Синтез и модификация нефтеполимерных смол

Оценка стабильности состава высококипящих фракций жидких продуктов пиролиза. Строение, физические, химические свойства и полимеризация нефтеполимерных смол. Разработка принципиальной технологической схемы безотходного получения нефтеполимерной смолы.

Рубрика Производство и технологии
Вид отчет по практике
Язык русский
Дата добавления 31.10.2017
Размер файла 123,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Национальный исследовательский Томский политехнический университет»

Направление, специальность Высокомолекулярные соединения

ОТЧЁТ по практике

Томск 2016

Оглавление

Введение

1. Теоретическая часть

1.1 Общие сведения (строение, физические и химические свойства объекта исследования)

1.2 Литературный обзор (методы полимеризации, модификации, инициаторы, катализаторы, модификаторы, методы анализа и физико-химические методы исследования с указанием принципов, лежащих в основе данных методов)

2. Экспериментальная часть

2.1 Фракционная перегонка

2.2 Методика проведения эксперимента (синтеза)

Заключение

Спилок используемой литературы

Введение

В современном мире остро стоит проблема дефицита углеводородного сырья, которое является основой для получения органических веществ и композиционных материалов. В то же время на многих химических производствах промежуточные и побочные продукты зачастую не находят экономически эффективного применения. Очевидно, что разработка целесообразных и экономически выгодных технологий, основанных на использовании побочных продуктов, является актуальной задачей.

Актуальность темы. В настоящее время наиболее распространенным способом получения низших олефинов является пиролиз углеводородного сырья различного происхождения.

Наряду с основными продуктами (этилен, пропилен) в процессе пиролиза образуется до 20 - 40 % побочных продуктов с более высокой молекулярной массой. Квалифицированное использование побочных продуктов пиролиза является задачей, решение которой влияет на рентабельность основных продуктов и продуктов более глубокой переработки.

Одним из вариантов переработки жидких продуктов пиролиза (ЖПП) является их олигомеризация с получением нефтеполимерных смол (НПС), известных и широко используемых заменителей дорогостоящих и дефицитных продуктов переработки древесины и растительного масла. Образующиеся продукты применяются в лакокрасочной промышленности, дорожном строительстве, производстве резинотехнических изделий, для приготовления проклеивающих составов, изготовления нетоксичных древесных плитных материалов.

Научная новизна. 1. Впервые произведена оценка стабильности состава высококипящих цикло- и дициклопентадиенсодержащих фракций ЖПП. С помощью ЯМР 'Н - спектроскопии измерены константы димеризации ЦПД в составе фракции.

2. Установлено, что процесс олигомеризации цикло- и дициклопентадиенсодержащих фракций с использованием каталитических систем на основе моноалкокситрихлоридов титана и А1(С2Н5)2С1 осуществляется параллельно по аддитивному и метатезисному механизам.

3. Установлена структура продуктов реакции Т1С14 и ряда эпоксидных соединений. Показано, что варьированием типа алкоксидного заместителя достигается изменение свойств НПС и покрытий на их основе. Установлено, что наиболее активными компонентами каталитической системы являются моноалкоксипроизводные, последовательное замещение атомов С1 приводит к полной дезактивации каталитической системы.

Достоверность результатов подтверждается использованием современных химических и физико-химических методов исследования, взаимно подтверждающих и дополняющих друг друга, техническими возможностями и высокой чувствительностью используемой аппаратуры.

Практическая значимость.

1. Разработан способ олигомеризации цикло- и дициклопентадиенсодержащих фракции с использованием каталитических систем на основе моноалкокситрихлоридов титана и А1(С2Н5)2С1. Показано, что, в отличие от Т1С14, использование таких каталитических систем приводит к получению ненасыщенных высокореакционноспособных несшитых олигомерных продуктов.

2. Предложен источник получения ДЦПДФ из технологических потоков установки ЭП-300 и дана оценка реакционной способности фракции в процессе хранения, которая в основном определяется содержанием ЦПД. Показана возможность варьирования составом и реакционной способностью ДЦПДФ путем изменения режимов дистилляции и/или коррекции активным мономером. 3. Исследовано влияние добавок воды во фракции на процесс олигомеризации в присутствии "ПС14. Показано, что наличие воды до 0,05 % приводит к повышению выхода НПС и улучшению технических характеристик пленки.

4. Предложен способ синтеза НПСС9 при 20 °С в присутствии ЦПД с использованием каталитических систем на основе ТЮ и А1(С2Н5)2С1. Показано, что от порядка загрузки каталитической системы и ЦПД зависит выход НПС и ее характеристики.

5. Показана возможность использования НПС на основе ДЦПДФ в качестве пленкообразующих материалов, обладающих высокими прочностными характеристиками.

6. Разработана принципиальная технологическая схема безотходного получения НПС на основе ДЦПДФ и каталитических систем на основе моноалкокситрихлоридов титана и А1(С2Н5)2С1.

1. Теоретическая часть

1.1 Общие сведения

Свойства. Большинство Н. с.-твердые аморфные термопластичные продукты; мол. м. 500-2500; т. размягч. 70-150°С. Выпускают также вязкотекучие Н. с. (мол. м. ок. 300). Высококачественные Н. с. бесцветны или слегка желтоваты; их цвет мало изменяется при нагревании. Плотн. Н. с. 0,93-1,1 г/см 3; зольность светлых Н. с. не превышает 0,1%, темных-1%; число омыления и кислотное число не превышает 1-2, йодное число в интервале 15-300.

Н. с. хорошо раств. в углеводородах, сложных эфирах уксусной к-ты и кетонах, не раств. в низших спиртах. Алифатические Н. с. совместимы с НК и СК, жирными алкидными смолами, растит. и нефтяными маслами, но не совместимы с касторовым маслом, нитроцеллюлозой, нитрильными каучуками. Ароматические Н. с. совместимы с хлорир. полимерами, глицериновым эфиром канифоли, при определенных условиях-с растит. маслами.

На воздухе Н. с. склонны к окислению, при этом уменьшается ненасыщенность, образуются кислородсодержащие группы, увеличивается мол. масса. Для повышения устойчивости к окислению Н. с. гидрируют. Модифицируют их непредельными соед.-малеиновым ангидридом, жирными к-тами, растит. маслами и др.

Строение. (пиропласт, бетапрен, эскорез, норсолен, импрез, петрозин, карборезин, пиро-лен-100 и др.), продукты полимеризации арилалкен-, диен-, циклодиен-, олефин- и циклоолефинсодержащего нефтяного сырья. Последним служат фракции С 5, С 8 Ч С 10 и др. пиролиза бензинов, газойлей, дизельных топлив и т. п., а также смеси разл. фракций между собой и с индивидуальными мономерами (напр., пипериленом, стиролом, циклопен-тадиеном, инденом). Состав фракций сильно зависит от типа сырья и условий пиролиза. Алифатические Н. с. получают полимеризацией углеводородов фракции С 5, ароматические фракции - С 8 - С 10.

нефтеполимерный смола технологический пиролиз

1.2 Литературный обзор

Нефтеполимерные смолы могут быть получены методами термической, каталитической и инициированной полимеризации. Среди каталитических методов наиболее широко в практике синтеза НПС используются кислоты Льюиса, в частности хлорид алюминия (AlCl3) и каталитические комплексы на его основе. Они имеют высокую активность и невысокую стоимость. Но сухой хлорид алюминия взаимодействует с влагой воздуха и легко гидролизуется, что снижает его каталитическую активность, кроме того, его трудно дозировать, а увеличение концентрации приводит к существенному ухудшению света.

Помимо кислот Льюиса в качества катализаторов полимеризации ЖПП могут быть использованы ионно-координационные каталитические системы типа Циглера-Натта на основе четырёххлористого титана и алюминийорганический соединений, которые являются заведомо менее «жесткими» по сравнению с AlCl3, и позволяет работать с диеновыми углеводородами. При использовании указанных каталитических систем полимеризации протекает в гомогенной среде, что позволяет точно контролировать параметры течения процесса и, соответственно, получать НПС более высокого качества.

Улучшение показателей качества и эксплутационных характеристик НПС, а также устранение недостатков НПС (окисляемость, низкая адгезия) может быть достигнуто путём их модификации, которая осуществляется введением различных функциональных групп в структуру молекулы.

В настоящее время наиболее доступным методом модификации является карбоксилирование НПС, которое осуществляется взаимодействием смол с непредельными карбоновыми кислотами, их ангидридами и галогенидами. Возможно также прямое окисление НПС кислородом воздуха, перекисями и гидроперекисями. Однако эти способы не являются достаточно селективными, требуют сложного технологического оформления, приводят к образованию сточных вод и, как правило, ухудшают цвет пленкообразующих материалов.

Одним из методов высокоэффективного введения кислородсодержащих функциональных групп в органическую молекулу по месту двойной связи является озонирование.

Этот метод привлекателен тем, что реакция протекает в мягких условиях с высоким выходом целевых продуктов (озонирование протекает с высокой скоростью в широком интервале температур), не требует применения катализаторов и не сопровождается образованием побочных и токсичных продуктов (озон полностью расходуется на окисление, непрореагировавший озон улавливается и направляется вновь на окисление или распадается с образованием кислорода). Интерес к данному методу обусловлен и легкостью управления реакцией: в зависимости от природы растворителя и активной добавки целевыми продуктами озонолиза являются a-гидропероксиды, озониды, димерные пероксиды, альдегиды, кетоны, кислоты, при дополнительной обработке продуктов озонолиза легко получаются спирты и амины.

2. Экспериментальная часть

2.1 Фракционная перегонка

Под термином фракционная перегонка условимся понимать последовательное многократное повторение процесса испарения и конденсации.

И будем отличать ее от ректификации - непрерывного многократного повторения процесса испарения и конденсации.

Принцип метода

Фракционная перегонка служит для разделения однородной смеси жидкостей, кипящих при различной температуре и не образующих друг с другом постоянно кипящих смесей. В основе всякой дробной перегонки лежит закон фазового равновесия в системе жидкость--пар, открытый Д. П. Коноваловым: «пар обогащен тем компонентом, прибавление которого к жидкости понижает ее температуру кипения» (т.е. более лекгокипящим).

Из диаграммы фазового равновесия видно что, паровая фаза при любой температуре кипения содержит большее количество низкокипящего компонента, чем жидкая фаза; при этом каждой температуре кипения соответствуют строго определенные составы жидкости и пара. Таким образом, пар, образующийся из кипящей бинарной смеси, всегда содержит оба компонента, но обогащен более летучим из них (состав M1). При полной конденсации такого пара получается жидкость с тем же составом, что и пар. При вторичной перегонке этой жидкости образуется пар (состав M2), еще более обогащенный легкокипящим компонентом. Следовательно, в результате многократного повторения условий фазового равновесия (перегонки) для каждой первой фракции можно в конечном счете получить в первой фракции от последней перегонки низкокипящнй компонент смеси, не содержащий другого компонента. Соответственно, последняя фракция будет состоять из чистого высококипящего компонента первоначальной смеси. В этом по существу и заключается принцип разделения дробной перегонки.

Проведение фракционной перегонки. Исходную смесь перегоняют, собирая несколько фракций либо в заранее намеченных температурных интервалах, либо в температурных интервалах, определяемых изменениями скорости перегонки. Затем подвергают перегонке первую фракцию, от которой в свою очередь отгоняют одну или две фракции; перегонку ведут до тех пор, пока температура паров не достигнет верхнего предела, наблюдавшегося при первоначальной перегонке этой фракции. К остатку прибавляют вторую фракцию и продолжают перегонку таким образом до конца. Так повторяют несколько раз, собирая фракции в первоначальных температурных интервалах или же сужая пределы кипения основных фракций.

Рис. 2 Установка для фракционной перегонки 1 - термометр 2 - дефлегматор 3 - холодильник 4 - алонж 5 - приемник6 - перегонная колба 7 - капилляры 8 - нагреватель

Для увеличения эффективности разделения смеси и, следовательно, для уменьшения числа перегонок следует пользоваться дефлегматорами. Действие дефлегматоров состоит в том, что в них при неполном охлаждении пара кипящего раствора происходит частичная конденсация пара более высококипящей жидкости. Образовавшийся промежуточный конденсат называют флегмой (от греч. phlegma - слизь, мокрота). Флегма стекает обратно в колбу 6 (рис.2), а пар обогащается компонентом с более низкой температурой кипения и попадает в холодильник 3, где подвергается уже полной конденсации. вследствие охлаждения происходит частичная конденсация пара и температура его понижается. Как видно из диаграммы кипения, при понижении температуры пара от t1 до t2 содержание низкокипящего компонента возрастает от M1 до M2.

В лабораториях применяют дефлегматоры самых различных конструкций. Некоторые из них изображены на рис.3.

Рис.3 Дефлегматоры различных конструкций. а, б - шариковые, в - елочные, г - с насадкой, д - Арбузова, е - Ганна

Часто применяемые в лабораториях шариковые дефлегматоры (рис.3 а и б) наименее эффективны; если же на дно каждого шарика такого дефлегматора не помещать ни металлической сетки, ни стеклянного шарика, то эффективность их становится такой же малой, как у пустой цилиндрической стеклянной трубки.

Из других типов дефлегматоров без насадки более эффективны дефлегматоры Арбузова (рис. 3д) и Гана (рис. 3е); в последнем охлаждающей поверхностью является поверхность внутренней трубки, содержащей жидкость, кипящую при температуре, средней между температурами кипения обоих компонентов смеси. Лучшие результаты дают дефлегматоры с насадками (рис. 3г); к этим дефлегматорам следует отнести и елочный дефлегматор (рис. 3в).

Нередко дробную перегонку лучше проводить при уменьшенном давлении, особенно в тех случаях, когда компоненты смеси имеют близкие температуры кипения, но относятся к разным группам органических соединений, например к спиртам и углеводородам. Различие в температурах кипения таких веществ в вакууме может быть значительно большим, чем при атмосферном давлении, и разделение такой смеси будет соответственно легче.

2.2 Синтез

Полимеризацию непредельных соединений проводили в стеклянном реакторе, снабжённом механической мешалкой, с использованием TiCl4 и Al(C2H5)3 при мольных соотношениях компонентов в интервале от 1,0 : 0,1 до 1,0 : 3,0. В исходную фракцию последовательно дозировали при температуре 20 градусов Цельсия TiCl4, затем Al(C2H5)3. Синтез вели при постоянной концентрации TiCl4, равной 2%, и температуре 80 градусов Цельсия. Нейтрализацию реакционной массы проводили окисью пропилена до достижения pH = 7 водяной вытяжки.

Заключение

В результате научной работы мы вычислили молекулярную массу(422,94), прочность на изгиб(20мм), прочность на удар(меньше 5см), адгезия(4 балла), твёрдость(0,4-наименьшее). Смола требует модификации и дополнительного исследования.

Список литературы

1. Мананкова, Анна Анатольевна. Синтез нефтеполимерных смол на основе дициклопентадиеновой фракции под действием хлорида и алкоксихлоридов титана (IV) : диссертация ... кандидата химических наук : 02.00.13 / Мананкова Анна Анатольевна; [Место защиты: Тюмен. гос. ун-т].- Тюмень, 2011.- 171 с.: ил. РГБ ОД, 61 12-2/96

2. В.Г. Бондалетов, Л.И. Бондалетова, А.А. Троян, Е.П. Фетерер. Синтез и модификация нефтеполимерных смол.

3. http://www.himikatus.ru/art/chemop/frakcionnaya.php

4. http://www.xumuk.ru

Размещено на Allbest.ru

...

Подобные документы

  • История возникновения и развития эпоксидных смол, их основные свойства. Структура общего объема потребления эпоксидных смол в промышленности. Методы производства данного материала: полимеризация и отверждение. Основные способы применения эпоксидных смол.

    реферат [925,1 K], добавлен 15.09.2012

  • Получение полиорганосилоксановых смол в результате гидролиза и последующей поликонденсации мономерных соединений кремния. Основные физические и химические свойства полиорганосилаксановых смол, их производство и применение. Цели добавления модификаторов.

    реферат [189,2 K], добавлен 07.05.2016

  • MQ-смолы (олигомерные кремнийорганические соединения) и способы их получения. Структура MQ-смол, их физико-механические свойства. Гидролитическая поликонденсация кремнийорганических мономеров. Триметилсилилирование силикатов и кремниевых кислот.

    курсовая работа [352,1 K], добавлен 16.01.2015

  • Рецептуры пресс материалов и химизм процесса. Варка, сушка резольной и новолачной смолы. Способы производства фенопластов и переработки их в изделие. Основное сырье для фаолита и приготовление фенолформальдегидной смолы. Трубы и изделия из текстофаолита.

    реферат [93,1 K], добавлен 22.06.2015

  • Применение эпоксидных смол в различных отраслях промышленности. Приготовление герметизирующих, пропиточных и заливочных изоляционных материалов. Конструкции быстроходных мешалок. Состав и плотность реакционной массы. Динамический коэффициент вязкости.

    курсовая работа [755,3 K], добавлен 18.06.2013

  • Проектирование производства поликапроамида для технической кордной нити производительностью 6 тысяч тонн в год. Анализ информационных потоков в области получения и применения поликапроамида. Влияние параметров процесса полимеризации на свойства продукта.

    дипломная работа [1,1 M], добавлен 24.04.2012

  • Технологическая схема паро-углекислотного пиролиза углеводородного сырья и производственные связи установки получения водорода. Характеристика автоматизации производства и системы управления для снижения себестоимости и повышения качества Синтез-Газа.

    дипломная работа [2,2 M], добавлен 26.11.2010

  • Общие сведения о фосфорной кислоте, методы ее получения экстракционным полугидратным способом. Разработка принципиальной технологической схемы производства фосфорной кислоты со схемой КИПиА. Расчет материального баланса и расходных коэффициентов.

    курсовая работа [716,5 K], добавлен 11.03.2015

  • Сырьё для получения полипропилена и его полимеризация. Физико-химические и термодинамические основы процесса получения полипропилена. Металлоценовые катализаторы. Характеристика производимой продукции, используемого сырья и вспомогательных материалов.

    курсовая работа [189,8 K], добавлен 19.05.2014

  • Обзор способов получения пропиленгликоля. Физико-химические характеристики сырья, вспомогательных материалов, основных и побочных продуктов. Описание технологической схемы. Расчет реакционного узла. Проверка правильности расчетов по программе PROEKT.

    курсовая работа [50,8 K], добавлен 06.11.2012

  • Построение экспериментальных искусственных наномашин с использованием биологических природных материалов, синтез живых и технических систем. Молекулярная электроника, свойства наноструктур, разработка новых способов их получения, изучение и модификация.

    контрольная работа [38,1 K], добавлен 14.11.2010

  • Особенность производства бутадиен-нитрильных каучуков, свойства резин на их основе. Процессы, протекающие при полимеризации в эмульсии. Схема установки для получения низкотемпературных бутадиен-нитрильных каучуков непрерывной полимеризацией в эмульсии.

    курсовая работа [151,5 K], добавлен 17.05.2015

  • Понятие пиролиза как превращения органических соединений в результате их деструкции под действием высокой температуры. Пиролиз углеводородов, выход основных продуктов. Конструкция печей, сырьевая база. Особенности пиролиза древесины и угля, копчение.

    реферат [51,9 K], добавлен 26.11.2012

  • Применение насосных установок на электромашиностроительных предприятиях для перекачивания жидких сред, технологической и охлаждающей воды. Выбор типа электропривода и величины питающих напряжений насоса. Описание принципиальной электрической схемы.

    курсовая работа [1,4 M], добавлен 03.06.2017

  • Обоснование выбора нефти для производства базовых масел и продуктов специального назначения. Групповой состав и физико-химические свойства масляных погонов, деасфальтизата и базовых масел. Описание технологической схемы и процессов в основных аппаратах.

    курсовая работа [1,2 M], добавлен 05.11.2013

  • Основные стадии процесса получения каучука и приготовления катализатора. Характеристика сырья и готовой продукции по пластичности и вязкости. Описание технологической схемы производства и его материальный расчет. Физико-химические методы анализа.

    курсовая работа [13,1 M], добавлен 28.11.2010

  • Теоретические основы проведения процесса пиролиза в трубчатых печах, его модификация. Расчет материального и теплового балансов, основного и вспомогательного оборудования трубчатой печи, закалочно-испарительного аппарата и выбор средств контроля.

    дипломная работа [557,2 K], добавлен 21.06.2010

  • Разработка технологического процесса изготовления детали. Выбор метода получения заготовки и режимов резания. Проектирование автоматической линии. Синтез принципиальной схемы бесконтактного логического управляющего устройства промышленной автоматики.

    курсовая работа [1,2 M], добавлен 17.06.2011

  • Характеристика готовой продукции и описание технологической схемы ее производства. Расчет часовой, сменой, суточной и годовой производительности, потребности в материалах. Выбор необходимого оборудования, разработка принципиальной схемы компоновки.

    курсовая работа [39,3 K], добавлен 04.12.2016

  • Характеристика сырья, полуфабрикатов и вспомогательных материалов, готовой продукции и отходов производства. Разработка принципиальной схемы производства. Материальный расчёт. Описание аппаратурно-технологической схемы. Технологическая документация.

    дипломная работа [1,2 M], добавлен 10.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.