимости изменить структуру и свойства металла или сплава. После термической обработки получают структуру близкую к равновесной. Основные параметры: температура нагрева, время выдержки и скорость охлаждения. Нагрев производится выше температуры Ac3, время выдержки должно обеспечить необходимые структурные изменения, а скорость охлаждения достаточно мала, и обеспечить обратные фазовые превращения, в основе которых лежат диффузионные процессы. В зависимости от назначения для Fe -сплавов различают: неполный отжиг-нагрев выше температуры АС1, но ниже Ac3, охлаждение с печью; полный отжиг - нагрев до Асз +30 - 40°, охлаждение с печью; нормализацию -нагрев до температуры Асз + 30 - 40°, охлаждение на воздухе.

3. Закалка

Как и отжиг второго рода используется для изменения структуры и свойств металлов и сплавов. После термообработки получают неравновесную структуру со свойствами существенно отличными от свойств в равновесном состоянии. Основные параметры: температура нагрева и скорость охлаждения. Нагрев производится выше температуры начала фазовых превращений. Время выдержки должно быть достаточно для необходимых структурных превращений, а скорость охлаждения достаточно велика, чтобы обратные превращения, связанные с диффузионными процессами, не успели произойти.

Существуют два резко различных вида закалок: закалка без полиморфного превращения и закалка с полиморфным превращением.

Закалка без полиморфного превращения применима к любым сплавам, в которых при нагреве одна фаза полностью или частично растворяется в другой. После закалки образуется пересыщенный твердый раствор компонента А в компонент В. Такой вид закалки характерен при обработке цветных сплавов.

Закалка с полиморфным превращением возможна для любых металлов и сплавов, у которых при охлаждении изменяется кристаллическая решетка. При этом образуется новая фаза, называемая мартенситом.

Такая закалка характерна для железоуглеродистых сплавов, у которых различают две разновидности: неполная закалка с нагревом до температур Ac1 +20 -40,полная закалка с нагревом до температур Асз+20 - 40 .

4. Старение и отпуск

После закалки сплав находится в метастабильном состоянии (пересыщенный твердый раствор) и обладает повышенной_свободной энергией. Свойства его неудовлетворительные. Для ускорения процесса распада твердого раствора его нагревают, подвергают отпуску или старению.

Обычно термин отпуск применяют к сплавам подвергнутым закалке с полиморфным превращением прежде всего к железоуглеродистым сплавам - сталям и чугунам. Для цветных сплавов чаще используется термин 'Старение'.

Превращение Ф+Ц >А

В результате нагрева выше точки Ас1 на границе Ц-Ф возникает слой аустенита и дальнейший его рост при изотермической выдержки идет за счет перемещения межфазовой границы в сторону феррита и цементита. Скорость роста аустенитного зерна в сторону феррита на много больше, чем в сторону цементита, поэтому ферритные пластины растворяются быстрее. После окончания растворения цементита аустенит неоднороден по углероду и для гомогенизации (выравнивания состава) применяется выдержка. Если в исходной структуре находился свободный феррит (доэвтектоидная сталь) или свободный цементит (заэвтектоидная сталь), то для их исчезновения необходим нагрев до более высоких температур и более длительная выдержка.

При непрерывном нагреве температуры окончания образования аустенита и его гомогенизации повышаются с ростом скорости нагревания.

С увеличением дисперсности исходной структуры время окончания всех этапов аустенизации уменьшается, главным образом за счет сокращения путей диффузии углерода.

После окончания аустенизации зерно способно к росту (собирательной рекристаллизации). Размер аустенитного зерна зависит от температуры, выдержки при нагреве и состава стали. Почти все легирующие элементы, кроме марганца тормозят рост аустенитного зерна за счет образования трудно растворимых карбидов и окислов.

Склонность к росту определяется не только химическим составом по основным компонентам, но и технологией металлургического производства.

Различают наследственно крупнозернистые и наследственно мелкозернистые стали. В наследственно крупнозернистых сталях аустенитное зерно интенсивно растет при относительно небольших превышения температуры над точкой Асз до +950-1100°С. Нагрев выше этой температуры также ведет к перегреву, т. е. интенсивному укрупнению зерна и связанному с этим падению вязкости стали после охлаждения. С наследственно мелкозернистой сталью работать легче, т. к, она не боится перегрева в широком интервале температур.

Действительное зерно - это то зерно, которое получают после той или иной операции термообработки, он определяет конечные свойства стали.

8.2 Превращение аустенита при охлаждении (перлитное превращение)

Основное превращение при медленном охлаждении стали с температурой выше Ac1 это эвтектоидный распад аустенита на феррито-цементитную смесь-перлит. Процесс диффузионный, связанный с распадом твердого раствора А на две резко различные по химическому составу фазы - Ц - 6, 67%С и Ф-0, 02%С. Процесс идет при переохлаждении сплава.

Контролирует процесс диффузия углерода. Однако чем ниже температура превращения(>ДТ), тем меньше скорость диффузии углерода. При очень больших (ДТ) диффузия углерода практически равна нулю и диффузионный распад аустенита невозможен..

Распад начинается обычно на стыке аустенитных зерен образованием зародыша цементита. При утолщении цементитной пластины вблизи нее аустенит объединяется и создаются условия для образования роста ферритной пластины. При утолщении ферритной пластины углерод оттесняется в аустенит, в результате создаются условия для появления новых цементитных пластин.

Межпластиночное расстояние Д (суммарная толщина пластин Ф и Ц) постоянны для данной степени переохлаждения аустенита. Это важная структурная характеристика, чем оно меньше, тем дисперсией структура, выше прочностные свойства стали. В зависимости от температур распада аустенита образуются следующие структуры:

при 650 °- 220о С межпластиночное расстояние Д =0. 5- 1мкм, НВ170-220 - перлит;

при 650 - 570° С межпластиночное расстояние Д - 0,4 - 0,2 мкм НВ - 230 - 330-сорбит;

при 570° - 500° межпластиночное расстояние Д = ~ 0, 1мкм, НВ 330 - 460 троостит.

8.3 Промежуточное превращение - бейнитное

В углеродистых сталях в интервале 500-250° С происходит бейнитное или промежуточное превращение - промежуточное между перлитным и мартенситным. При превращении образуется также феррито-цементитная смесь, но карбидные частицы не имеют пластинчатого строения и очень дисперсны (видны только в электронном микроскопе). Различают “верхний” и “нижний” бейнит, образующийся соответственно в верхней (~ 550-4000) и нижней (-400-250°) части промежуточного интервала температур.

В отличие от перлитного, бейнитное превращения является сдвиговым диффузионным, т. е. перестройка кристаллической решетки происходит за счет кооперированного перемещения атомов железа на расстояния меньше межатомных при диффузионном перемещении атомов углерода. Верхний и нижний бейнит отличаются друг от друга строением и прочностными характеристиками. Первый имеет перистое строение, сравнительно низкую прочность и пластичность; второй игольчатое строение (близкое к мартенситу), высокую прочность и пластичность.

8.4 Мартенситное превращение

Аустенит при быстром охлаждении превращается в новую метастабильную) фазу мартенсит упорядоченный пересыщенный твердый раствор углерода в Fe б. При перестройке решетки ГЦК в ОЦК в последней сохраняется концентрация углерода такая же, как и в исходном аустените. Максимально возможная концентрация углерода в мартенсите 2, 14%.

Атомы углерода искажают решетку ОЦК и превращают ее из кубической в тетрагональную, у которой отношение с /а >1. Чем больше углерода в стали, тем больше тетрагональность решетки мартенсита. Атомы углерода занимают определенное место в решетке (октаэдрические поры), поэтому раствор является упорядоченным.

Для мартенсита характерна особая микроструктура. Его кристаллы представляют собой тонкие пластины, утоненные к концам (на микрошлифе они имеют форму игл, отсюда термин “ игольчатая структура”), расположенные параллельно или пересекающиеся друг с другом под углом 60° и 120°. Ориентировка пластин мартенсита связана с тем, что они могут образовываться в аустените только по определенным кристаллографическим плоскостям и направлениям наиболее густо усеянным атомами (меньше работа образования кристаллов новой фазы мартенсита).

Тонкая структура мартенситных кристаллов характеризуется высокой плотностью дислокации (1011 -1012 см-2) и небольшими размерами фрагментов (менее 1мкм и ячеек (100-200 А°). С увеличением содержания углерода растет плотность дислокации уменьшаются размеры фрагментов.

Особенности мартенситного превращениях в сталях:

1. Превращение бездиффузионное, оно не сопровождается диффузионньм перераспределением атомов углерода или других легирующих элементов. Превращение является сдвиговым, т. е. осуществляется путем кооперативного смещения атомов железа при перестройке решетки ГЦК в ОЦК, при этом атомы железа не обмениваются местами, а смещаются относительно друг от друга на расстояния меньше межатомных.

2. Мартенситное превращение нельзя подавить быстрым охлаждением, как это возможно делать для любого диффузионного превращения. Превращение для каждой марки стали начинается с определенной температуры Мн и заканчивается при температуре Мк, которые практически не зависят от скорости охлаждения.

3. Для развития мартенситного превращения необходимо непрерывное охлаждение стали в мартенситном интервале Мн - Мк,. Однако в отличие от перлитного превращения, оно даже при достижении температуры Мк, не идет до конца и в структуре сохраняется некоторое количество остаточного аустенита. Если приостановить охлаждение внутри мартенситного материала, то образование мартенсита прекращается, т. е. превращение не идет при изотермических выдержках.

4. Температурное положение точек Мн и Мк, зависит от химического состава стали и прежде всего от содержания углерода. Это связано прежде всего с тем, что углерод и большинство легирующих элементов повышают устойчивость переохлажденного аустенита, изменяют его упругопластические свойства. Повышение их содержания в стали снижает положение точек Мн и Мк.

5. Мартенсит по сравнению с другими структурными составляющими стали имеет наибольший удельный объем. Увеличение удельного объема при мартенситном превращении приводит к росту упругой энергии, внутренним напряжением, которые приводят к пластической деформации, короблению и даже трещинам.

6. Мартенситные кристаллы растут с колоссальной скоростью - 106 мм/сек

Свойства мартенсита. Характерной особенностью мартенсита является его высокая прочность и твердость. Твердость мартенсита возрастает с увеличением в нем содержания углерода. В стали с содержанием 0, 6-0, 7% С твердость мартенсита HRC 65. Это в 6 раз больше твердости феррита. Предел прочности низкоуглеродистого мартенсита (0, 015% С)~ кг/мм2, а при 0, 6-0, 2% С -260-270кг/мм 2. Однако с повышением содержания углерода растет хрупкость. Так уже при содержании > 0, 35-0, 40% С пластичность мартенсита очень низкая и точно определить прочностные характеристики затруднительно.

Упрочнение при закалке на мартенсит является результатом действия нескольких механизмов торможения движения дислокации, плотность которых очень велика. Важнейшая роль принадлежит углероду. Атомы углерода, искажая решетку б - железа, затрудняют движение дислокации. В процессе закалки или после нее атомы углерода образуют атмосферы на дислокациях, закрепляя их. Упрочняющие влияние углерода на мартенсит очень велико и можно считать, что твердость закаленной стали не зависит от содержания легирующих элементов, образующих твердые растворы замещения и определяется только содержанием углерода.

Основная причина резкого охрупчивания при закалке углеродистых сталей низкая подвижность дислокации в мартенсите, содержащем углерод. В результате снижается резко сопротивление распространению трещин и сталь хрупко разрушается.

Влияние отпуска на механические свойства. Распад мартенсита при отпуске оказывает существенные влияния на свойства. При низких температурах отпуска до 200-250° уменьшается склонность стали к хрупкому разрушению при этом сохраняется высокая твердость. Прочность и вязкость могут несколько возрастать из-за уменьшения микро- и макронапряжений.

Повышение температуры отпуска от 200-250° до 500-650° заметно снижает твердость, пределы прочности, текучести и повышает относительное удлинение и сужение.

С ростом температуры отпуска разупрочнение возрастает из-за следующих причин:

1) уменьшается нарушение когерентности на границе карбид твердый раствор и снятия упругих концентрация в твердом растворе;

2) микронапряжений;

3) коагуляция карбидов и увеличение межпластиночного расстояния;

4) развитие возврата и рекристаллизации. В разных температурных интервалах преобладает действие разных факторов.

В высокоуглеродистых сталях, содержащих значительное количество остаточного аустенита, распад его с выделением карбидов задерживает падение твердости, а в интервале 200-250 ° даже несколько увеличивает ее (рис. 69 б).

8.5 Технология термической обработки стали

Отжиг 1 рода

Рекристаллизационный отжиг - нагрев холоднодеформированного металла выше температуры рекристаллизации, выдержка и медленное охлаждение для снятия наклепа. Используется, как предварительная обработка перед холодной пластической деформацией, как промежуточная операция между операциями холодной деформации или как конечная операция после обработки давлением. Температура отжига зависит от состава стали и для достижения рекристаллизации по всему объему превышает температурный порог рекристаллизации. Для стали, содержащей 0, 08-0, 20% С, чаще подогреваемой холодной пластической деформации, температура отжига 680-700°. Продолжительность нагрева 0, 5-1, 5 часа, время выдержки должно быть достаточным для завершения рекристаллизационных процессов.

Отжиг для снятия внутренних напряжений. Применяется для снятия остаточных напряжении, возникших в процессе предшествующих технологических операций (литье, сварка, обработка резаньем и т. д.). Температура отжига обычно 550-680°. Время выдержки устанавливается экспериментально, охлаждение медленное до 200-300°. В результате термической обработки повышаются допустимые внешние нагрузки, сопротивляемость усталости и ударным нагрузкам, снижается склонность к хрупкому разрушению, стабилизируются размеры и предотвращается коробление и поводка изделий.

Отжиг 2 рода различаются главным образом способами охлаждения и степенью переохлаждения аустенита, а также положением температур нагрева относительно критических точек. Основные разновидности отжига 2 рода: полный, изотермический, нормализационный, патентирование. Эти виды отжига характерны для доэвтектоидных сталей. Заэвтектоидные стали подвергаются сфероидизирующему отжигу и нормализации (нормализационный отжиг).

Полный отжиг - нагрев на 30-50° выше точки Ac1, выдержка и охлаждение вместе с печью (график 2 на рис. 46) до 200-400°, дальнейшее охлаждение на воздухе (ускоряется технологический процесс). Чрезмерное повышение температуры недопустимо т. к. вызывает рост аустенитного зерна и ухудшает свойства. Легированные стали, обладающие высокой устойчивостью переохлажденного аустенита, следует охлаждать медленнее (10-100 град/час), чем углеродистые(150-200град/ час). Структура после отжига доэвтектоидной стали Ф + П, зерно обычно измельчается.

Неполный отжиг - нагрев на 20-50° выше Ac1, выдержка и медленное охлаждение, для доэвтектоидных сталей применяют с целью улучшения обрабатываемости, при этом происходит только перекристаллизация перлита, для заэвтектоидных сталей применяют только неполный отжиг, который обеспечивает сфероидизацию цементита и высокие свойства, поэтому этот отжиг называют сфероидизирующим. Полный отжиг (с нагревом выше Аст) для заэвтектоидных сталей не используется, т. к. при медленном охлаждении образуется грубая сетка вторичного цементита, ухудшающая механические свойства.

Изотермический отжиг - нагрев производится также как и для полного отжига, затем быстро охлаждают (переносят в другую печь) до температур лежащих на 100-150°, ниже A1 и делают изотермическую выдержку до полного распада аустенита после чего охлаждают на воздухе (график 5 на рис. 46). Преимущество уменьшение длительности процесса, особенно для легированных сталей, получение более однородной структуры.

Используется для заготовок и др. Изделий небольших размеров, т. к. при больших массах металла невозможно обеспечить равномерное охлаждение до температуры изотермической выдержки.

Нормализационный отжиг (нормализация) - нагрев на 30-50 выше температуры линии GSE , выдержка и охлаждение на воздухе. Ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах, что повышает дисперсность феррито-цементитной структуры. Это повышает на 10-15% прочность и твердость средне - и высокоуглеродистой стали по сравнению с отожженной. Нормализацию широко применяют для улучшения свойств стальных отливок взамен закалки и отпуска. Для низкоуглеродистьк сталей нормализацию применяют вместо полного отжига (быстрее, а свойства близкие). Для отливок из среднеуглеродистой стали нормализация может быть конечной термической операцией. Для заэвтектоидных сталей нормализация применяется для устранения цементитной сетки, если она разорвалась при предшествующей обработке. кристаллизация металлический деформация термический

Патентирование - для получения канатной, пружинной и рояльной проволоки применяют изотермическую обработку, называемую патентированием. Проволоку из углеродистых сталей, содержащих от 0, 45 до 0, 85 % С нагревают в проходной печи до температуры на 150-200° выше Асз, пропускают через свинцовую или соляную ванну с температурой 450-550° и наматывают на приводной барабан. Распад аустенита происходит около изгиба С образных кривых. Структура феррито-цементитная, с очень малым межпластинчатым расстоянием - троостит патентирования. Избыточных фаз нет. После такой термической обработки проволоку подвергают многократному холодному волочению. В результате она имеет предел прочности до 200 кг/мм 2 (возможно получить до 500 кг/мм2).

8.6 Закалка стали

Температура закалки определяется положением критических точек A1 и Аз, - доэвтектоидные стали нагревают под закалку до температуры Асз +30- 50 ° (структура после закалки М + Аост (при С > 0, 5 %), заэвтектоидные до Ac1 +20 -30 °, (структура после закалки М + Ц2 + Аост). При закалке доэвтектоидных сталей с температур, соответствующих интервалу Ac1 - Асз, в структуре закаленной стали сохраняется феррит, снижающий прочность и твердость. Перегрев заэвтектоидной стали приводит к росту зерна, что вызывает снижения прочности и сопротивления хрупкому разрушению закаленной стали. Легирующие элементы как правило повышают температуру нагрева и выдержки должны обеспечивать завершение фазовых превращений и не вызывать роста аустенитного зерна и обезуглероживания (рассчитывается по нормативным данным). Нагрев желательно производить в защитной газовой среде, предохраняющий металл окисления и обезуглероживания.

Закалочные среды. Охлаждающие (закалочные) среды должны обеспечить высокую однородность охлаждения > Vкр при температурах наименьшей устойчивости переохлажденного аустенита (650-950°), чтобы не произошел его распад на феррито- цементную) смесь. Однако целесообразно замедленное охлаждение в области температур мартенситного превращения (ниже 200-300°), чтобы предотвратить образование повышенных внутренних напряжений, приводящих к трещинам.

Критическая скорость охлаждения (критическая скорость закалки) это минимальная скорость, при которой аустенит еще не распадается на феррито-цементную смесь .

При закалке конструкционных углеродистых и низколегированных сталей применяют воду и растворы солей в воде, которые обеспечивают скорость охлаждения в критическом интервале 650-550 >Vкр.

Однако вода создает высокую скорость охлаждения в интервале мартенситного превращения Мк~20°), поэтому там, где это возможно ее заменяют менее резкими охладителями. Для закалки высокоуглеродистых (инструментальных) и легированных сталей, переохлажденный аустенит который более устойчив (с - кривые сдвинуты вправо рис. 60), в качестве охлаждающих сред часто используют минеральное масло.

Оно охлаждает более медленно и равномерно во всем интервале температур, что уменьшает внутреннее направление. Высоколегированные стали могут закаливаться на спокойном или увлажненном воздухе.

Закаливаемость - способность стали повышать твердость при закалке, зависит от содержания углерода в стали, чем его больше, тем выше твердость. Легирующие элементы оказывают слабое влияние на закаливаемость. Прокаливаемость - глубина проникновения закаленной зоны, (толщина закаленного слоя) в данном охладителе. Прокаливаемость определяется критической скоростью охлаждения (закалки), чем она меньше, тем выше прокаливаемость. Если действительная скорость охлаждения в сердцевине изделия будет превьшать Vk, то сталь получит мартенситную структуру, по всему сечению (сквозная закаливаемость), если < Vk, то изделие прокалится только на некоторую глубину. За глубину закаленного слоя обычно принимают расстояние от поверхности до полу мартенситной зоны (50% М + 50% Т).

8.7 Способы закалки

Закалка в двух средах. Используются для уменьшения скорости охлаждения в мартенситном интервале. Вначале вода, затем масло (через воду в масло). Необходимо нормировать выдержку в воде. Широко используется при т/о режущего инструмента

Ступенчатая закалка. Используется также для уменьшения скорости охлаждения в мартенситном интервале. Сталь охлаждают в среде, имеющей температуру выше температуры начала мартенситных превращений Мн (180-250°), дают короткую выдержку, а затем охлаждают на воздухе или в горячем масле. Время выдержки должно быть меньше максимального времени устойчивости переохлажденного аустенита при этой температуре (выбирается по С - диаграмме). Так как скорость охлаждения в горячей среде не велика, то из углеродистой стали подвергать ступенчатой закалке можно изделия только небольшого сечения (8- 10 мм).

Изотермическая закалка. Возможно не троостит или бейнит (рис73-3) производится в тех же горячих средах, что и ступенчатая закалка, только время выдержки применяют такое, чтобы успел произойти распад аустенита на троостит и бейнит. Стали 'закаленные на бейнит" обладают высокой вязкостью и твердостью близкой к мартенситу, т. е., имеют повышенную конструктивную прочность.

Обработка стали холодом. Как уже указывалось в сталях, содержащих более 0, 4 - 0, 5% С, после закалки сохраняется значительное количество остаточного аустенита. для уменьшения Аост сталь охлаждают до -70-80°, т. е., до температур, лежащих ниже или близко к Мк. У углеродистых сталей после обработки холодом твердость увеличивается на 1-3 HRC. Обработку надо проводить сразу после закалки для предотвращения стабилизации аустенита.

Поверхностная закалка. Местная закалка, при которой нагревается и закаливается только поверхностный слой изделия. Нагрев может производиться газовым пламенем (для очень крупных изделий), с последующим охлаждением со скоростью больше Vk, или индукционным нагревом токами высокой частоты (ТВЧ). Как известно плотность индуктированного переменного тока по сечению проводника (изделия) неодинакова. Способ очень рациональный, возможна полная автоматизация процесса термообработки.

8.8 Отпуск стали

Отпуск закаленной стали позволяет получить изделие с заданными свойствами. Основные влияния на свойства оказывает температура отпуска. По температуре нагрев отличают низкий, средний и высокий отпуск.

Низкий отпуск. Отпущенный мартенсит (120-150°) широко используется для обработки режущего инструмента, изделий после химико-термической обработки (цементации, нитроцементации) и поверхностной закалки. Основная цель - уменьшить закалочные напряжения. Выдержка 1-3 часа. Разновидность -стабилизация отпуска - длительная выдержка для стабилизации (до 150 часов).

Средний отпуск. (350-450°). Используется при необходимости получить высокую прочность (высокий предел упругости) и удовлетворительную вязкость. Охлаждают обычно в воде для образования на поверхности сжимающих напряжений (повышают предел выносливости). Такой термической обработке подвергают пружины и рессоры.

Высокий отпуск на сорбит (500-680°). Создает наилучшее соотношение прочности и вязкости стали. Выдержку подбирают опытным путем для получения заданного комплекса свойств. Термическую обработку состоящую из закалки и высокого отпуска называют улучшением. Улучшению обычно подвергают конструкционные стали с 0, 3 - 0, 5% С, такая обработка повышает конструктивную прочность, уменьшает чувствительность к концентраторам напряжений, снижает температуру верхнего и нижнего порога хладноломкости. Для высоких результатов необходимо обеспечить сквозную закалку во всех течениях изделия.

Тема 9. Химико-термическая обработка сталей

Многие детали машин (валы, шестерни, кулачки и другие) выходят из строя из-за изнашивания их поверхности или из-за разрушения вследствии циклического действия нагрузки, которое также начинается в поверхностных слоях деталей. Поэтому для повышения долговечности и конструктивной прочности таких деталей необходимо повышать прочность поверхности при сохранении более вязкой сердцевины.

Одним из методов поверхностного упрочнения стальных деталей является химико-термическая обработка. Химико-термическая обработка представляет собой сочетание теплового воздействия на стальные детали с химическим. Она состоит в нагреве деталей до заданной температуры в активной, насыщенной среде: жидкой, твердой и газообразной - в результате чего изменяется состав и структура поверхностного слоя. Во время выдержки поверхность насыщается каким-либо элементом из внешней среды или обедняется им. В зависимости от того, каким элементом насыщают поверхностный слой изделия различают: цементацию (насыщение углеродом), азотирование (насыщение азотом), диффузную металлизацию (насыщение хромом, алюминием или другими элементами).

Цели химико-термическай обработки: повышение износостойкости и усталостной прочности, повышение сопротивлению коррозии и др. Для осуществления химико-термической обработки необходимо выполнение следующих условий: наличие во внешней среде насыщающего элемента активном, атомарном состоянии; растворимость насыщающего элемента в основном металле; достаточно высокая температура процесса, чтобы обеспечить большую диффузионную подвижность атомов. Любой процесс химико-термическай обработки состоит из трех элементарных процессов:

1. Получение диффундированного элемента в активном, атомарном состоянии благодаря реакциям диссоциации, протекающим во внешней среде:

2NH3 >ЗН2 +2N(aтом)

2СО>С02 +С(атом)

2. Контактирование атомов диффундирующего элемента в основном металле с поверхностью стального изделия (адсорбция) и проникновение (растворение) их в решетку основного металла, железа (абсорбция);

3. Диффузия атомов насыщающего элемента в глубь основного металла.

Наиболее широкое практическое применение нашли процессы химико-термической обработки; цементация, азотирование, планирование.

9.1 Цементация сталей

Насыщение поверхности стали углеродом называется цементацией. Целью цементации является получение твердой, износостойкой поверхности за счет обогащения поверхностного слоя углеродом до концентрации 0,8-1,0 % С и последующей закалки и низкого отпуска. Различают два основных вида цементации: в твердых и газовых средах. Детали после механической обработки поступают на цементацию с припуском на шлифование 0.05-0.10мм. Если отдельные участки детали не подлежат упрочнению, то их защищают от цементации тонким слоем меди 0,02- 0,04мм или специальными обмазками (огнеупорная глина, асбест, песок, замешанные на жидком стекле и др.).

В результате цементации в поверхностном слое стали образуются железоуглеродистые фазы, соответствующие диаграмме состояния Fe - Fез С.

Атомарный углерод, адсорбируется поверхностью стали и диффундирует в глубь металла. Цементацию проводят при t > Аз (900-950°С), в аустенитном состоянии, когда скорость диффузии и растворимость углерода в г-фазе железе достаточно велика. При температуре цементации структура поверхности состоит из углеродистого аустенита при медленном охлаждении происходит фазовое превращение и структура поверхностного слоя при t = 20°С состоит из 3-х зон: заэвтектоидной (П+ Ц2), эвтектоидной ( П ) и доэвтектоидной (Ф + П) (рис.78 ). За толщину цементованного слоя обычно принимают сумму заэвтектоидной, эвтектоидной и половины доэвтектоидной (переходной) зон. Оптимальные характеристики прочности цементованной стали получают при насыщении поверхности углеродом до 0,75-1,1% С.

Цементации подвергают в основном низкоуглеродистые стали 0,1-0,30% С, которые в сердцевине изделия, не подвергающиеся цементации, сохраняют высокую вязкость после закалки (08 КП, 12ХНЗА, 18ХГТ, 20Х, 20ХНМА и др.). Чем выше концентрация углерода, тем быстрее идет процесс цементации. Легирующие элементы, находящиеся в стали, изменяют растворимость углерода в аустените и влияют на коэффициент диффузии углерода при температуре цементации. Карбидообразующие элементы Cr,W, Мn и др. Понижают коэффициент диффузии углерода в аустените, но увеличивают концентрацию углерода на поверхности, несколько увеличивают толщину цементованного слоя. Никель, медь и другие карбидообразующие элементы увеличивают коэффициент диффузии углерода в аустените, но уменьшают концентрацию углерода на поверхности и поэтому уменьшают толщину слоя.

Цементация в твердом карбюризаторе. Насыщающей средой является твердый карбюризатор (древесный уголь в зернах и 20-40% активизаторы: углекислый барий ВаСОз и кальцированная вода Na2СОз ). Детали помещают в ящики с твердым карбюризатором, ящики закрывают крышками, кромки которой обмазывают огнеупорной глиной. После этого ящики загружают в печь. При температуре цементации кислород воздуха взаимодействует с древесным углеродистым углем, образуя оксид углерода: Суг + 02 = 2СО . В присутствии железа окись углерода диссоцирует по уравнению 2СО --> CO2 + С атомарный

Атомарный активный углерод диффундирует в аустенит С02 снова взаимодействует с древесным углем . ВаСОз и Na2СОз вводятся для ускорения процесса цементации, т.к. эти соли активизируют карбюризатор, обогащая атмосферу окисью углерода:

ВаСОз + С уг ?> ВаО + 2СО

2СО -> С02+ С атомарный

Основной недостаток цементации в твердом карбюризаторе: большая длительность процесса, которая объясняется малой скоростью прогрева ящика с деталями.

Газовая цементация осуществляется в среде углеродосодержащих газов СО, СН4, С3Н3 и др. Используются природные газы и газы, полученные при газификации керосина, бензина, синтина и др. Основной процесс получения атомарного углерода-диссоциации окиси углерода и метана:

СН4 ->2 +С атом

2СО -> С02 + С атом

Цементирующий газ, приготовленный в газогенераторах, поступает в цементационную реторту с загруженными в нее деталями. Газовую цементацию часто проводят в безмуфельных и муфельных печах. Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твердом карбюраторе:

1.) Сокращается длительность процесса, т.к. нет необходимости в прогреве ящиков с карбюризатором;

2.) значительно упрощается последующая термическая обработка, т.к. можно производить закалку непосредственно из печи;

3.) обеспечивается возможность полной механизации и автоматизации процессов. Газовая цементация широко применяется при массовом производстве. Для ускорения процесса цементации повышают температуру до 1000-1050° С для наследственно-мелкозернистых сталей. Однако цементация является промежуточной операцией, которая приводит к обогащению поверхностного слоя углеродом. В следствии высокой температуры цементации и значительной длительности этого процесса в стали вырастает большое аустенитное зерно, которое приводит к получению крупнозернистой структуры и снижению ударной вязкости сердцевины деталей. Для устранения перегрева стали и получения высокой твердости и прочности цементованного слоя необходима последующая термическая обработка. В зависимости от условий работы детали и выбранной марки стали режим термической обработки может быть различен.

Для тяжело нагруженных трущихся деталей машин, испытывающих в условиях работы динамическое нагружение, когда от детали требуется не только высокая твердость поверхности, но и высокая прочность и высокая ударная вязкость применяют двойную закалку: одна для улучшения структуры сердцевины из малоуглеродистой стали; другая -для получения свойств цементованного, вьгсокоуглеродистого слоя .

...

Подобные документы

  • Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа [871,7 K], добавлен 03.07.2015

  • Структурные составляющие и фазы во всех областях диаграммы и их определение. Кривая охлаждения и её описание с применением правила фаз для сплава содержанием углерода 0,4%. Режим термической обработки для детали винт. Микроструктура стали после ТО.

    контрольная работа [83,1 K], добавлен 08.10.2015

  • Изменение термодинамического потенциала твердого и жидкого металла. Механизм и закономерности кристаллизации металлов. Зависимость параметров кристаллизации от степени переохлаждения. Получение мелкозернистой структуры. Строение металлического слитка.

    презентация [358,7 K], добавлен 14.10.2013

  • Зоны слитка, их различная структура и описание. Разлив стали в изложницы. Виды металлургических агрегатов: мартеновские печи, кислородные конвертора, электропечи. Типы стальных слитков, их химическая неоднородность, влияние степени раскисленности стали.

    контрольная работа [4,7 M], добавлен 12.08.2009

  • Критические точки в стали, зависимость их положения от содержания углерода. Диаграмма состояния железоуглеродистых сплавов, фазы и структурные составляющие: линии, точки концентрации, температуры; анализ фазовых превращений при охлаждении стали и чугуна.

    реферат [846,6 K], добавлен 30.03.2011

  • Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

    контрольная работа [79,3 K], добавлен 12.12.2011

  • Характеристика стали 60С2А, химический состав и механические свойства. Структурные превращения в стали при термической обработке. Выбор оборудования для обработки детали. Разработка технологии термообработки и маршрутной технологии изготовления пружины.

    курсовая работа [2,7 M], добавлен 05.12.2014

  • Свойства металлов и сплавов. Коррозионная стойкость, холодостойкость, жаростойкость, антифринционность. Механические свойства металлов. Диаграмма растяжения образца. Испытание на удар. Физический смысл упругости. Виды изнашивания и прочность конструкции.

    контрольная работа [1006,5 K], добавлен 06.08.2009

  • Методика производства стали в конвейерах, разновидности конвейеров и особенности их применения. Кристаллическое строение металлов и её влияние на свойства металлов. Порядок химико-термической обработки металлов. Материалы, применяющиеся в тепловых сетях.

    контрольная работа [333,8 K], добавлен 18.01.2010

  • Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.

    контрольная работа [347,8 K], добавлен 17.08.2009

  • Условия получения крупнозернистой структуры при самопроизвольно развивающейся кристаллизации. Диаграмма состояния системы свинец-олово. Линейные несовершенства кристаллического строения и их влияние на свойства металлов. Устранение остаточного аустенита.

    контрольная работа [2,0 M], добавлен 11.01.2011

  • Исследование процесса кристаллизации расплавов металлов. Влияние температуры на свободную энергию жидкой и твердой фазы процесса кристаллизации. Охлаждение расплава и образование кристаллов. Регулирование размеров зерен кристаллов. Обзор строения слитка.

    реферат [102,2 K], добавлен 16.12.2014

  • Понятие о железоуглеродистых сплавах. Структурные составляющие ферри, цементита, аустенита, ледебури. Содержание углерода в перлите. Диаграмма состояния железоуглеродистых сплавов. Система железо-цементит, графит. Линия солидуса кристаллизация сплавов.

    презентация [1,3 M], добавлен 14.11.2016

  • Виды твёрдых растворов. Методы измерения твердости металлов. Диаграмма состояния железо-карбид железа. Диаграмма изотермического превращения аустенита для стали У8, кривая режима изотермической обработки, обеспечивающей получение твердости 150 НВ.

    контрольная работа [38,5 K], добавлен 28.08.2011

  • Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Упругой деформацией называют такую, при которой тело восстанавливает свою первоначальную форму, а при пластической деформации тело не восстанавливается.

    реферат [404,2 K], добавлен 18.01.2009

  • Фазы в железоуглеродистых сплавах: аустенит, феррит, цементит. Структурные составляющие в сталях. Микроструктура стали и схема ее зарисовки. Схема строения перлита. Микроструктура углеродистых сталей после отжига. Состав и структура эвтектоидной стали.

    реферат [960,5 K], добавлен 12.06.2012

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Пластическая деформация и механические свойства сплавов. Временные и внутренние остаточные напряжения. Два механизма пластической деформации, структурные изменения. Общее понятие о наклепе. Схема смещения атомов при скольжении. Отдых и полигонизация.

    лекция [2,9 M], добавлен 29.09.2013

  • Диаграмма состояния системы алюминий-медь, железоуглеродистых сталей. Взаимодействия компонентов в жидком и твердом состояниях. Технология термической обработки деталей. Время, необходимое для распада твердого раствора. Механические свойства сплава.

    контрольная работа [973,4 K], добавлен 05.07.2008

  • Описание работы зубчатого колеса и предъявляемые к нему требования. Химический состав, механические свойства и температуры критических точек стали 18ХГТ. Технология химико-термической обработки зубчатого колеса из стали 18ХГТ, контроль качества.

    контрольная работа [3,1 M], добавлен 29.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.