Металловедение (включая сварку)

Оценка параметров процесса кристаллизации, их влияния на величину зерна кристаллизующего материала. Анализ наклепа, его влияния на эксплуатационные свойства металла. Обзор преимуществ сварки полуавтоматом в защитном газе в сравнении с ручной дуговой.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 01.10.2017
Размер файла 580,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное учреждение

Высшего профессионального образования

«Псковский государственный университет»

Кафедра «Теория машин и механизмов»

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

«Металловедение (включая сварку)»

Вариант № 13

Выполнил

студент Ревельский С.В.

Гр. 1042 - 03С

Проверил

Преподаватель Суханов Л.А.

Псков 2016

1. Охарактеризуйте параметры процесса кристаллизации, их влияние на величину зерна кристаллизующего материала

Кристаллизация - фазовый переход вещества из состояния охлажденной (перенасыщенной) маточной среды в кристаллическое соединение с меньшей энергией, избыточная энергия выделяется при кристаллизации в виде скрытой теплоты. Часть этой теплоты может превращаться в механическую работу. В частности, кристаллы солей, образующиеся в порах бетонных плотин в морской воде, вызывают разрушение бетона.

Еще в 1878 г. Д.К.Чернов, изучая структуру литой стали, указал, что процесс кристаллизации состоит из двух элементарных процессов. Первый процесс заключается в зарождении мельчайших частиц кристаллов, которые Чернов называл «зачатками», а теперь их называют зародышами, или центрами кристаллизации. Второй процесс состоит в росте кристаллов из этих центров.

Процесс кристаллизации схематично представлен на рис.1. Здесь на площади, ограниченной квадратами, показаны последовательные этапы зарождения из атомов первичных центров кристаллизации, их роста и возникновения новых зародышей, дальнейшего роста кристаллов до соприкосновения их граней и окончания процесса кристаллизации. В результате образуется структура зерен кристаллов с неправильной геометрической формой - кристаллы.

Рис.1. Схема процесса кристаллизации.

Величина зерен зависит от количества зародышей кристаллизации и скорости их роста. Если скорость охлаждения мала, то возникает небольшое число зародышей и в конце кристаллизации образуются крупные зерна. При большей скорости охлаждения количество зерен возрастает, но они становятся мельче. Это можно наблюдать на практике - в тонких сечениях литых деталей, где структура стали мелкозернистая, так как происходит быстрое охлаждение. Чтобы сделать зерно мелким, в металл вводят специальные вещества - модификаторы. Процесс искусственного регулирования величины зерен получил название модифицирования.

Процесс образования кристаллов носит дендритный (древовидный) характер, на что впервые обратил внимание Д.К.Чернов. Сущность его состоит в том, что после образования зародышей рост их ведет по направлениям металлической решетки, где имеется меньшая плотность упаковки атомов. Поэтому образуются оси 1 первого порядка (рис.2), затем от них под определенными углами начинаю формироваться оси 2 второго порядка, от них растут оси 3 третьего порядка и т.д. В результате заполняется всё пространство и образуется структура (дендрит), внешне напоминающая строение дерева.

Рис.2. Дендритная кристаллизация

Если условия кристаллизации благоприятны, то могут возникнуть огромные дендриты, достигающие в длину несколько десятков сантиметров. Нормальные дендриты в литых металлах имеют длину равную всего несколько миллиметрам. После горячей механической обработки (ковки, прокатки и прессовки) дендриты вытягиваются вдоль направления течения металла и образуют волокна, которые при наилучшем расположении распределяются вдоль контура изделия. Это оказывает положительное влияние на его механические свойства.

2. Сущность явления наклепа и его влияние на эксплуатационные свойства металла

Наклеп (нагартовка) - упрочнение металла в результате холодной пластической деформации.

Наклеп снижает пластичность и ударную вязкость, но увеличивает предел пропорциональность, предел текучести и твердость. Наклеп снижает сопротивление материала деформации противоположного знака. При поверхностном наклепе изменяется остаточное напряженное состояние в материале и повышается его усталостная прочность. Наклеп возникает при обработке металлов давлением (прокатка, волочение, ковка, штамповка), резанием, при обкатке роликами, при специальной обработке дробью.

Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов). Повышение плотности дефектов кристаллического строения затрудняет движение отдельных новых дислокаций, а, следовательно, повышает сопротивление деформации и уменьшает пластичность. Наибольшее значение имеет увеличение плотности дислокаций, так как возникающее при этом между ними взаимодействие тормозит дальнейшее их перемещение.

Вычертите диаграмму состояния «Железо - цементит»; укажите структурные составляющие во всех областях диаграммы; опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 3,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF(линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулойЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических -- аустенит+ледебурит, эвтектических -- ледебурит и заэвтектических -- цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит+перлит и заэвтектоидные - перлит+цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление, за исключением очень высокого, мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 3,3%С, называется доэвтектическим чугуном. Его структура при комнатной температуре цементит + перлит + ледебурит.

а) б)

Рисунок 2: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 3,3% углерода.

Что такое закалка? Используя диаграмму состояния железо - цементит, укажите температуру нагрева под закалку стали 50 и У12. Опишите превращения, происходящие в сталях при выбранном режиме обработки, получаемую структуру и свойства.

Закалка - термическая обработка, заключающаяся в нагреве сплава выше температуры фазовых превращений, выдержке и последующем быстром охлаждении, обеспечивающая получение неравновесной структуры (кратко фиксация высокотемпературного состояния путем быстрого охлаждения материала).

При комнатной температуре сталь У12 имеет структуру цементита и перлита. До температуры Аc1 сохраняется исходная структура. При температуре Аc1 происходит превращение перлита в аустенит с содержанием углерода 0,8%. При нагреве выше точки Ас1происходит растворение цементита в аустените (в соответствии с линией SE). Увеличение температуры выше точки Асm вызывает рост зерна аустенита.

Критические точки для стали У12: Аc1 = 730°С; Аcm = 820°С.

Для закалки заэвтектоидные стали нагревают на 50-70°С выше точки Ас1.

Таким образом, температура нагрева под закалку составляет 780-800°С. При этих температурах в стали наряду с аустенитом имеется цементит. Поэтому после закалки в структуре заэвтектоидных сталей будет мартенсит с цементитом и небольшое количество остаточного аустенита. Охлаждающая среда при закалке - индустриальное масло. Твердость поверхности после закалки 62-64 HRC.

Критические точки для стали 50: Аc1 = 725°С; Аc3 = 760°С. Для закалки доэвтектоидные стали нагревают на 30-50 °С выше точки Ас3. Температура нагрева под закалку составляет 820-840°С. Охлаждающая среда при закалке - вода. Структура стали 50 при температуре нагрева под закалку - аустенит, после охлаждения со скоростью выше критической - мартенсит.

Для снятия напряжений и стабилизации структуры после закалки изделия подвергают низкому отпуску.

3. Основные преимущества сварки полуавтоматом в защитном газе в сравнении с ручной дуговой сваркой

кристаллизация наклеп сварка дуговой

При сварке в среде защитных газов электрическая дуга и расплавленный металл сварочной ванны защищены от атмосферного воздуха оболочкой из защитного газа. Дуговая сварка может быть выполнена плавящимися и не плавящимися электродами.

В качестве защитной среды используют аргон, гелий, кислород, азот, двуокись углерода и их смеси.

Выбор газа и присадочного материала должны обеспечивать заданные механические свойства, химический состав и структуру сварного шва.

Углекислый газ выпускается двух модификаций:

- промышленный;

- пищевой.

Промышленный не должен содержать влагу, а запахи не регламентируются. Пищевой не допускает запахи, но не регламентирует содержание влаги.

Поставляется углекислый газ в стандартных баллонах черного цвета, емкостью 40 л.

К баллону крепятся подогреватель (от замерзания редуктора), осушитель и расходомер или редуктор с манометрами высокого и низкого давления.

Сварочная проволока должна быть чистой и обеспечивать хороший контакт с наконечником. Ржавая проволока засоряет направляющую спираль шланга полуавтомата, резко ухудшает электрический контакт, все это ведет к большому разбрызгиванию электродного металла и появлению дефектов в шве.

Сварка плавящимися электродами выполняется полуавтоматами и автоматами.

Оборудование, как правило, состоит из:

- источника питания постоянного тока с жесткой внешней характеристикой;

- подающего механизма со шлангами и горелкой;

- газового баллона.

Падающий механизм состоит из корпуса, кассеты с проволокой, подающего и прижимного роликов и электродвигателя. Падающий ролик имеет насечку для лучшего контакта с проволокой и приводится во вращение электродвигателем.

К корпусу подающего механизма через разъемы подводятся и отходят электроэнергия, газ и вода.

Горелка состоит из корпуса, сопла и наконечника. К корпусу по шлангам подводятся электроэнергия, защитный газ и вода. Материал наконечника должен обладать высокой электропроводностью и твердостью. Этим условиям удовлетворяют различные марки бронз на основе меди.

Полуавтоматическая сварка в среде углекислого газа по сравнению с ручной дуговой сваркой имеет ряд преимуществ:

- производительность;

- экономичность;

- возможность автоматизации;

- в некоторых случаях лучшее качество шва.

Размещено на Allbest.ru

...

Подобные документы

  • Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

    контрольная работа [79,3 K], добавлен 12.12.2011

  • Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

    лабораторная работа [1,1 M], добавлен 22.12.2009

  • Химический состав стали 10ХСНД. Механические свойства металла шва. Расчет режимов ручной дуговой сварки. Параметры сварки в углекислом газе плавящимся электродом. Оценка экономической эффективности вариантов технологии, затраты на электроэнергию.

    курсовая работа [199,1 K], добавлен 12.11.2012

  • Методика расчета ручной дуговой сварки при стыковом соединении стали 3ВС3пс. Определение химического состава и свойств данного металла, времени горения дуги и скорости сварки. Выбор светофильтра для сварочного тока и соответствующего трансформатора.

    реферат [27,1 K], добавлен 04.06.2009

  • Основные понятия и способы сварки трубопроводов. Выбор стали для газопровода. Подготовка кромок труб под сварку. Выбор сварочного материала. Требования к сборке труб. Квалификационные испытания сварщиков. Технология и техника ручной дуговой сварки.

    дипломная работа [2,9 M], добавлен 25.01.2015

  • Описание физической сущности ручной дуговой сварки покрытым электродом. Физическая сущность процесса сварки. Основные и вспомогательные материалы, вредные факторы. Влияние химических элементов на свариваемость. Расчет параметров режима процесса сварки.

    курсовая работа [530,4 K], добавлен 05.12.2011

  • Техника ручной дуговой сварки. Подготовка металла под сварку: очищение и выправление. Обработка кромок перед сваркой. Выбор режима сварки. Влияние элементов режима сварки на размеры и форму шва. Зависимость плотности тока в электроде от его диаметра.

    реферат [2,0 M], добавлен 03.02.2009

  • Подготовка металла к сварке, выбор сварочного материала. Выбор источника питания для ручной дуговой сварки. Техника безопасности при выполнении технологического процесса: охрана окружающей среды, пожарная безопасность. Опасность поражения электротоком.

    курсовая работа [2,5 M], добавлен 20.06.2012

  • Процесс лазерно-дуговой сварки с использованием дуги, горящей на плавящемся электроде. Экспериментальное исследование изменения металла при сварке и микроструктуры сварных швов. Сравнительная оценка экономической выгоды различных процессов сварки.

    дипломная работа [4,6 M], добавлен 16.06.2011

  • Характеристика металла для конструкции балки, оценка его свариваемости. Характеристика дуговой сварки: ручной и автоматической, в среде защитных газов. Технологический процесс сборки-сварки. Расчёт ее режимов. Выбор сварочных материалов и оборудования.

    дипломная работа [1,4 M], добавлен 19.01.2015

  • Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.

    курсовая работа [221,6 K], добавлен 20.01.2014

  • Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

    курсовая работа [167,8 K], добавлен 18.05.2014

  • Определение свариваемости стали. Расчет массы изделия. Выбор способа сварки и сварочных материалов. Ручная дуговая сварка. Выбор сварочных материалов. Определение складских площадей и производственных кладовых. Сварка под флюсом, в защитном газе.

    контрольная работа [1,5 M], добавлен 18.05.2015

  • Изучение процесса кристаллизации металлов и определение влияния степени переохлаждения на величину зерна металла. Характеристики магнитных материалов: коэрцитивная сила, магнитная и остаточная индукция. Исследование процесса и операций свободной ковки.

    контрольная работа [393,4 K], добавлен 15.01.2012

  • Сущность процесса дуговой сварки в среде защитных газов. Описание сварной конструкции. Обоснование выбора материала, типа производства и оборудования. Расчет режимов сварки. Техника безопасности, противопожарные мероприятия и охрана окружающей среды.

    курсовая работа [1,3 M], добавлен 13.02.2012

  • Определение свариваемости применяемых материалов, подбор присадочных материалов и оборудования. Узел приварки верхнего днища и верхней обечайки. Расчет режима ручной дуговой сварки. Карта технологического процесса сварки узла А Ar-С17 по ГОСТ 14771-76.

    курсовая работа [1,8 M], добавлен 20.02.2013

  • История возникновения сварки, ее классификация и виды. Характеристика высокопроизводительных видов ручной дуговой сварки. Назначение и описание конструкции трубопровода. Особенности организации контроля качества и безопасности при сварочных работах.

    дипломная работа [30,6 K], добавлен 24.07.2010

  • Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.

    курсовая работа [4,6 M], добавлен 22.03.2012

  • Краткое сведение о металле и свариваемости стали марки 09Г2С. Оборудование сварочного поста для ручной дуговой сварки колонны. Основные достоинства металлоконструкций. Технология ручной дуговой сварки. Дефекты сварных швов. Контроль качества соединения.

    дипломная работа [1,8 M], добавлен 08.12.2014

  • Характеристика материала для изготовления металлической скамейки. Подготовка металла к сборке и сварке. Технологический процесс изготовления. Оборудование сварочного поста ручной дуговой сварки. Расчет штучного времени на изготовление металлоконструкции.

    дипломная работа [1,3 M], добавлен 28.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.