Проблемы трения, изнашивания и смазывания деталей машин

Трение как причина изнашивания деталей машин, его виды. Изнашивание и его виды. Контроль и дефектация сопряжений и деталей. Применение вибродуговой наплавки при восстановлении деталей машин. Электроконтактная приварка и напекание металлического слоя.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 16.10.2017
Размер файла 249,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

21

Размещено на http://www.allbest.ru/

Содержание

  • 1. Классификация видов трения и изнашивания
  • 1.1 Трение и виды трения
  • 1.2 Изнашивание и виды изнашивания
  • 2. Контроль и дефектация сопряжений и деталей. Методы контроля
  • 2.1 Контроль и дефектация сопряжений и деталей
  • 2.2 Методы контроля
  • 3. Вибродуговая наплавка. Сущность способа, материалы, оборудование и выбор режимов. Применение вибродуговой наплавки при восстановлении деталей машин
  • 4. Восстановление деталей электроконтактной приваркой и напекания металлического слоя
  • 5. Ремонт ходовой части гусеничных тракторов

1. Классификация видов трения и изнашивания

1.1 Трение и виды трения

Трение - основная причина изнашивания деталей машин. Проблемы трения, изнашивания и смазывания изучает наука трибология, базирующаяся на фундаментальных законах физики, химии, механики сплошных сред, термодинамики и материаловедения.

Различают трение:

· Скольжение

· Качения

· Покоя

Сила трения качения примерно в 10 раз меньше силы трения скольжения.

В процессе работы машин поверхности трения деталей находятся в различных условиях. В зависимости от того, есть или нет смазка между трущимися поверхностями, различают следующие виды трения.

Трение без смазки происходит при отсутствии на поверхностях трения обоих твердых тел смазочного материала всех видов.

Граничное трение двух твердых тел возникает при тонком слое смазки на поверхностях трения, не превышающем высоты шероховатостей соприкасающихся поверхностей.

Жидкостное трение возникает между двумя телами, полностью разделенными слоем жидкости (смазки). Отсутствие контакта между поверхностями предохраняет их от разрушения.

1.2 Изнашивание и виды изнашивания

Изнашивание - процесс разрушения и отделения материала с поверхности твердого тела при трении и (или) увеличении его остаточной деформации, проявляющейся в постепенном изменении размеров и (или) формы тела.

В условиях всех видов трения происходит разрушение трущихся поверхностей, т.е., поверхности изнашиваются.

Классификация видов изнашивания

Согласно ГОСТ 23.002 - 78 различают 3 основных вида изнашивания:

1. механическое

2. корозионно-механическое

3. при действии электрического тока (электроэрозионное)

Механическое изнашивание возникает в результате воздействия твердых частиц на трущиеся поверхности. В эту группу следует отнести такие виды изнашивания, как абразивное, гидро - и газоабразивное, усталостное, кавитационное, эрозионное.

Абразивное изнашивание - изнашивание в результате механических воздействий посредством режущего и царапающего действия твердых тел или частиц при наличии относительной скорости перемещения.

Гидро- и газоабразивное изнашивание появляется в результате воздействия твердых тел или частиц, увлекаемых потоком жидкости или газа.

Усталостное изнашивание вызывает изменение поверхности трения или отдельных участков в результате повторного деформирования микрообъемов материала, приводящего к возникновению трещин и отделению частиц.

Кавитационное изнашивание поверхности происходит при относительном увеличении скорости движения твердого тела в жидкости, т.е. в условиях гидродинамической кавитации - нарушения сплошности внутрижидкости.

Эрозионное изнашивание возникает в результате воздействия потока жидкости или газа.

Коррозионно-механическое изнашивание есть изнашивание при трении металла, вступившего в химическое взаимодействие со средой.

К факторам, определяющим интенсивность изнашивания относятся:

род трения (скольжения, качения, качения с проскальзыванием)

вид трения (сухое, граничное, гидродинамическое)

среда (воздух, вода, газ, почва)

вид контакта пар трения (точка, линия, плоскость, цилиндр, сфера)

характер движения (равномерное, непрерывное и т.д.)

вид движения (вращательное, поступательное, возвратно-поступательное)

характер нагрузки (постоянная, неустановившаяся, знакопеременная)

величина нагрузки

скорость перемещения трущихся поверхностей

температурные условия

Основные пути снижения интенсивности механического истирания:

1) Конструкционные:

обеспечение рациональной жесткости и податливости деталей (плавающие детали, рессоры, пружины, прокладки)

выбор рациональных пар трения

сочетание твердого материала с мягким (устраняется заедание)

сочетание твердого материала с твердым (высокая износостойкость)

исключение сочетания одноименных материалов и мягкого с мягким

применение пористых, порошковых антифрикционных материалов

замена пар трения скольжения на качение

создание условий для жидкостного трения

2) Технологические:

обеспечение оптимальной шероховатости

соблюдение точности изготовления и упрочнение поверхностей трения

3) Эксплуатационные:

разгрузка рабочих поверхностей

соблюдение правил эксплуатации, ТО и ремонта машин

трение изнашивание восстановление деталь

2. Контроль и дефектация сопряжений и деталей. Методы контроля

2.1 Контроль и дефектация сопряжений и деталей

Дефектация - операция технологического процесса ремонта машины, заключающаяся в определении степени годности бывших в эксплуатации деталей и сборочных единиц к использованию на ремонтируемом объекте. Она необходима для выявления у деталей дефектов, возникающих в результате изнашивания, коррозии, усталости материала и других процессов, а также из-за нарушений режимов эксплуатации и правил технического обслуживания.

В результате трения и изнашивания деталей в конкретных условиях эксплуатации изменяются геометрические параметры, шероховатость рабочих поверхностей и физико-механические свойства поверхностных слоев материала, а также возникают и накапливаются усталостные повреждения.

Под изменением геометрических параметров деталей понимают изменение их размеров, формы и взаимного расположения поверхностей. К нарушениям формы относят: неплоскостность, непрямолинейность, овальность, конусность и т.д., к отклонениям взаимного расположения поверхностей - непараллельность плоскостей и осей вращения поверхностей, торцовое и радиальное биение, несоосность.

Усталостные повреждения нарушают сплошность материала, способствуют возникновению микро - и макротрещин, выкрашиванию металла рабочих поверхностей и излому деталей.

Изменение физико-механических свойств материала - нарушение структуры материала, а также уменьшение или увеличение твердости, прочности, коэрцитивной силы ферромагнитных материалов и т.д.

Степень годности деталей к повторному использованию или восстановлению устанавливают по технологическим картам на дефектацию. В них указаны: краткая техническая характеристика детали (материал, вид термической обработки, твердость, размеры восстановления, отклонение формы и взаимного расположения поверхностей), возможные дефекты и способы их устранения, методы контроля, допустимые без ремонта и предельные размеры. Оценку проводят сравниванием фактических геометрических параметров деталей и других технологических характеристик с допустимыми значениями.

Номинальными считают размеры и другие технические характеристики деталей, соответствующие рабочим чертежам.

Допустимыми считают размеры и другие технические характеристики детали, при которых она может быть поставлена на машину без восстановления и будет удовлетворительно работать в течение предусмотренного межремонтного ресурса.

Предельными называют выбраковочные размеры и другие характеристики детали.

Часть деталей с размерами, не превышающими допустимые, могут быть годными в соединении с новыми (запасными частями), восстановленными или с деталями, бывшими в эксплуатации. Поэтому в процессе контроля их сортируют на пять групп и маркируют краской соответствующего цвета: годные (зеленым), годные в соединении с новыми или восстановленными до номинальных размеров деталями (желтым), подлежащие ремонту в данном ремонтном предприятии (белым), подлежащие восстановлению на специализированных ремонтных предприятиях (синим) и негодные - утиль (красным). Годные детали транспортируют в комплектовочное отделение или на склад, требующие ремонта - на склад деталей, ожидающих ремонта, или непосредственно на участки по их восстановлению, негодные - на склад утиля.

У деталей обычно контролируют только те параметры, которые могут изменяться в процессе эксплуатации машины. Многие из них имеют несколько дефектов, каждый из которых требует проверки. Для уменьшения трудоемкости дефектации необходимо придерживаться той последовательности контроля, которая указана в технологических картах, где вначале приведены наиболее часто встречающиеся дефекты.

2.2 Методы контроля

При дефектации используют следующие методы измерения: абсолютный, когда прибор показывает абсолютное значение измеряемого параметра, и относительный - отклонение измеряемого параметра от установленного размера.

Искомое значение можно отсчитывать непосредственно по прибору (прямой метод) или по результатам измерения другого параметра, связанного с искомым непосредственной зависимостью (косвенный метод).

По числу измеряемых параметров методы контроля подразделяют на дифференциальные и комплексные. При первом измеряют значение каждого параметра, при втором - суммарную погрешность отдельных геометрических размеров изделия.

Примером комплексного метода может служить определение степени годности подшипников качения по радиальному зазору. Изменение последнего связано с износом беговых дорожек внутреннего и наружного колец, а также элементов качения (шариков, роликов).

Если измерительный элемент прибора непосредственно соприкасается с контролируемой поверхностью, то такой метод называют контактным, а если нет - бесконтактным. Наиболее часто применяют следующие средства измерения: калибры, универсальный измерительный инструмент и специальные приборы.

Калибры - это бесшкальные измерительные инструменты для контроля отклонений размеров, формы и взаимного расположения поверхностей деталей без определения численного значения измеряемого параметра. Широко распространены предельные калибры, ограничивающие крайние предельные размеры деталей и распределяющие их на три группы: годные, подлежащие восстановлению и негодные.

Универсальные инструменты и приборы служат для нахождения значения контролируемого параметра в определенном интервале его значений. Обычно применяют следующие измерительные средства: штриховые инструменты с нониусом (штангенциркуль, штан-генглубиномер, штангенрейсмус и штангензубомер), микрометрические (микрометры, микрометрический нутромер и глубиномер), механические приборы (миниметр, индикатор часового типа, рычажная скоба и рычажный микрометр), пневматические приборы давления (манометры) и расхода (ротаметры).

Специальные измерительные средства предназначены для контроля конкретных деталей с высокой производительностью и точностью. К ним относят, например, приборы для проверки изгиба и скрученности шатунов и радиального биения подшипников качения, оправки для проверки соосности гнезд коренных подшипников блока цилиндров и др.

При выборе средства измерения необходимо учитывать его метрологические характеристики (цена и интервал деления шкалы, точность отсчета, погрешность и пределы измерения), а также точность изготовления измеряемого элемента детали (после допуска).

Дефекты несплошности материала деталей, бывших в эксплуатации, можно условно разбить на две группы: явные и скрытые. Явные дефекты - это трещины, обломы, пробоины, смятие, коррозия. Их чаще всего обнаруживают внешним осмотром невооруженным глазом, через лупу 10-кратного увеличения или ощупыванием. Для обнаружения скрытых дефектов применяют следующие методы контроля (дефектоскопии): капиллярные, обнаружением подтекания газа или жидкости, магнитные и акустические.

Капиллярные методы дефектоскопии основаны на способности жидкости втягиваться в мельчайшие сквозные и несквозные каналы (капилляры). При попадании жидкости в капилляр ее свободная поверхность искривляется (образуется мениск), в результате чего возникает дополнительное давление жидкости в капилляре, отличающееся от внешнего давления (воздуха). Значение этого давления зависит от коэффициента поверхностного натяжения и радиуса канала.

Для проникновения жидкости в дефект необходимо, чтобы жидкость хорошо смачивала поверхности, а размеры дефекта (канала) создавали возможность жидкости образовывать мениск.

Технология контроля изделий капиллярными методами состоит из следующих операций: очистки детали от маслянисто-грязевых и других загрязнений, нанесения пенетранта, выявления дефекта и окончательной очистки.

Для проявления дефектов широко применяют сорбционный метод. В качестве проявителей используют сухие порошки (каолин, мел и др.) и их суспензии в воде или органических растворителях (керосин, бензин и др.), а также быстросохнущие пигментированные или бесцветные растворы красок и лаков, которые наносят на поверхность детали после пропитки пенетрантом.

В качестве проявителей применяют сорбенты в виде суспензий и белые проявляющиеся лаки.

При сорбционном способе на поверхность детали наносят сухой порошок (сухой метод) или порошок в виде суспензии (мокрый способ). За счет сорбционных сил проникающая жидкость извлекается на поверхность изделия и смачивает проявитель. При диффузионном способе на поверхность детали наносят специальное покрытие, в которое диффундирует проникающая жидкость из полости дефекта. Этот способ более чувствителен, чем сорбционный, и его применяют для обнаружения мелких трещин.

После проявления дефектов детали очищают от проявителя. Проявители на основе лаков, нитроэмалей и коллодия удаляют раствором 80% -го спирта и 20% -го эмульгатора ОП-7.

Суспензии смывают 1% -м раствором эмульгатора ОП-7 или ОП-10 в воде.

Обнаружение подтекания газа или жидкости необходимо для проверки герметичности пустотелых деталей: блоков цилиндров, головок блоков цилиндров, баков, водяных и масляных радиаторов, камер шин, трубопроводов, шлангов, поплавков карбюраторов и др. Его широко применяют для контроля качества сварных швов. Степень герметичности определяют по утечке газа или жидкости в единицу времени, которую регистрируют с помощью приборов. В большинстве случаев место дефекта определяют визуально. Методы контроля подразделяют на капиллярные, компрессионные и вакуумные.

Для дефектоскопии деталей, поступающих в ремонт, применяют способы керосиновой пробы (капиллярный метод), гидравлический и пневматический (компрессионный).

· Керосин обладает хорошей смачивающей способностью, глубоко проникает в сквозные дефекты диаметром более 0,1 мм. При контроле качества сварных швов на одну из поверхностей изделия наносят керосин на противоположную - адсорбирующее покрытие (350 - 450 г суспензии молотого мела на 1л воды). Наличие сквозной трещины определяют по желтым пятнам керосина на меловой обмазке.

· При гидравлическом методе внутреннюю полость изделия заполняют рабочей жидкостью (водой), герметизируют, создают насосом избыточное давление и выдерживают деталь некоторое время. Наличие дефекта устанавливают визуально по появлению капель воды или отпотеванию наружной поверхности.

· Пневматический способ нахождения сквозных дефектов более чувствителен, чем гидравлический, так как воздух легче проходит через дефект, чем жидкость. Во внутреннюю полость деталей закачивают сжатый воздух, а наружную поверхность покрывают мыльным раствором или погружают деталь в воду. О наличии дефекта судят по выделению пузырьков воздуха. Давление воздуха, закачиваемого во внутренние полости, зависит от конструктивных особенностей деталей и обычно равно 0,05 - 0,1 МПа.

Магнитный метод применяют для обнаружения дефектов в деталях, изготовленных из ферромагнитных материалов. Так выявляют поверхностные трещины или подповерхностные включения с иной, чем у основного материала, магнитной проницаемостью. Метод получил широкое распространение из-за высокой чувствительности, простоты технологических операций и надежности. Он основан на явлении возникновения в месте расположения дефекта магнитного поля рассеивания.

При магнитопорошковом способе для обнаружения магнитного потока рассеивания используют магнитные порошки (сухой способ) или их суспензии (мокрый способ). Проявляющийся материал наносят на поверхность изделия. Под действием магнитного поля рассеивания частицы порошка концентрируются около дефекта. Форма его скоплений соответствует очертанию дефекта.

Сущность магнитографического метода заключается в намагничивании изделия при одновременной записи магнитного поля на магнитную ленту, которой покрывают деталь, и последующей расшифровке полученной информации.

Для обнаружения дефектов феррозондовым способом применяют феррозондовые преобразователи.

Постоянный ток применяют для выявления под поверхностных дефектов. Создаваемое им магнитное поле однородно и проникает достаточно глубоко в деталь.

Для определения дефекта большое значение имеет правильный выбор напряженности магнитного поля. Чрезмерно большая напряженность приводит к осаждению магнитного порошка по всей поверхности изделия и появлению "ложных" дефектов, а недостаточная к снижению поверхности детали она должна находиться в пределах 1590 - 3979 А/м, а на остаточную намагниченность приходится 7958 - 15915 А/м.

Для индикации дефектов применяют ферромагнитные порошки с большой магнитной проницаемостью и малой коэрцитивной силой. Порошок магнетита (Fe3O4) черного или темно-коричневого цвета используют для контроля деталей со светлой поверхностью, а порошок оксида железа (Fe2O3) буро-красного цвета - с темной поверхностью. Зернистость порошка существенно влияет на обнаружение дефектов и должна быть 5 - 10 мкм.

Магнитную суспензию приготавливают, используя керосин, трансформаторное масло, смесь минерального масла с керосином и водные растворы некоторых веществ. На 1 л жидкости добавляют 30 - 50 г магнитного порошка.

После контроля все детали, кроме бракованных, размагничивают. Восстановление не размагниченных деталей механической обработкой может привести к повреждению рабочих поверхностей из-за притягивания стружки.

Детали размагничивают, воздействуя на них переменным магнитным полем, изменяющимся от максимального значения напряженности до нуля.

Степень размагниченности контролируют, осыпая детали стальным порошком. У хорошо размагниченных деталей порошок не должен удерживаться на поверхности. Для этих же целей применяют приборы ПКР-1, снабженные феррозондовыми полюсоискателями.

3. Вибродуговая наплавка. Сущность способа, материалы, оборудование и выбор режимов. Применение вибродуговой наплавки при восстановлении деталей машин

Вибродуговая наплавка - разновидность автоматической электродуговой наплавки. Она ведется колеблющимся электродом, что дает возможность наплавлять металл при низком напряжении источника тока. Благодаря этому образуется минимально возможная сварочная ванна, мелкокапельный переход металла с электрода на деталь. При вибродуговой наплавке получается достаточно хорошее сплавление основного металла с электродным, небольшой нагрев детали и малая по глубине зона термического влияния. Наиболее широкое применение получила вибродуговая наплавка в среде охлаждающей жидкости.

Принципиальная схема установки для вибродуговой наплавки в среде жидкости показана на рисунке 1. К установленной в станок изношенной детали с помощью роликов по направляющему мундштуку подается проволока, которая сматывается с барабана. Одновременно с подачей проволоки от вибратора электроду сообщается колебательное движение частотой 50-100 Гц. Установка вибратора позволяет уменьшить мощность дуги, не уменьшая стабильности процесса. От источника постоянного тока через ролики и мундштук к электроду подводится плюс, а к детали через шпиндель станка - минус.

Рис. 1. Схема установки для вибродуговой наплавки в струе жидкости:

1-индуктивность, 2-генератор, 3-трубопровод, 4 - подающие ролики, 5 - барабан для электродной проволоки, 6 - вибратор, 7 - пружины, 8 - шестеренный насос, 9 - бак-отстойник, 10 - деталь с наплавленным слоем, 11 - зона наплавки, 12 - мундштук

В зону наплавки по трубопроводу непрерывной струей подается жидкость. С детали жидкость стекает в поддон станка, откуда попадает в бак отстойник и далее насосом по трубопроводам снова подается к детали.

Вибродуговым способом могут наплавляться цилиндрические поверхности диаметром от 15 мм и выше, поверхности изношенных отверстий, подвижных и неподвижных соединений; поверхности под обоймы шариковых и роликовых подшипников; шейки валов, работающих в подшипниках скольжения, не испытывающие ударной нагрузки; шейки в местах прессовых посадок. Вибродуговая наплавка нежелательна для профильных поверхностей в виде резьб, мелких шлиц и т.д. Вибродуговую наплавку можно производить также под слоем флюса и в среде защитного газа.

Способ вибродуговой наплавки и сварки различных материалов в потоке воздуха применяют при восстановлении чугунных деталей. Деталь наплавляют с помощью автоматической вибродуговой головки, а для получения плотных и легко обрабатываемых слоев в зону сварки подают атмосферный воздух. С увеличением подачи воздуха наружная пористость наплавляемого металла уменьшается. Наименьшая пористость получается при расходе воздуха свыше 1600 - 2000 л/ч.

Наплавленный металл обладает невысокой твердостью, что позволяет производить токарную обработку слоя обычным инструментом. Для наплавки используют установку, состоящую из токарного станка, источника тока (три выпрямителя ВСГ-ЗА) и автоматической вибродуговой головки.

При наплавке в среде углекислого газа сварочная дуга и расплавленный металл защищаются от вредного влияния воздуха струей углекислого газа, специально подаваемого в зону сварки. Электродная проволока из кассеты непрерывно подается в зону сварки с заданной скоростью. Ток к проволоке подводится с помощью мундштука и наконечника, расположенного внутри газовой горелки, которая подает защитный газ в зону сварки.

Рис. 2. Схема процесса наплавки в среде углекислого газа:

1 - горелка, 2 - электродная проволока, 3 - мундштук, 4 - наконечник, 5 - сопло горелки, 6 - основной металл, 7 - сварочная дуга, 8 - сварочная ванна, 9 - шов

Электродная проволока плавится под действием теплоты дуги; электродный металл переходит в сварочную ванну и смешивается с расплавленным основным металлом. В результате сплавления электродного и основного металлов образуется наплавленный валик, прочно соединенный с основным металлом.

При наплавке углекислый газ из баллона (рисунок 2) проходит через подогреватель газа, осушитель, редуктор и расходомер (ротаметр). При выходе из баллона углекислый газ расширяется и температура его резко падает. Чтобы исключить резкое охлаждение газа и замерзание содержащейся в углекислом газе влаги, его сразу после выхода из баллона пропускают через подогреватель. Затем углекислый газ попадает в осушитель, представляющий собой цилиндр, заполненный веществом, которое поглощает влагу из углекислого газа (силикагель, обезвоженный медный купорос или хлористый кальций).

Сущность процесса электроконтактной приварки стальной ленты заключается в приварке к поверхности деталей стальной ленты мощными импульсами электрического тока. В сварочной точке под действием импульса тока расплавляются металлы присадочного материала и детали. Присадочный материал (стальная лента) расплавляется не по всей толщине, а лишь в тонком поверхностном слое, в зоне контакта с деталью. Слой приваривают ко всей изношенной поверхности регулируемыми импульсами тока при вращательном движении детали со скоростью, пропорциональной частоте импульсов, и поступательном перемещении сварочной головки. Схема процесса приварки ленты приведена на рисунке 3.

Технологический процесс целесообразно применять при восстановлении шеек валов под подшипники качения, посадочных отверстий стаканов подшипников и других деталей при износе до 0,4 мм.

Изношенную поверхность предварительно шлифуют, удаляя слой металла толщиной 0,15 - 0,2 мм. После этого деталь подают на установку. Накладывают на подготовленную поверхность мерный отрезок стальной ленты толщиной 0,4 - 0,8 мм (в зависимости от величины износа), который прижимают сварочными роликами установки. Материал ленты - средне - и высокоуглеродистые стали марок 45, 50, 65Г и др.

Импульсами тока прихватывают ленту в нескольких местах. Перемещая ролики в крайнее положение, переключают установку на рабочий режим и приваривают ленту.

Рис. 3. Схема процесса электроконтактной приварки стальной ленты:

1 - центры, 2 - восстанавливаемая деталь, 3 - ролики, 4 - лента, 5 - трансформатор, 6 - прерыватель тока

Процесс ведут при подаче жидкости (воды), которая охлаждает ролики сварочной головки и одновременно эффективно отводит теплоту от зоны приварки. При этом твердость восстанавливаемой поверхности увеличивается до HRC.55 и более. Этим достигается совмещение технологий нанесения покрытия и термической обработки. Последующую механическую обработку после приварки ленты производят на кругло-шлифовальных станках.

Использование электроконтактной приварки стальной ленты взамен вибродуговой наплавки позволяет повысить производительность восстановления деталей в 2,5 раза, снизить расход присадочных материалов в 4 - 5 раз, трудоемкость работ в 2,5 раза и повысить ресурс детали до уровня новой.

Электро-контактную приварку стальной проволоки применяют преимущественно для восстановления резьбы. Проволоку подают во впадину изношенной резьбы и прижимают контактным роликом. После включения тока ее приваривают. Диаметр проволоки подбирают с таким расчетом, чтобы после ее приварки и осадки металл заполнил впадину между витками восстанавливаемой резьбы и при этом оставался припуск на механическую обработку. Наилучшие результаты получаются в том случае, если диаметр присадочной проволоки равен шагу резьбы или больше его на 5 - 10%.

4. Восстановление деталей электроконтактной приваркой и напекания металлического слоя

Способы восстановления деталей электродуговой наплавкой под флюсом, в защитных газах, вибродуговой наплавкой и другие, широко распространенные в ремонтной практике, имеют ряд существенных недостатков, особенно в случае восстановления деталей с малыми износами. Большинство таких деталей выбраковывают при износе посадочных мест не более 0,3 мм, а толщина наплавляемого слоя составляет 1 - 2 мм. При этом основная часть наплавленного металла затем снимается при механической обработке. Способы электродуговой наплавки также влекут за собой значительный нагрев и деформацию деталей. Одно из перспективных направлений восстановления деталей с малыми износом и - применение электроконтактной сварки.

Сущность процесса восстановления электроконтактной сваркой заключается в приварке мощными импульсами тока к поверхностям деталей стальной ленты, порошка или проволоки. В сварной точке, полученной от действия импульса тока, происходит расплавление металлов ленты и детали. Металл ленты в этом случае расплавляется не по всей ее толщине, а лишь в тонком поверхностном слое в месте контакта детали и ленты. Слой привари-шиот ко всей изношенной поверхности регулируемыми импульсами тока, перекрывающимися точками, которые располагаются по винтовой линии. Перекрытие точек как вдоль рядков, так и между рядками достигается вращением детали со скоростью, пропорциональной частоте импульсов, и продольным перемещением сварочных клещей.

Регулируемые импульсы сварочного тока могут быть получены путем использования прерывателей, применяемых в контактных сварочных машинах, а также конденсаторных источников питания. Способ восстановления деталей контактным электро-импульсным покрытием нашел наибольшее применение для восстановления посадочных мест валов, наружных цилиндрических поверхностей деталей, а также отверстий в чугунных и стальных деталях типа стаканов подшипников и других деталей, в том числе корпусных.

Способ электроконтактной приварки металлического слоя нашел применение для восстановления резьбовых участков валов, штуцеров и подобных деталей. В связи с тем, что детали с наружной резьбой в большинстве случаев имеют небольшие размеры (от 14 до 30 мм), восстановление их существующими способами осложняется сильным нагревом. Кроме того, твердость наплавленного слоя не должна быть высокой. В наплавленном слое недопустимы неоднородность структуры, неметаллические включения, поры, так как при нарезании трудно получить качественную резьбу.

Способ восстановления наружной резьбы контактной сваркой основан на использовании сварочного тока для нагрева присадочной проволоки и детали и формировании сварного шва под давлением. При этом присадочную проволоку укладывают во впадины резьбы и зажимают проволоку и деталь между электродами сварочной машины. После включения сварочного трансформатора ток, проходя через место контакта проволоки с деталью, нагревает контактируемые поверхности до сварочной температуры. Благодаря сжатию электродов присадочная проволока полностью заполняет впадину между витками и сваривается с его боковыми гранями, образуя сварные соединения. Диаметр проволоки подбирают так, чтобы при нагреве и осадке проволока полностью заполняла впадину между витками и при этом оставался припуск на последующую механическую обработку. Наилучшие результаты достигаются в том случае, если диаметр присадочной проволоки или равен шагу резьбы, или больше его на 5 - 10%. Схема процесса электроконтактной приварки проволоки к виткам резьбы представлена на рисунке 4.

Для повышения износостойкости восстановленных деталей перспективными являются процессы приварки к изношенной поверхности порошковых твердых сплавов. Приварку твердых сплавов производят двумя способами.

Рис. 4. Электро-контактная приварка проволоки к виткам резьбы:

1 - электрод;

2 - сварочный трансформатор;

3 - присадочная проволока;

4 - витки резьбы.

В первом случае порошок самотеком подается из бункера непосредственно на деталь и тут же приваривается импульсами тока.

Во втором случае порошковый твердый сплав предварительно закрепляется с помощью клея на стальной ленте. Затем ленту с нанесенным на нее порошком приваривают к поверхности детали. В процессе приварки металл детали и ленты в точках контакта от нагрева размягчается и сплавляется. Твердые частицы под действием давления, приложенного к электродам, внедряются в поверхность ленты и детали. Таким образом, на поверхности детали образуется армированный упроченный слой, имеющий высокую износостойкость.

Приварка порошковых твердых сплавов целесообразна для восстановления и упрочнения быстроизнашивающихся деталей, таких, как оси качения, цапфы, оси сателлитов и др.

При электроконтактной сварке распространение нагрева происходит на малую глубину, при сохранении неизменности химического состава металла, так как сварка завершается преимущественно в твердой фазе. Кроме того, при контактной сварке не требуются флюс и газы для защиты от вредного влияния воздуха.

Большое влияние на механические свойства покрытий (твердость и прочность сварного соединения) оказывает материал стальной ленты. Материал ленты следует подбирать с учетом твердости восстанавливаемых деталей, которая может быть различной в зависимости от назначения детали.

Твердость приваренного слоя зависит от содержания углерода в материале ленты. С увеличением содержания углерода твердость повышается. Особенно высокую твердость обеспечивают хромистые и марганцовистые ленты. Оптимальным считают тот материал, который обеспечивает твердость приваренного слоя в соответствии с требованиями чертежа детали.

Оборудование. Для электроконтактной приварки металлического слоя ВНПО "Ремдеталь" разработано специализированное оборудование. Установка ОКС-011-1-02 ВНПО "Ремдеталь" предназначена для восстановления изношенных посадочных мест под подшипники деталей типа "вал". Установка работает в полуавтоматическом режиме и снабжена унифицированными узлами: вращателем, приводом подач, суппортом со сварочной головкой, прерывателем типа ПСЛ, пневмопинолью, пультом управления.

Изношенные поверхности восстанавливают приваркой стальной ленты, проволоки, порошковых материалов. С помощью установки можно восстанавливать детали диаметром 20. Л 50 мм, длиной до 2000 мм. За один проход может быть приварен слой толщиной 0,3.1,5 мм. Частота вращения шпинделя установки - 0,15.15 об/мин, скорость перемещения сварочной головки - 9.1800 мм/мин, максимальный ток 14 кА. Производительность установки 60.80 см2/мин. Приварку зернистых тугоплавких соединений (карбидов, боридов и др.), а также металлокерамических твердых сплавов установка позволяет осуществлять под слоем металлической ленты, материал которой при этом является связкой.

К электрическим параметрам относятся сила сварочного тока и длительность сварочного цикла. При недостаточной силе тока полной сварки ленты и детали в сварной точке не происходит.

Увеличение силы тока и продолжительности сварочного цикла стабилизирует процесс сварки. При повышении этих параметров до значений, превышающих номинальные, появляются выплески металла и на поверхности восстанавливаемой детали образуются поры и трещины.

При недостаточном усилии сжатия электродов на поверхности ленты и детали образуются эрозионные разрушения, сопровождающиеся сильным искрением в зоне контакта. С увеличением усилия сжатия электродов до определенной величины процесс приварки ленты улучшается. В приведенном в таблице 10 диапазоне усилий сжатия на поверхностях деталей наблюдается минимальное число пор, глубина вмятин - 0,08.0,1 мм. Дальнейшее увеличение усилий сжатия электродов приводит к ухудшению качества сварки, деформации рабочей части и снижению стойкости электродов. При износе электродов происходит увеличение площади контакта электрода с деталью, что приводит к уменьшению плотности тока и давления электродов, ухудшая тем самым условия формирования сварного шва. Высокая плотность тока на контактирующих поверхностях вызывает нагрев и деформацию, а также способствует налипанию материала ленты на электроды. Поэтому электроды необходимо зачищать от налипшего металла и править профиль.

Сила сварочного тока должна быть такой, чтобы создать высокую температуру в месте контакта проволоки с деталью, достаточную для сварки металла в твердой фазе, но в то же время не расплавить витки. Усилие сжатия приводит проволоку и деталь в тесное соприкосновение, способствуя разрыву оксидных пленок и слоев адсорбированных газов, обеспечивает возможность сварочного процесса и оказывает значительное влияние на качество сварного соединения. Между усилием сжатия и площадью контакта проволоки с деталью установлено соотношение P = QCm/F= =0,8.1,0 МПа (при плотности тока 300.400 А/мм2). При таком соотношении сварочного давления и плотности тока продолжительность сварочного цикла принимается 0,08.0,12 с. С увеличением шага резьбы продолжительность сварочного цикла увеличивается. Уменьшение сварочного цикла приводит к недостаточному оплавлению проволоки и детали. Качественное восстановление резьбы обеспечивается в том случае, когда последующая точка перекрывает предыдущую не менее чем на 25.30%.

Для получения высококачественного покрытия восстанавливаемая резьбовая поверхность должна быть очищена от грязи, следов масла, ржавчины. В зависимости от степени загрязнения применяют один из следующих способов очистки деталей перед восстановлением:

· механическая очистка металлической щеткой в течение 1 - 2 мин;

· химическая очистка путем мойки детали в ванне с бензином или уайт-спиритом. Время обработки 1 - 2 мин. Присадочную проволоку обезжиривают, протирая ветошью, смоченной в бензине или уайт-спирите.

5. Ремонт ходовой части гусеничных тракторов

Детали ходовой части работают в абразивной среде без смазочного материала и воспринимают значительные динамические нагрузки. Их износ часто составляет десятки миллиметров. При ремонте используют такие способы, с помощью которых можно нанести покрытия значительной толщины.

Опорные катки кареток изготавливают из стали 45Л-1. Изношенные беговые дорожки восстанавливают автоматической наплавкой под слоем флюса АН-348А или в среде водяного пара пружинной проволокой II класса. Высокую производительность и износостойкость обеспечивает наплавка порошковой лентой, содержащей по 50 % железного порошка и сормайта. Ее выполняют из стали 08 шириной 40 мм и толщиной 2,5 мм. Наплавку ведут под слоем флюса АН-60.

Находит применение широкослойная наплавка колеблющимся электродом с помощью ленты, служащей дополнительным присадочным материалом. Посредством этого способа можно получить толщину наплавленного слоя до 8 мм.

Перспективный способ восстановления беговых дорожек опорных катков - электрошлаковая наплавка, при которой по сравнению с наплавкой под слоем флюса в 10 раз сокращается расход флюса, снижается расход электроэнергии, достигается высокое качество и повышается производительность труда. Износостойкость восстановленного катка почти в 2 раза выше, чем нового.

В процессе ремонта беговых дорожек заливкой жидкого металла зачищают поверхность металлической щеткой, покрывают лаком КФ965, а затем флюсом АНШ-200 толщиной 1,5-2,0 мм. Далее нагревают ТВЧ до температуры 950 - 1150°С, опускают в форму и в образовавшийся между ободом катка и формой зазор заливают расплавленный чугун. После охлаждения деталь вынимают и зачищают от приливов и заусенцев на обдирочно-шлифовальном станке. Механическая обработка не требуется.

Этот способ имеет высокую производительность, в несколько раз превышающую производительность наплавочных работ, обеспечивает надежную связь наплавленного слоя с основным металлом и износостойкость восстановленной детали на уровне новой. Он предназначен для ремонта деталей с износом более 10 мм на диаметр.

При восстановлении опорных катков постановкой бандажей их беговые дорожки протачивают. Из полосовой стали изготавливают кольцо (бандаж), нагревают его до температуры 300 - 400°С, напрессовывают на каток и приваривают с торцов. Трещины в спицах заваривают дуговой сваркой с помощью электродов Э-42. Изношенные отверстия в ступице восстанавливают пластическим деформированием. Поврежденный колпак удаляют и приваривают новый.

Балансиры выполнены из стали 45Л-1. При наличии трещин, проходящих через посадочные места подшипников и втулок, изломов и сквозных поперечных трещин, балансиры выбраковывают.

Направляющие колеса изготавливают из стали 45Л-1. Колеса с изломом бурта обода на длине более 200 мм, трещинами в двух и более спицах, а также трещинами в одной спице, двух и более местах обода выбраковывают. Беговые дорожки направляющих колес наплавляют автоматической наплавкой под слоем флюса АН-348А проволокой Нп-30, а торцовую поверхность буртов обода - проволокой из стали У7 или У 8.

Ведущие колеса при одностороннем износе зубьев переставляют с одной стороны трактора на другую. Значительный износ зубьев приводит к нарушению нормального зацепления ведущего колеса с гусеницей. Зубья восстанавливают ручной дуговой сваркой по шаблону, заливкой жидким металлом и приваркой секторов.

При заливке жидким металлом колесо устанавливают в кокиль, заливают металлом через литниковую чашу и центрируют в кокиле с помощью центрирующей оси. Для увеличения сцепления заливаемого металла с поверхностью детали колесо и кокиль предварительно подогревают.

В процессе приварки секторов зубья колеса отрезают по копиру на машине АСШ-70 для кислородной резки. Колесо с обрезанными зубьями укладывают в шаблон и вместо удаленных зубьев по копиру приваривают секторы автоматической сваркой под слоем флюса АН-348А. Секторы изготавливают штамповкой или литьем. Их форма соответствует форме зубьев ведущего колеса.

Звенья гусениц выполнены из высокомарганцовистой стали 13Л с высокой износостойкостью в абразивной среде. Сварка и наплавка деталей из этой стали затруднены из-за внутренних напряжений, приводящих к образованию трещин. Около 80 % звеньев гусениц тракторов тягового класса 3 выбраковывают по причине износа отверстий проушин. Последние заливают жидким металлом, обжимают или используют индукционную наплавку.

При заливке торцы проушин зачищают на обдирочно-шлифовальном станке. В стенках со стороны наибольшего износа прожигают угольным электродом технологические отверстия диаметром 10 - 12 мм. Устанавливают звено проушиной вверх. В нее вставляют технологический палец, диаметр которого на 0,2 - 0,4 мм больше номинального диаметра отверстия. Уплотняют торцы металлическими шайбами. Затем через прожженное технологическое отверстие в проушину заливают расплавленную сталь 45Л, 50Л или 55Л.

Металл заливают в холодное звено, поэтому сплавления его с проушиной не происходит. В последней формируется вкладыш, который копирует ее изношенную часть и удерживается в ней литником, как заклепкой.

Проушины звеньев гусениц восстанавливают пластическим деформированием в специальных закрытых секционных штампах. Для этого пригодны звенья с толщиной передней стенки на дуге 120° не менее 8 мм, толщиной цевки и беговой дорожки не менее 7 мм. Их предварительно нагревают в соляной электродной печи в два приема: сначала до температуры 350 - 400°С, а затем выдерживают 5 мин в расплаве хлорида бария при температуре 1000 - 1050°С. Благодаря такому режиму можно избежать потерь металла в результате окисления и выгорания легирующих элементов и улучшить пластичность металла. Нагретое звено укладывают в матрицу, а в отверстие проушины вводят технологический палец. Блок основных пуансонов, перемещаясь в вертикальной плоскости, поджимает верхнюю и нижнюю проушины к пальцу и вытесняет металл к передней стенке. Дополнительные пуансоны поджимают переднюю стенку к пальцу и окончательно формируют проушины. Время деформации звена в штампе 5 - 6 с. После обжатия звенья закаливают в холодной воде.

Разработана индукционная наплавка звеньев гусениц. Предварительно в проушины звена вставляют песчаные стержни, а их торцы закрывают. Подготовленное звено вводят в индуктор. На поверхность проушин укладывают присадочный материал в виде прутков. Затем опускают индуктор вместе со звеном в слой песка, находящегося в результате продувания через него сжатого воздуха в псевдосжиженном состоянии.

При нагреве проушины и присадочного материала ТВЧ кварцевый песок налипает на их поверхность и образует огнеупорную оболочку. В процессе дальнейшего нагревания металл проушины и присадочного материала расплавляется и заполняет часть объема между песчаным стержнем и огнеупорной оболочкой.

После этого индуктор автоматически отключается. Из него выводится звено и закаливается. Восстановленные звенья гусениц не уступают по износостойкости новым.

Размещено на Allbest.ru

...

Подобные документы

  • Изнашивание деталей механизмов в процессе эксплуатации. Описание условий эксплуатации узла трения подшипников качения. Основные виды изнашивания и формы поверхностей изношенных деталей. Задиры поверхности дорожек и тел качения в виде глубоких царапин.

    контрольная работа [179,9 K], добавлен 18.10.2012

  • Классификация механизмов, узлов и деталей. Требования, предъявляемые к машинам, механизмам и деталям. Стандартизация деталей машин. Технологичность деталей машин. Особенности деталей швейного оборудования. Общие положения ЕСКД: виды, комплектность.

    шпаргалка [140,7 K], добавлен 28.11.2007

  • Воздействие режимов нагружения на толщину смазочного слоя и изнашивание деталей трибосопряжений при эксплуатации в режиме "пуск-стоп" и реверсивном движении. Технология изготовления масла с заданным комплексом присадок. Повышение долговечности пар трения.

    дипломная работа [1,8 M], добавлен 07.10.2013

  • Срок службы промышленного оборудования определяется износом деталей, изменением размеров, формы, массы или состояния их поверхностей вследствие изнашивания, т. е. остаточной деформации от действующих нагрузок, из-за разрушения верхнего слоя при трении.

    реферат [103,0 K], добавлен 07.07.2008

  • Геометрические параметры и физико-механическое состояние поверхностного слоя деталей. Граничный и поверхностный слой. Влияние механической обработки, состояния поверхностного слоя заготовки и шероховатости на эксплуатационные свойства деталей машин.

    презентация [1,9 M], добавлен 26.10.2013

  • Характеристика вида изнашивания наплавляемых деталей: материал изделия, оценка склонности металлов к образованию трещин; кавитационно-эрозионное изнашивание. Особенности легирования выбранного способа наплавки; оборудование и технологический процесс.

    контрольная работа [2,2 M], добавлен 06.05.2012

  • Характеристика допустимых и предельных износов деталей машин. Технология сборки машин, применяемое оборудование и инструмент. Ремонт чугунных и алюминиевых деталей сваркой. Характерные неисправности и ремонт электрооборудования, зерноуборочных аппаратов.

    контрольная работа [115,0 K], добавлен 17.12.2010

  • Надежность машин и механизмов как важнейшее эксплуатационное свойство. Методы проектирования и конструирования, направленные на повышение надежности. Изучение влияния методов обработки на формирование физико-механических свойств поверхностного слоя.

    реферат [303,6 K], добавлен 18.04.2016

  • Выбор способов восстановления различных поверхностей деталей. Проектирование маршрутов и операций по восстановлению деталей. Порядок вибродуговой наплавки, плазменная наплавка, процесс гальванического наращивания. Обработка деталей после наплавки.

    курсовая работа [1,5 M], добавлен 15.08.2010

  • Эрозионная теория изнашивания. Теория гидроабразивного изнашивания при кавитации. Прогнозирование ресурсных показателей гидромашин. Расчет гидроэрозионного изнашивания. Распределение размеров абразивных частиц насоса. Относительная скорость скольжения.

    контрольная работа [473,6 K], добавлен 27.12.2016

  • Методика расчета и условные обозначения допусков формы и расположения поверхностей деталей машин, примеры выполнения рабочих чертежей типовых деталей. Определение параметров валов и осей, зубчатых колес, крышек подшипниковых узлов, деталей редукторов.

    методичка [2,2 M], добавлен 07.12.2015

  • Изнашивание при сухом трении, граничной смазке. Абразивное, окислительное и коррозионное изнашивание. Причины, обусловливающие отрицательное влияние растворенного воздуха и воды на работу гидравлических систем. Механизм понижения выносливости стали.

    контрольная работа [1,7 M], добавлен 27.12.2016

  • Контроль деталей автомашин для определения их технического состояния. Сортировка деталей на три группы: годные для дальнейшего использования, подлежащие восстановлению и негодные. Определение коэффициентов годности, сменности и восстановления деталей.

    реферат [19,7 K], добавлен 22.04.2011

  • Сущность и классификация деталей, узлов и машин; предъявляемые к ним требования. Основные критерии работоспособности и расчета деталей машин, применяемые для их изготовления материалы. Стандартизация, унификация и взаимозаменяемость в машиностроении.

    презентация [960,7 K], добавлен 13.03.2013

  • Анализ вибрации роторных машин, направления проведения диагностики в данной сфере. Практика выявления дефектов деталей машин и оценка его практической эффективности. Порядок реализации расчета частоты дефектов с помощью калькулятора, анализ результатов.

    учебное пособие [3,2 M], добавлен 13.04.2014

  • Причины износа и разрушения деталей в практике эксплуатации полиграфических машин и оборудования. Ведомость дефектов деталей, технологический процесс их ремонта. Анализ методов ремонта деталей, обоснование их выбора. Расчет ремонтного размера деталей.

    курсовая работа [2,3 M], добавлен 10.06.2015

  • Виды разъемного соединения, основные типы крепежных деталей, способы стопорения резьбовых соединений. Особенности соединения пайкой и склеиванием. Оценка соединений призматическими шпонками и их применение. Соединение деталей посадкой с натягом.

    реферат [3,0 M], добавлен 10.12.2010

  • Основные показатели долговечности. Виды ремонтов, их назначение. Долговечность деталей двигателей внутреннего сгорания и других машин, способы ее повышения. Методы и средства улучшения надежности деталей. Процесс нормализации или термоулучшения.

    реферат [72,2 K], добавлен 04.05.2015

  • Классификация видов изнашивания деталей: механического, молекулярно-механического и коррозионно-механического. Факторы, влияющие на износостойкость и изнашиваемость материала. Особенности условий работы бурового инструмента и колонны бурильных труб.

    реферат [23,5 K], добавлен 11.12.2012

  • Основные особенности энергокинематического расчёта привода, способы определения мощности электродвигателя. Этапы расчёта зубчатых цилиндрических колёс и быстроходного вала редуктора. Характеристика исходных данных для проектирования деталей машин.

    контрольная работа [255,2 K], добавлен 02.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.