Типовые технологические процессы изготовления деталей машин
Технология изготовления валов. Методы обработки наружных и внутренних цилиндрических поверхностей. Типовой маршрут изготовления дисков и фланцев. Основные методы формообразования зубьев зубчатых колес. Технология изготовления рычагов и корпусных деталей.
Рубрика | Производство и технологии |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 29.10.2017 |
Размер файла | 4,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
При работе первым методом труднее выдерживать два точных размера - диаметр отверстия и расстояние до плоскости.
При базировании корпусных деталей стараются выдерживать принципы совмещения и постоянства базы.
Ниже приведены наиболее часто используемые схемы базирования.
При изготовлении корпусных деталей призматического типа широко используется базирование по плоской поверхности 1 и двум отверстиям 2, чаще всего обработанным по 7 квалитету (рис. 49).
Детали фланцевого типа базируются на торец фланца 1, отверстие 2 большего диаметра и отверстие 3 малого диаметра во фланце. Распределение опорных точек зависит от соотношения длины базирующей части отверстия к его диаметру (рис.49 и рис. 50).
Рис. 49 Базирование корпусной заготовки на плоскость и два отверстия
Рис. 50 Базирование корпусной заготовки на плоскость, короткую выточку и отверстие
Рис. 51 Базирование корпусной заготовки на плоскость, длинное отверстие и отверстие малого диаметра во фланце
В мелкосерийном и единичном производствах обработку заготовок корпусных деталей выполняют на универсальных станках без приспособлений. Разметкой определяют положение осей основных отверстий, плоских и других поверхностей.
Обработку плоских поверхностей можно производить различными методами на различных станках - строгальных, долбежных, фрезерных, протяжных, токарных, расточных, многоцелевых, шабровочных и др. (лезвийным инструментом); шлифовальных, полировальных, доводочных (абразивным инструментом).
Наиболее широкое применение находят строгание, фрезерование, протягивание и шлифование.
Строгание находит большое применение в мелкосерийном и единичном производстве благодаря тому, что для работы на строгальных станках не требуется сложных приспособлений и инструментов, как для работы на фрезерных, протяжных и других станках.
Этот метод обработки является весьма гибким при переходе на другие условия работы. Однако он малопроизводителен: обработка выполняется однолезвийным инструментом (строгальными резцами) на умеренных режимах резания, а наличие вспомогательных ходов увеличивает время обработки. Кроме того, для работы на этих станках требуются рабочие высокой квалификации.
Строгание и долбление применяют в единичном и мелкосерийном производствах.
При строгании применяют: поперечно-строгальные, а также одно и двухстоечные продольно-строгальные станки. Строгание на продольно-строгальных станках применяют в серийном производстве и при обработке крупных и тяжёлых деталей практически во всех случаях. Объясняется это простотой и дешевизной инструмента и наладки; возможностью обрабатывать поверхности сложного профиля простым универсальным инструментом, малой его чувствительностью к литейным порокам, возможностью снимать за один рабочий ход большие припуски до 20 мм и сравнительно высокую точность (рис. 52).
Рис. 52 Схема строгания плоской поверхности: l - длина заготовки, мм;
b2 - перебег резца, мм; b - ширина заготовки, мм;
b1 - врезание резца, мм; t - глубина резания, мм
При тонком строгании может быть достигнута шероховатость Ra = (1.6...0.8) мкм и неплоскостность 0,01 мм для поверхности 300300 мм.
Для увеличения производительности процесса строгания заготовки устанавливают в один или несколько рядов; обрабатывают одновременно заготовки деталей различных наименований.
Наиболее рационально применять строгание длинных и узких поверхностей. При обычной форме резца строгание производится с глубиной резания от 3 до 10 мм и подачей 0,8...1,2 мм на один двойной ход стола, обеспечивая IТ 13...11; Rа = 3,2...12,5.
Фрезерование в настоящее время является наиболее распространенным методом обработки плоских поверхностей. В массовом производстве фрезерование вытеснило применявшееся ранее строгание.
Фрезерование осуществляется на фрезерных станках. Фрезерные станки разделяются на горизонтально-фрезерные, вертикально-фрезерные, универсально-фрезерные, продольно-фрезерные, карусельно-фрезерные, барабанно-фрезерные и многоцелевые.
Существуют следующие виды фрезерования (рис. 52): цилиндрическое (а), торцовое (б), двустороннее (в), трехстороннее (г).
Рис. 52 Схемы фрезерования плоских поверхностей: а - цилиндрического; б - торцового; в - двустороннего; г - трехстороннего
Широкое применение находит в настоящее время фрезерование торцовыми фрезами, а при достаточно больших диаметрах фрез (свыше 90 мм) - фрезерными головками (торцовыми фрезами со вставными ножами). Это объясняется следующими преимуществами фрезерования этими фрезами перед фрезерованием цилиндрическими фрезами:
- применением фрез больших диаметров, что повышает производительность обработки;
- одновременным участием в обработке большого числа зубьев, что обеспечивает более производительную и плавную работу;
- отсутствием длинных оправок, что дает большую жесткость крепления инструмента и, следовательно, возможность работать с большими подачами (глубинами резания);
- одновременной обработкой заготовок с разных сторон (например, при использовании барабанно-фрезерных станков).
Фрезерование характеризуется высокой производительностью и сравнительно высокой точностью. Фрезерование в два перехода (черновой и чистовой) позволяет достичь: по точности размеров - IТ9; по шероховатости - Ra = 6,3...0,8 мкм; отклонение от плоскостности 40...60 мкм.
Одним из наиболее производительных способов фрезерования является обработка плоскостей на карусельно-фрезерных, барабанно-фрезерных станках, что возможно по непрерывному циклу. Одним из способов сокращения основного времени является внедрение скоростного и силового фрезерования. Скоростное фрезерование характеризуется повышением скоростей резания, при обработке стали до 350 м/мин, чугуна - до 450 м/мин, цветных металлов - до 2000 м/мин при небольших подачах на зуб фрезы Sz = 0,05.. .0,12 мм/зуб - при обработке сталей, 0,3...0,8 мм/зуб - при обработке чугуна и цветных сплавов. Силовое фрезерование характеризуется большими подачами на зуб фрезы (Sz > 1 мм).
Как скоростное, так и силовое фрезерование выполняется фрезами, оснащенными твердосплавными и керамическими пластинами.
Тонкое фрезерование характеризуется малыми глубинами резания (t 0,1 мм), малыми подачами (Sz = 0,05…0,10 мм) и большими скоростями резания.
Протягивание плоскостей реализуют на вертикально- и горизонтально-протяжных станках. Протягивание наружных плоских поверхностей благодаря высокой производительности и низкой себестоимости находит все большее применение в крупносерийном и массовом производстве.
Для этих типов производств протягивание экономически выгодно, несмотря на высокую стоимость оборудования и инструмента.
В настоящее время фрезерование часто заменяют наружным протягиванием (плоскости, пазы, канавки и т. п.).
В массовом производстве для наружного протягивания применяют высокопроизводительные многопозиционные протяжные станки, а также станки непрерывного действия.
Протягивание является самым высокопроизводительным методом обработки плоскостей, обеспечивающим точность размеров IТ7...IТ9, шероховатость Ra = (3,2…0,8) мкм.
Основными преимуществами протягивания по сравнению с фрезерованием являются: высокая производительность; высокая точность; высокая стойкость инструмента.
Ограничениями широкого применения протягивания являются его высокая стоимость и сложность инструмента.
Обычно при протягивании используются следующие режимы: подача на зуб Sz = 0,1…0,4 мм/зуб; скорость резания t = 6…12 м/мин с максимальными припусками до 4 мм с шириной протягивания до 350 мм.
Шабрение выполняют с помощью режущего инструмента - шабера - вручную или механическим способом. Шабрение вручную - малопроизводительный процесс, требует большой затраты времени и высокой квалификации рабочего, но обеспечивает высокую точность. Механический способ выполняют на специальных станках, на которых шабер совершает возвратно-поступательное движение.
Точность шабрения определяют по числу пятен на площади 2525 мм (при проверке контрольной плитой). Чем больше пятен, тем точнее обработка.
Сущность шабрения состоит в соскабливании шаберами слоев металла (толщиной около 0,005 мм) для получения ровной поверхности после ее чистовой предварительной обработки. Шабрение называют тонким, если число пятен более 22 и Rа < 0,08 мкм, и чистовым, если число пятен 6...10, Rа < 1,6 мкм.
Шлифование. Как и наружные цилиндрические поверхности деталей типа тел вращения, плоские поверхности обрабатывают шлифованием, полированием и доводкой.
Шлифование плоских поверхностей осуществляют на плоскошлифовальных станках с крестовым или круглым столом, как обычного исполнения, так и с ЧПУ. Плоское шлифование является одним из основных методов обработки плоскостей деталей машин (особенно закаленных) для достижения требуемого качества. В ряде случаев плоское шлифование может с успехом заменить фрезерование. Шлифование плоских поверхностей может быть осуществлено двумя способами: периферией круга и торцом круга (рис. 52).
Шлифование периферией круга может осуществляться тремя способами: 1) многократными рабочими ходами; 2) установленным на размер кругом; 3) ступенчатым кругом.
При первом способе (рис. 53, а) поперечное движение подачи круга производится после каждого продольного хода стола, а вертикальное - после рабочего хода по всей поверхности длины деталей (1).
При втором способе (рис. 53, б) шлифующий круг устанавливается на глубину, равную припуску, и при малой скорости перемещения стола обрабатывают заготовку по всей длине. После каждого рабочего хода шлифовальный круг перемещается в поперечном направлении от 0,7...0,8 высоты круга. Для чистового рабочего хода оставляют припуск 0,01...0,02 мм и снимают его первым способом. Этот способ применяют при обработке на мощных шлифовальных станках.
При шлифовании третьим способом круг профилируют ступеньками. Припуск (Zi), распределенный между отдельными ступеньками, снимается за один рабочий ход (рис. 53, в).
На рис. 53, г показана схема шлифования установленным на размер кругом на станке с вращающимся столом.
Плоским шлифованием обеспечиваются следующие точность размеров и шероховатость поверхности:
- IТ8...IТ9, Ra = 1,6 мкм - черновое (предварительное) шлифование;
- IT7...IТ8, Ra = (0,4…1,6) мкм - чистовое шлифование;
- IT7...IТ8, Ra = (0,4…1,6) мкм - тонкое шлифование.
Рис. 53 Схемы шлифования плоскостей: а - периферией круга;
б - торцом круга; в - профилирующим кругом;
г - торцом круга на вращающемся столе
Шлифование обычно производится с применением СОЖ.
Полирование поверхностей является методом отделочной обработки. В качестве абразивных инструментов применяют эластичные шлифовальные круги, шлифовальные шкурки.
Доводка плоскостей осуществляется на плоскодоводочных станках. Тонкую доводку плоских поверхностей осуществляют притирами. Осуществляют доводку при давлении 20... 150 кПа, причем, чем меньше давление, тем выше качество обработанной поверхности. Скорости при тонкой доводке небольшие (2...10 м/мин). С повышением давления и скорости производительность повышается.
4.1 Типовые маршруты изготовления корпусных деталей
Последовательность механической обработки корпуса призматического типа с плоским основанием и основным отверстием с осью, параллельной основанию.
005 Заготовительная
Заготовки корпусов из серого чугуна отливают в земляные, металлические (кокиль) или оболочковые формы, из стали - в земляные формы, кокиль или по выплавляемым моделям. Заготовки из алюминиевых сплавов отливают в кокиль или литьем под давлением. В единичном и мелкосерийном производствах применяют сварные корпуса из стали. Заготовки корпусных деталей перед механической обработкой проходят ряд подготовительных операций.
010 Фрезерная (протяжная)
Фрезеровать, или протянуть плоскость основания начерно и начисто или с припуском под плоское шлифование (при необходимости). Технологическая база - необработанная плоскость, параллельная обрабатываемой поверхности.
Оборудование:
- в единичном и мелкосерийном производствах - вертикально-фрезерный и строгальный станки;
- в серийном - продольно-фрезерный или продольно-строгальный станки;
- в крупносерийном и массовом - барабанно- и карусельно-фрезерные, плоскопротяжные, агрегатно-фрезерные станки.
015 Сверлильная
Сверлить и зенковать (при необходимости) отверстия в плоскости основания. Развернуть два отверстия. Технологическая база - обработанная плоскость основания. Оборудование - радиально-сверлильный станок или сверлильный с ЧПУ, в массовом и крупносерийном производствах - многошпиндельный сверлильный станок или агрегатный станок.
020 Фрезерная
Обработка плоскостей, параллельных базовой (при их наличии). Технологическая база - плоскость основания. Оборудование - см. операцию 10.
025 Фрезерная
Обработка плоскостей, перпендикулярных базовой (торцы основных отверстий). Технологическая база - плоскость основания и два точных отверстия. Оборудование - горизонтально-фрезерный или горизонтально-расточной станок.
030 Расточная
Растачивание основных отверстий (черновое и чистовое, или с припуском под точное растачивание). Технологическая база - та же (см. операцию 025). Оборудование - единичное производство - универсальный горизонтально-расточной станок:
- мелкосерийное и среднесерийное - станки с ЧПУ расточно-фрезерной группы и многооперационные станки;
- крупносерийное и массовое - агрегатные многошпиндельные станки.
Точность межосевых расстояний, а также точность положения отверстий достигается с помощью:
- разметки (от ± 0,1 мм до + 0,5 мм);
- пробных расточек (до + 0,02 мм);
- координатное растачивание на горизонтально-расточных станках (до ± 0,02 мм);
- обработка по кондукторам и шаблонам (до ± 0,02 мм, ± 0,03 мм).
035 Сверлильная
Сверлить (зенковать при необходимости), нарезать резьбу в крепежных отверстиях. Технологическая база - та же. Оборудование - радиально-сверлильный, сверлильный с ЧПУ, многооперационный, сверлильный многошпиндельный и агрегатный станки (в зависимости от типа производства).
040 Плоскошлифовальная
Шлифовать (при необходимости) плоскость основания. Технологическая база - поверхность основного отверстия или обработанная плоскость, параллельная базовой (в зависимости от требуемой точности расстояния от базовой плоскости до оси основного отверстия).
Оборудование - плоскошлифовальный станок с прямоугольным или круглым столом.
045 Алмазно-расточная
Тонкое растачивание основного отверстия. Технологическая база - базовая плоскость и два отверстия. Оборудование - алмазно-расточной станок. С целью выдерживания принципа постоянства баз большинство операций обработки (020, 025, 030, 035) за исключением операций подготовки технологических баз (010, 015) и отделки основных поверхностей (040, 045) часто концентрируют в одну операцию, выполняемую на горизонтально-расточном (единичное производство), многооперационном (серийное) или агрегатном (массовое) станках.
В маршрут обработки разъемных корпусов дополнительно к вышеприведенным операциям включают:
- обработку поверхности разъема у основания (фрезерная);
- обработку поверхности разъема у крыши (фрезерная);
- обработку крепежных отверстий на поверхности разъема основания (сверлильная);
- обработку крепежных отверстий на поверхности разъема крышки (сверлильная);
- сборку корпуса промежуточную (слесарно-сборочная операция);
- обработку двух точных отверстий (обычно сверлением и развертыванием) под цилиндрические или конические штифты в плоскости разъема собранного корпуса).
Пример типового маршрута изготовления кронштейна
Рассматриваемый кронштейн (рис. 54)изготавливается литьём в разовые формы с машинной формовкой по деревянным моделям. Материал - серый чугун.
005 Вертикально-фрезерная
Вертикально-фрезерный станок 6М12П. Приспособление специальное. Фрезеровать плоскость 1 под шлифование.
010 Радиально-сверлильная
Радиально-сверлильный станок 2Н53, приспособление - кондуктор.
1. Сверлить четыре отверстия 1 и 2.
2. Зенкеровать четыре отверстия 2 и два отверстия 3.
3. Развернуть два отверстия 3.
015 Токарная
Токарный станок 16К20. Расточить отверстие 1, фаску 2, подрезать торец 3 под тонкое растачивание и обтачивание (обработка противоположного торца не показана).
020 Радиально-сверлильная
Станок радиально-сверлильный 2Н53. Приспособление - кондуктор. Сверлить, зенкеровать, нарезать резьбу в четырех отверстиях (обработка отверстий на противоположном торце не показана).
025 Плоскошлифовальная
Станок плоскошлифовальный ЗБ722. Приспособление специальное. Шлифовать плоскость основания начисто.
030 Алмазно-расточная
Станок для тонкой расточки. Расточить отверстие 1 и подрезать торец 2 начисто.
035 Алмазно-расточная
Станок для алмазной расточки. Подрезать торец 1.
Примеры маршрутов изготовления корпусных деталей с отверстиями, оси которых параллельны и скрещиваются рассмотрены выше.
Рис. 54 Кронштейн
5. Технология изготовления зубчатых колес
В современных машинах широко применяют зубчатые передачи. Различают силовые зубчатые передачи, предназначенные для передачи крутящего момента с изменением частоты вращения валов, и кинематические передачи, служащие для передачи вращательного движения между валами при относительно небольших крутящих моментах.
Зубчатые передачи, используемые в различных механизмах и машинах, делят на цилиндрические, конические, червячные, смешанные и гиперболоидные (винтовые и гипоидные).
Наибольшее распространение получили цилиндрические, конические и червячные передачи (рис. 55). Ниже рассмотрены способы формообразования зубьев цилиндрических зубчатых колес.
Рис. 55 Виды зубчатых передач:
а - цилиндрическая; б - коническая; в - червячная;
1 - шестерня; 2 - зубчатое колесо; 3 - червяк; 4 - червячное колесо
Цилиндрические зубчатые колеса изготовляют с прямыми и косыми зубьями, реже - с шевронными. Стандарт устанавливает 12 степеней точности цилиндрических зубчатых колес (в порядке убывания точности): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
По технологическому признаку зубчатые колеса делятся на:
- цилиндрические и конические без ступицы и со ступицей, с гладким или шлицевым отверстием;
- многовенцовые блочные с гладким или шлицевым отверстием;
- цилиндрические, конические и червячные типа фланца;
- цилиндрические и конические с хвостовиком;
- валы-шестерни.
У цилиндрических колес зубья выполняют прямыми, спиральными или шевронными.
Обработка зубчатых колес разделяется на два этапа: обработку до нарезания зубьев и обработку зубчатого венца. Задачи первого этапа соответствуют в основном аналогичным задачам, решаемым при обработке деталей классов: диски (зубчатое колесо плоское без ступицы), втулки (со ступицей) или валов (вал-шестерня). Операции второго этапа обычно сочетают с отделочными операциями обработки корпуса колеса.
Технологические задачи.
Точность размеров. Самым точным элементом зубчатого колеса является отверстие, которое выполняется обычно по 7-му квалитету, если нет особых требований.
Точность взаимного расположений. Несоосность начальной окружности зубчатого колеса относительно посадочных поверхностей допускается не более 0,05...0,1 мм. Неперпендикулярность торцов к оси отверстия или вала (биение торцов) обычно принимается не более 0,01...0,015 мм на 100 мм диаметра. В зависимости от условий работы колеса эта величина может быть повышена или несколько уменьшена.
Твердость рабочих поверхностей. В результате термической обработки поверхностная твердость зубьев цементируемых зубчатых колес должна быть в пределах НRС 45…60 при глубине слоя цементации 1..2 мм. При цианировании твердость НRС 42...53, глубина слоя должна быть в пределах 0,5...0,8 мм.
Рис. 56 Зубчатое колесо с типовыми требованиями к точности его изготовления
Твердость незакаливаемых поверхностей обычно находится в пределах НВ 180...270.
Для рассматриваемого зубчатого колеса (рис. 56):
- посадочное отверстие выполняется по 7-му квалитету;
- точность формы не задается;
- точность взаимного расположения ограничена величиной торцового биения плоских поверхностей относительно оси отверстия не более 0,016 мм, а также величиной несимметричности шпоночного паза относительно оси отверстия не более 0,02 мм;
- шероховатость поверхности зубчатого венца Rа = 0,63 мкм, отверстия и торцов - 1,25 мкм. Зубчатый венец закаливается ТВЧ до НRС 45...50 на глубину 1...2 мм.
Различают основные виды заготовок зубчатых колес при разных конструкциях и серийности выпуска: заготовка из проката; поковка, выполненная свободной ковкой на ковочном молоте; штампованная заготовка в подкладных штампах, выполненных на молотах или прессах; штампованная заготовка в закрепленных штампах, выполненных на молотах, прессах и горизонтально-ковочных машинах.
Заготовки, получаемые свободной ковкой на молотах, по конфигурации не соответствуют форме готовой детали, но структура металла благодаря ковке улучшается по сравнению с заготовкой, отрезанной пилой от прутка.
Штамповка заготовок в закрытых штампах имеет ряд преимуществ: снижается расход металла из-за отсутствия облоя, форма заготовки ближе к готовой детали, снижается себестоимость, экономия металла составляет от 10 до 30 %. Однако отмечается повышенный расход штампов.
Штамповка на прессах имеет большое преимущество перед штамповкой на молотах: получается точная штамповочная заготовка, припуски и напуски меньше на 30%, по конфигурации заготовка ближе к готовой детали. На прессах можно штамповать с прошиванием отверстия.
Штамповкой на горизонтально-ковочных машинах изготовляют заготовки зубчатых колес с хвостовиком или с отверстием.
Выбор базовых поверхностей зависит от конструктивных форм зубчатых колес и технических требований. У колес со ступицей (одновенцовых и многовенцовых) с достаточной длиной центрального базового отверстия (L/D > 1) в качестве технологических баз используют: двойную направляющую поверхность отверстия и опорную базу в осевом направлении - поверхность торца.
У одновенцовых колес типа дисков (L/D < 1) длина поверхности отверстия недостаточна для образования двойной направляющей базы. Поэтому после обработки отверстия и торца установочной базой для последующих операций служит торец, а поверхность отверстия - двойной опорной базой. У валов-шестерен в качестве технологических баз используют, как правило, поверхности центровых отверстий.
На первых операциях черновыми технологическими базами являются наружные необработанные «чёрные» поверхности. После обработки отверстия и торца их принимают в качестве технологической базы на большинстве операций. Колеса с нарезанием зубьев после упрочняющей термообработки при шлифовании отверстия и торца (исправление технологических баз) базируют по эвольвентной боковой поверхности зубьев для обеспечения наибольшей соосности начальной окружности и посадочного отверстия.
Для обеспечения наилучшей концентричности поверхностей вращения колеса применяют следующие варианты базирования. При обработке штампованных и литых заготовок на токарных станках за одну установку, заготовку крепят в кулачках патрона за черную поверхность ступицы или черную внутреннюю поверхность обода. При обработке за две установки заготовку сначала крепят за черную поверхность обода и обрабатывают отверстие, а при второй установке заготовки на оправку обрабатывают поверхность обода и другие поверхности колеса.
5.1 Основные методы формообразования зубьев зубчатых колес
В зависимости от способа образования зубьев различают два метода зубонарезания: копирование и обкатку. Оба метода используют на различных зубообрабатывающих станках.
Нарезание зубчатых колес методом копирования Распространенной разновидностью метода копирования является зубофрезерование. Зубофрезерование осуществляется на зубофрезерных вертикальных и горизонтальных станках-полуавтоматах. На зубофрезерных станках производят нарезание цилиндрических зубчатых колес по методу обкатки или копирования.
Нарезание зубьев по методу копирования осуществляют модульной дисковой или модульной концевой фрезой. Нарезание, по существу, представляет собой разновидность фасонного фрезерования. Режущие кромки зубьев дисковой или концевой фрезы изготовляют по форме впадины между зубьями колеса, и при фрезеровании они копируют форму впадины, создавая, таким образом, две половины профилей двух соседних зубьев. После нарезания одной впадины заготовка поворачивается на один зуб с помощью делительного механизма, и фреза снова проходит по новой впадине между зубьями, и т.д. (рис. 57).
Рис. 57 Схемы фрезерования цилиндрических колес методом копирования:
а - дисковой фрезой; б - концевой фрезой:
1 - заготовка; 2 - дисковая фреза; 3 - концевая фреза
В массовом производстве применяют зубодолбежные резцовые головки, работа которых основана на методе копирования. Производительность такого метода очень высока, точность зависит от точности резцовой головки.
Другой разновидностью нарезания зубчатых колес методом копирования является протягивание как наружных, так и внутренних зубчатых поверхностей, характеризующееся высокой производительностью.
Нарезание зубчатых колес методом обкатки. При методе обкатки заготовка и инструмент воспроизводят движение пары сопряженных элементов зубчатой или червячной передачи. Для этого либо инструменту придается форма детали, которая могла бы работать в зацеплении с нарезаемым колесом (зубчатое колесо, зубчатая рейка, червяк), либо инструмент выполняют таким образом, чтобы его режущие кромки описывали в пространстве поверхность профиля зубьев некоторого зубчатого колеса или зубчатой рейки, которые называют соответственно производящим колесом или производящей рейкой. В процессе взаимного обкатывания заготовки и инструмента режущие кромки инструмента, постепенно удаляя материал из нарезаемой впадины заготовки, образуют на ней зубья.
Нарезание зубьев цилиндрических зубчатых колес методом обкатки производится с помощью следующих инструментов: червячных фрез (зубофрезерование); дисковых долбяков (зубодолбление) и долбяков в виде гребенок-реек (зубострогание).
Зубонарезание червячными фрезами. Для нарезания зубьев этим методом требуются универсальные зубофрезерные станки и специальный режущий инструмент - червячные фрезы. Станки выпускают с вертикальной или горизонтальной осями вращения фрезы. Метод является высокопроизводительным.
Фрезу на станке устанавливают таким образом, чтобы ее ось была повернута под углом в подъема винтовой линии витков фрезы (рис. 58).
Червячная фреза, кроме вращения, совершает поступательное движение подачи вдоль образующей цилиндра нарезаемого колеса, в результате чего колесо обрабатывается по всей его ширине.
Рис. 58 Схема фрезерования зубьев червячной фрезой
В зависимости от модуля устанавливают число рабочих ходов фрезы: для т =2…2,5 мм - один рабочий ход, для т > 2...2,5 мм - два рабочих хода и более.
Повышения производительности при зубофрезеровании достигают путем увеличения диаметра фрезы (повышается стойкость инструмента), жесткости ее установки, использования специальных инструментальных материалов, в том числе твердосплавных, композиционных, применения многозаходных червячных фрез и увеличения числа одновременно нарезаемых колес.
Зубодолбление. Режущим инструментом является долбяк, представляющий собой зубчатое колесо с эвольвентным профилем зубьев. В процессе нарезания долбяк и нарезаемое зубчатое колесо находятся в относительном движении зацепления (без зазора), т.е. их окружные скорости на начальных окружностях равны, а частота вращения и число зубьев связаны передаточным отношением i = nи/nз = zз/zи, где nи, nз - соответственно частота вращения инструмента и заготовки колеса; zз, zи - соответственно число зубьев заготовки колеса и инструмента.
Нарезание зубьев долблением осуществляется на зубодолбежных станках.
Обработка за один рабочий ход применяется для зубчатых колес: с т = 1...2 мм - за один рабочий ход; с 2 < т < 4 - за два рабочих хода; с т > 4 мм - за три рабочих хода.
Кроме отмеченных обстоятельств, зубодолбление является единственным методом для нарезания колес с внутренним зацеплением (при средних и малых диаметрах), а также при обработке зубчатых венцов в блочных шестернях.
Зубострогание. Этот метод основан на зацеплении колеса и рейки, воспроизводимом инструментом - гребенкой. Обработка колес осуществляется на станках двух типов: с вертикальной и горизонтальной осью заготовки. Станки последнего типа применяют также для обработки колес с неразрывным шевронным зубом.
У зубострогания производительность меньше, чем у зубофрезерования червячной фрезой и зубодолбления.
Накатывание зубчатых поверхностей имеет большие преимущества перед способами обработки резанием: повышает производительность в 5-30 раз; увеличивает износостойкость и прочность зубьев; значительно уменьшает отходы металла и др. Различают горячее и холодное накатывание. Горячее накатывание применяют для профилей с модулем больше 2 мм; холодное накатывание рекомендуется для мелкомодульных колес с модулем до 1,5...2 мм.
Может применяться и комбинированное накатывание для средних и крупных модулей (основная пластическая деформация проводится в горячем состоянии, а окончательное профилирование - в холодном).
Горячее накатывание производится как с радиальной, так и с продольной подачей. Схема накатки с продольной подачей аналогична холодному накатыванию.
Схема накатывания с радиальным движением подачи показана на рис. 59.
Перед накатыванием заготовку нагревают до 1000...1200С за 20...30 с до накатывания, затем устанавливают на оправку специального станка и производят накатывание.
Рис. 59 Схема горячего накатывания зубьев колес: 1 - накатники;
2 - реборды; 3 - заготовка; 4 - переходная втулка; 5 - оправка
Шевингование - чистовая обработка зубьев незакаленных цилиндрических зубчатых колес (твердость обычно не более НRС 40), осуществляемая инструментом - шевером (рис. 60, а).
Шевер имеет форму зубчатого колеса или зубчатой рейки. На поверхности зубьев шевера имеются канавки от головки до ножки.
Шевингование зубчатых колес заключается в срезании весьма тонких волосовидных стружек толщиной 0,05...0,01 мм острыми кромками канавок шевера во время движения обкатки обрабатываемого колеса и инструмента и возникающего при этом относительного скольжения профилей зацепляющихся зубьев (рис. 60, б).
Обычно в процессе шевингования точность зубчатых колес повышается на одну степень, реже - на две.
Шевинговальные станки выпускают с горизонтальной или вертикальной осью (для обработки колес большого диаметра).
В настоящее время есть несколько методов шевингования: параллельное, диагональное, тангенциальное и врезное. Шевингуют зубчатые колеса, как наружного, так и внутреннего зацепления.
Шлифование зубьев зубчатых колес - наиболее надежный метод отделочной обработки, обеспечивающий высокую точность, как правило, закаленных зубчатых колес. Шлифование зубьев производят на различных зубошлифовальных станках, как методом копирования, так и методом обкатки.
а) б)
Рис. 60 Шевингование
а) дисковый шевер; б) схема обработки зубьев колес дисковым шевером: 1 - дисковый шевер, 2 - заготовка, Vш - скорость шевера, Vд - скорость заготовки, Sпр - продольная подача (с реверсированием) стола, Sпр - вертикальная подача стола.
На станках, работающих по методу копирования, шлифуют зубчатые колеса профилированными кругами (рис. 61). Ось заготовки в этих станках расположена горизонтально. Они предназначены главным образом для шлифования прямозубых колес.
Метод обкатки осуществляется на зубошлифовальных станках, которые точны и универсальны в наладке, но производительность которых сравнительно невелика и зависит от принципа работы и типа применяемых шлифовальных кругов.
При шлифовании зубьев этим методом (рис. 62) воспроизводится зубчатое зацепление пары рейка - зубчатое колесо. Инструментом является воображаемая рейка, боковые стороны зуба которой образованы шлифовальными тарельчатыми кругами 2. Шлифовальные круги получают вращательное движение, движение обкатки, заготовка 1 выполняет возвратно-поступательное движение.
Рис. 61 Схемы профильного шлифования зубьев:
а - профилирование зубьев; б - правка шлифовального круга
Движение обкатки складывается из двух движений: вращения заготовки вокруг своей оси (А) и поступательного движения вдоль воображаемой рейки (Б). В результате этих двух движений заготовка перекатывается без скольжения по воображаемой рейке.
Рис. 63 Схема шлифования зубьев методом обкатки:
1 - зубья колеса; 2 - шлифовальные круги
На практике существуют и другие методы шлифования цилиндрических зубчатых колес: дисковым кругом; двумя дисковыми кругами; червячным кругом и др.
Хонингование применяют для чистовой отделки зубьев, как правило, закаленных цилиндрических колес внешнего и внутреннего зацеплений. Процесс осуществляется на зубохонинговальных станках с помощью зубчатого абразивного инструмента - хона.
Зубчатые хоны представляют собой прямозубые или косозубые колеса, обычно состоящие из стальной ступицы и абразивного венца того же модуля, что и обрабатываемое колесо. Частота вращения хона 180...200 мин, скорость подачи стола 180...210 мм/мин. Время хонингования зубчатого колеса 30...60 с.
Хонингование позволяет уменьшить параметры шероховатости и тем самым повысить долговечность зубчатой передачи.
К отделочным методам относятся также: обкатка зубьев и прикатка (зацепление с эталонным колесом); притирка (искусственное изнашивание рабочей поверхности зубьев притирами с применением абразивной пасты); приработка (притирание пары зубчатых колес без притира) и др.
5.2 Типовой маршрут изготовления зубчатых колес
Основные операции механической обработки зубчатого колеса со ступицей 7-й степени точности (рис. 64).
005 Заготовительная
Для заготовок из проката - резка проката, для штампованных заготовок - штамповка.
Штампованные заготовки целесообразно выполнять с прошитыми отверстиями, если их диаметр более 30 мм и длина не более 3-х диаметров.
Заготовки из чугуна и цветных сплавов (иногда из сталей) получают литьем.
010 Токарная
Точить торец обода и торец ступицы с одной стороны начерно, точить наружную поверхность обода до кулачков патрона начерно, расточить начерно на проход отверстие (или сверлить и расточить при отсутствии отверстия в заготовке), точить наружную поверхность ступицы начерно, точить фаски.
Технологическая база - наружная поверхность обода и торец, противолежащий ступице (закрепление в кулачках токарного патрона).
Оборудование: единичное производство - токарно-винторезный станок; мелко- и среднесерийное - токарно-револьверный, токарный с ЧПУ; крупносерийное и массовое - одношпиндельный или многошпиндельный токарный полуавтомат (для заготовки из прутка - прутковый автомат).
015 Токарная
Точить базовый торец обода (противолежащий ступице) начерно, точить наружную поверхность обода на оставшейся части начерно, расточить отверстие под шлифование, точить фаски.
Технологическая база - обработанные поверхности обода и большего торца (со стороны ступицы).
Оборудование - то же (см. операцию 010).
020 Протяжная (долбежная)
Протянуть (долбить в единичном производстве) шпоночный паз или шлицевое отверстие.
Технологическая база - отверстие и базовый торец колеса.
Оборудование - горизонтально-протяжной или долбежный станки.
Применяются варианты чистового протягивания отверстия на данной операции вместо того чистового растачивания на предыдущей операции.
025 Токарная
Точить базовый и противолежащие торцы, наружную поверхность венца начисто.
Технологическая база - поверхность отверстия (реализуется напрессовкой на оправку, осевое положение на оправке фиксируется путем применения подкладных колец при запрессовке заготовки). Необходимость данной операции вызывается требованием обеспечения соосности поверхностей вращения колеса.
Оборудование - токарно-винторезный (единичное производство), токарный с ЧПУ (серийное) или токарный многорезцовый полуавтомат.
030 Зубофрезерная
Фрезеровать зубья начерно (обеспечивается 8-я степень точности).
Технологическая база - отверстие и базовый торец (реализуется оправкой и упором в торец).
Оборудование - зубофрезерный полуавтомат.
035 Зубофрезерная
Фрезеровать зубья начисто (обеспечивается.7-я степень точности).
040 Шевинговальная
Шевинговальная операция повышает на единицу степень точности зубчатого колеса. Операции применяют для термообрабатываемых колес с целью уменьшения коробления зубьев, так как снимается поверхностный наклепанный слой после фрезерования.
Технологическая база - отверстие и базовый торец (реализуется оправкой).
Оборудование - зубошевинговальный станок.
045 Термическая
Калить заготовку или зубья (ТВЧ) или цементировать, калить и отпустить - согласно техническим требованиям. Наличие упрочняющей термообработки, как правило, приводит к снижению точности колеса на одну единицу.
050 Внутришлифовальная
Шлифовать отверстие и базовый торец за один установ. Обработка отверстия и торца за один установ обеспечивает их наибольшую перпендикулярность.
Технологическая база - рабочие эвольвентные поверхности зубьев (начальная окружность колеса) и торец, противолежащий базовому. Реализация базирования осуществляется специальным патроном, у которого в качестве установочных элементов используют калибровочные ролики или зубчатые секторы. Необходимость такого базирования вызвана требованием обеспечения равномерного съема металла и зубьев при их последующей отделке с базированием по отверстию на оправке.
Оборудование - внутришлифовальный станок.
При базировании колеса на данной операции за наружную поверхность венца для обеспечения соосности поверхностей вращения необходимо ввести перед иди после термообработки круглошлифовальную операцию для шлифования наружной поверхности венца и торца, противолежащего базовому (желательно за один установ на оправке).
Технологическая база - отверстие и базовый торец.
Оборудование - круглошлифовальный или торцекруглошлифовальный станки.
Необходимость отделки наружной поверхности венца колеса часто вызывается также и тем, что контроль основных точностных параметров зубьев производится с использованием этой поверхности в качестве измерительной базы.
055 Плоскошлифовальная
Шлифовать торец, противолежащий базовому (если необходимо по чертежу).
Технологическая база - базовый торец.
Оборудование - плоскошлифовальный станок с прямоугольным или круглым столом.
060 Зубошлифовальная
Шлифовать зубья.
Технологическая база - отверстие и базовый терец.
Оборудование - зубошлифовальный станок (обработка обкаткой двумя тарельчатыми или червячный кругами или копированием фасонным кругом). При малом короблении зубьев при термообработке (например, при азотировании вместо цементации) операция зубошлифования может быть заменена зубохонингованием или вообще отсутствовать.
Наличие зубошлифовальной или зубохонинговальной операции определяется наличием и величиной коробления зубьев при термообработке. Двукратное зубофрезерование и шевингование зубьев до термообработки может обеспечить 6-ю степень точности. При потере точности во время термообработки на одну степень конечная 7-я степень точности будет достигнута. Введение отделочной операции зубошлифования или зубохонингования необходимо только при уменьшении точности колеса при термообработке больше, чем на одну степень.
Рис. 64 Цилиндрическое зубчатое колесо с односторонней ступицей
065 Контрольная
Применяются варианты техпроцесса с однократным зубофрезерованием, но с двукратным зубошлифованием.
Наличие упрочняющей термообработки приводит, как правило, к снижению степени точности колес на одну единицу, что требует введения дополнительной отделочной операции. Для незакаливаемых зубчатых колес шевингование является последней операцией; перед термообработкой шевингуют зубья в целях уменьшения деформации колеса в процессе термообработки и повышения степени на одну единицу.
6. Технология изготовления рычагов
К деталям класса рычагов относятся собственно рычаги, тяги, серьги, вилки, балансиры, шатуны.
Рычаги являются звеньями системы машин, аппаратов, приборов, приспособлений. Совершая качательное или вращательное движение, рычаги передают необходимые силы и движения сопряженным деталям, заставляя их выполнять требуемые перемещения с надлежащей скоростью. В других случаях рычаги, например прихваты, остаются неподвижными и фиксируют относительное положение сопряженных деталей.
Детали класса рычагов имеют два отверстия или больше, оси которых расположены параллельно или под прямым углом. Тело рычагов представляет собой стержень, не обладающий достаточной жесткостью. В деталях этого класса кроме основных отверстий, обрабатываются шпоночные или шлицевые пары, крепежные отверстия и прорези в головках. Стержни рычагов часто не обрабатывают.
Значительное разнообразие конструкций рычагов вызывает необходимость их классификации с целью сужения типовых технологических процессов. С этой целью рекомендуется следующая классификация:
1. Рычаги, у которых торцы втулок имеют общую плоскость или их торцы лежат в одной плоскости.
2. Рычаги, у которых торцы втулок лежат в разных плоскостях.
3. Рычаги, у которых имеется длинная втулка с отверстием и значительно более короткие втулки.
Технологические задачи
Точности размеров. Отверстия - основные и вспомогательные базы, поверхностями которых рычаги и вилки сопрягаются с валиками, проектируют у рычагов и шарнирных вилок по Н7...Н9, а у вилок переключения для уменьшения перекоса при осевом перемещении - по Н7...Н8. Точность расстояний между параллельными исполнительными поверхностями вилок переключения назначают по IТ10...IТ12. Расстояние между осями отверстий основных и вспомогательных баз рычагов должны соответствовать расчетным; допускаемые отклонения в зависимости от требуемой точности колеблются от ± 0,025 до + 0,1 мм.
Точность формы. В большинстве случаев особых требований к точности формы поверхностей не предъявляется, т.е. погрешность формы не должна превышать допуск на размер или, в зависимости от условий эксплуатации, погрешности формы не должны превышать от 40 до 60% от поля допуска на соответствующий размер.
Точность взаимного расположения. Для хорошего прилегания поверхностей отверстий к сопряженным деталям оси поверхностей отверстий - вспомогательных баз рычагов должны быть параллельны осям поверхностей отверстий - основных баз с допускаемыми отклонениями (0,05...0,3)/ 100 мм.
У рычагов, имеющих плоские обработанные поверхности, в некоторых случаях (по служебному назначению), задается перпендикулярность осей отверстий относительно этих плоскостей с допускаемыми отклонениями (0,1...0,3)/100.
Качество поверхностного слоя. Шероховатость поверхности отверстий у рычагов и вилок в зависимости от точности диаметров отверстий назначают Rа = 0,8...3,2 мкм, шероховатость исполнительных поверхностей у рычагов Rа = 0,63...3,1, у вилок переключения 0,8...3,2 мкм. Для увеличения сроков службы твердость исполнительных поверхностей рычагов и вилок устанавливают НRС 40...60.
В качестве материалов для изготовления рычагов служат: серый чугун, ковкий чугун и конструкционные стали. Работающие при незначительных нагрузках рычаги изготавливают из пластмассы.
Выбор материала зависит от служебного назначения и экономичности изготовления детали. Рычаги сложной формы могут быть достаточно экономично изготовлены из заготовки-отливки. Для деталей, работающих в машинах под небольшими, неударными нагрузками, выбирают серый чугун. Для нежестких деталей, работающих с толчками и ударами, недостаточно вязкий серый чугун является ненадежным материалом и заменяется ковким чугуном. При получении ковкого чугуна обязательным становится отжиг, после которого заготовки коробятся и должны дополнительно подвергаться правке.
Чугунные заготовки рычагов получают обычно литьем в песчаные формы, отформованные по механическим моделям. При повышенных требованиях к точности отливок заготовки отливают в оболочковые формы. Отливки из ковкого чугуна следует подвергать отжигу и последующей правке для уменьшения остаточных деформаций. Припуски на обработку и допуски на размеры отливок рычагов определяются соответствующими стандартами.
Стальные заготовки рычагов получают ковкой, штамповкой, литьем по выплавляемым моделям и реже сваркой. При штамповке заготовок в небольших количествах применяют подкладные штампы. С увеличением масштаба изготовления заготовок более экономичной становится штамповка их в открытых и закрытых штампах. В серийном производстве штамповки выполняют на штамповочных молотах, фрикционных и кривошипных прессах, а в крупносерийном и массовом производствах - на кривошипных прессах и горизонтально-ковочных машинах. Для повышения производительности и уменьшения себестоимости штампованных заготовок их предварительное формование в массовом производстве в ряде случаев производят на ковочных вальцах.
При фрезеровании торцев втулок за технологическую базу принимают или поверхности стержня рычага, или противоположные торцы втулок, при их шлифовании за технологическую базу принимают противоположные торцы втулок.
При обработке основных отверстий в качестве технологической базы выбирают обработанные торцы втулок и их наружные поверхности, что обеспечивает равностенность втулок. Заключительные этапы обработки выполняют при использовании в качество технологической базы одного или двух основных отверстиии торцов втулок.
6.1 Типовой маршрут изготовления рычагов
Рассмотрим основные операции механической обработки рычагов с общей плоскостью торцов втулок (рис. 65).
Рис. 65 Рычаг
005 Заготовительная
Чугунные заготовки получают литьем в песчаные формы или оболочковые. Отливки из ковкого чугуна следует подвергать отжигу и последующей правке для уменьшения остаточных деформаций. Стальные заготовки - ковкой, штамповкой, литьем по выплавляемым моделям, а в единичном производстве - сваркой.
010 Фрезерная
Фрезеровать торцы втулок с одной стороны начерно или начисто и с припуском под шлифование (при необходимости).
Технологическая база (установочная) - поверхность стержня или противоположные торцы втулок. Направляющую и опорную базы выбирают из условий удобства установки детали. Станок - вертикально-фрезерный или карусельно-фрезерный.
015 Фрезерная
Аналогично предыдущей операции, но с другой стороны. Технологическая база - обработанные торцы втулок. В серийном и массовом производствах, обработка торцов втулок может выполняться одновременно с двух сторон, на горизонтально-фрезерном станке набором фрез. Технологическая база - поверхность стержня или поверхность втулок. Если заготовки проходят чеканку (т.е. торцы втулок обжаты прессом), то фрезерную обработку не производят.
020 Обработка основных отверстий
Технологическая база - обработанные торцы втулок и их наружные поверхности, что обеспечивает равностенность втулок. В зависимости от типа производства операцию выполняют:
- в единичном и мелкосерийном производствах на радиально- и вертикально-сверлильных станках или расточных станках по разметке со сменой инструмента;
- в мелкосерийном и серийном производствах - на сверлильных станках с ЧПУ, на радиально- и вертикально-сверлильных станках по кондуктору со сменой инструмента и быстросменных втулок в кондукторах;
- в крупносерийном и массовом производствах - на агрегатных многошпиндельных одно и многопозиционных станках, вертикально-сверлильных станках с многошпиндельными головками и на протяжных станках.
Маршрут обработки основных отверстий имеет варианты:
- сверление, зенкерование, одно или двукратное развертывание или двойное растачивание;
- сверление и протягивание (для отверстий диаметром более 30 мм), полученные в заготовке прошиванием или литьем, сверление заменяют предварительным зенкерованием.
Обеспечение параллельности осей и межосевого расстояния основных отверстий достигается следующим образом (в порядке убывания точности):
- одновременной обработкой несколькими инструментами на многошпиндельных станках;
- последовательной обработкой при неизменном закреплении заготовки;
- последовательной обработкой на разных станках, в разных приспособлениях.
030 Обработка шпоночных пазов или шлицевых поверхностей в основных отверстиях
035 Обработка вспомогательных отверстий с нарезанием в них резьб (если нужно), пазов и уступов
Технологическая база - основные отверстия (одно или два) и их торцы.
040 Плоское шлифование торцов втулок
Выполняется при повышенных требованиях к шероховатости и взаимному расположению торцов втулок на плоскошлифовальном станке с переустановкой. Технологическая база - торцы втулок.
045 Контрольная
В зависимости от конкретных условий последовательность обработки поверхностей рычагов может изменяться. Применяют варианты маршрута, в которых операции 010 и 020 меняются местами или объединяются.
Маршрут обработки рычагов с торцами втулок в разных плоскостях:
- обрабатывают торцы втулок с одной стороны;
- обрабатывают основные отверстия с той же стороны;
- обрабатывают торцы втулок с другой стороны;
- обрабатывают остальные поверхности в последовательности, указанной в первом варианте.
Рекомендуемая литература
Справочник технолога-машиностроителя /Под ред. А.Г. Косиловой, Р.К. Мещерякова. Т. 1. - М.: Машиностроение, 1985, 665 с. .
Справочник технолога-машиностроителя /Под ред. А.Г. Косиловой, Р.К. Мещерякова. Т. 2. - М.: Машиностроение, 1985, 496 с..
Зуев А.А.Технология машиностроения. 2-е изд., испр. и доп. - СПб.: Издательство «Лань», 2003. - 496 с.
Никифоров А.Д. , Беленький В.А., Поплавский Ю.В. Типовые технологические процессы изготовления аппаратов химических производств. - М.: Машиностроение, 1979. - 278 с.
Станочные приспособления: Справочник /Под ред. Б.Н. Вардашкина, А.А. Шатилова. Т. 1. - М.: Машиностроение, 1984, 591 с.
Станочные приспособления: Справочник /Под ред. Б.Н. Вардашкина, А.А. Данилевского. Т. 2.- М.: Машиностроение, 1984, 655 с..
Технология машиностроения. Часть II: Проектирование технологических процессов / Под ред. С.Л. Мурашкина - СПб.: Изд-во СПбГПУ, 2003, 498 с.
Обработка металлов резанием: Справочник технолога /Под ред. А.А. Панова. - М.: Машиностроение, 1988, 736 с.
Маракулин И.В. и др. Краткий справочник технолога тяжелого машиностроения. - М.: Машиностроение, 1987, 464 с.
Худобин Л.В. и др. Курсовое проектирование по технологии машиностроения. - М.: Машиностроение, 1989, - 288 с.
Технико-экономическое обоснование конструкторского решения: Метод. указ. / Сост.: Быковский В.В., Попов А.И. - Тамбов: Изд-во Тамб. гос. техн. ун-та, 2000. - 24 с.
Вереина Л.И. Справочник токаря: Учеб. пособие для нач. проф. образования. - М.: Издательский центр «Академия», 2002. - 448 с.
Размещено на Allbest.ru
...Подобные документы
Материал для изготовления зубчатых колес, их конструктивные и технологические особенности. Сущность химико-термической обработки зубчатых колес. Погрешности изготовления зубчатых колес. Технологический маршрут обработки цементируемого зубчатого колеса.
реферат [16,6 K], добавлен 17.01.2012Сведения по технологии изготовления червячных редукторов. Методы обработки профиля витков червяка. Нарезание зубьев червячных колес. Типовые варианты обработки червячной пары. Преимущества и недостатки метода пригонки деталей с неподвижным компенсатором.
курсовая работа [7,1 M], добавлен 14.01.2011Технология изготовления деталей и узлов подсвечника, выбор материалов. Обоснование технологии изготовления деталей, выбор технологических переходов и операций. Последовательность изготовления художественного изделия методом обработки деталей давлением.
курсовая работа [419,5 K], добавлен 04.01.2016Определение токарной обработки как метода изготовления деталей типа тел вращения (валов, дисков, осей, фланцев, колец, втулок, гаек, муфт) на токарных станках. Сущность обработки металлов. Анализ технологичности деталей и выбор метода получения заготовки.
курсовая работа [968,8 K], добавлен 23.09.2011Формы валов и осей. Обеспечение необходимого вращения деталей. Материалы и термическая обработка для изготовления деталей. Углеродистые и легированные стали. Выбор стали для изготовления валов двигателей. Сравнительный анализ сталей 40, 40Х, 40ХФА.
реферат [732,1 K], добавлен 25.06.2014Методика выбора оптимальных маршрутов обработки элементарных поверхностей деталей машин: плоскостей и торцев, наружных и внутренних цилиндрических. Выбор маршрутов обработки зубчатых и резьбовых поверхностей, отверстий. Суммарный коэффициент трудоемкости.
методичка [232,5 K], добавлен 21.11.2012Типовые технологические маршруты изготовления зубчатых колес и влияние технологических факторов на динамику, виброактивность, ресурс и надежность работы передач. Оценка качества поверхностного слоя зубьев и основные операции процесса их изготовления.
реферат [21,7 K], добавлен 01.05.2009Описание цикла изготовления зубчатых колес и роль процессов, связанных с формообразованием зубьев. Изучение различных методов нарезания зубьев цилиндрических зубчатых колёс: фрезерование, долбление, закругление, шевингование, шлифование, строгание.
контрольная работа [804,3 K], добавлен 03.12.2010Разработка прогрессивного технологического процесса изготовления корпусных деталей с обеспечением снижения их трудоемкости и себестоимости на основе рациональных заготовок, станков с ЧПУ, режущего инструмента и совершенствования организации производства.
дипломная работа [12,7 M], добавлен 07.06.2012Основы технологии термической обработки металлов и сплавов. Термическая обработка - этап технологического процесса изготовления деталей. Улучшение обрабатываемости материалов давлением или резанием. Формирования технических и электрических свойств.
реферат [53,8 K], добавлен 20.01.2009Формирование свойств материала и размерных связей в процессе изготовления станины. Разработка технологических процессов изготовления: отливка, вибрация. Достижение требуемой точности деталей в процессе изготовления. Жесткость технологической системы.
курсовая работа [89,0 K], добавлен 17.10.2010Выбор наиболее эффективного способа изготовления заготовки. Технологический процесс изготовления заготовки способом литья в песчано-глинистые формы. Технологический метод формообразования поверхностей заготовок точением на токарно-карусельном станке.
курсовая работа [1,1 M], добавлен 24.12.2011Расчет припусков на обработку и операционных размеров-диаметров цилиндрических наружных и внутренних поверхностей обоймы расчетно-аналитическим методом. Разработка и анализ схемы формообразования и схем размерных цепей плоских торцевых поверхностей.
курсовая работа [535,8 K], добавлен 07.06.2012Понятие и виды технологических процессов обработки изделий в машиностроении. Признаки классификации методов изготовления деталей машин. Классификация по природе и характеру воздействия. Виды методов изготовления деталей по схемам формообразования.
контрольная работа [19,0 K], добавлен 05.11.2008Изучение заготовки для изготовления детали, выбор марки углеродистой стали, расчет режимов резания и машинного времени. Контроль деталей после обработки цилиндрических и торцевых поверхностей. Организация рабочего места станочника широкого профиля.
курсовая работа [40,2 K], добавлен 06.01.2016Классификация валов по геометрической форме. Изготовление ступенчатых валов. Материалы и способы получения заготовок. Технология обработки ступенчатых валов со шлицами (термообработка–закалка). Способы обтачивания наружных поверхностей, оборудование.
презентация [4,5 M], добавлен 05.11.2013Выбор методов и этапов обработки поверхностей. Классификация моделей станков: токарно-винторезные, сверлильно-фрезерно-расточные, круглошлифовальные, внутришлифовальные. Расчет режимов резания на обработку поверхностей. Нормирование операций и переходов.
курсовая работа [244,7 K], добавлен 25.03.2015Процесс холодной штамповки. Методы изготовления деталей. Выбор метода изготовления детали. Механические и химические свойства латуни. Усилие вырубки контура детали. Рабочие детали штампов. Расчет припусков на обработку, погрешностей и режимов обработки.
курсовая работа [40,7 K], добавлен 17.06.2013История книги и книгопечатания. Технология изготовления изделия. Обложка (дизайн и способ изготовления). Расположение текста и места соединения страниц. Последовательность изготовления изделия. Экономический расчет изготовления "Дневника домашних дел".
творческая работа [24,0 K], добавлен 31.10.2009Технологический процесс изготовления корпуса, его чертеж, анализ технологичности конструкции, маршрут технологии изготовления, припуски, технологические размеры и режимы резания. Методика расчета основного времени каждого из этапов изготовления корпуса.
курсовая работа [3,6 M], добавлен 12.04.2010