Проектирование турбины двигателя

Описание конструкции АЛ-31Ф как двухконтурного двухвального турбореактивного двигателя со смешением потоков внутреннего и наружного контуров за турбиной. Общие характеристики турбины. Охлаждение и силовые потоки. Расчет на прочность диска рабочего колеса.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 01.11.2017
Размер файла 74,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Описание конструкции

турбина двигатель прочность силовой

1.1 АЛ-31Ф

АЛ-31Ф -- двухконтурный двухвальный турбореактивный двигатель со смешением потоков внутреннего и наружного контуров за турбиной, общей для обоих контуров форсажной камерой и регулируемым сверхзвуковым всережимным реактивным соплом. Компрессор низкого давления осевой 3-ступенчатый с регулируемым входным направляющим аппаратом (ВНА), компрессор высокого давления осевой 7-ступенчатый с регулируемым ВНА и направляющими аппаратами первых двух ступеней. Турбины высокого и низкого давления -- осевые одноступенчатые; лопатки турбин и сопловых аппаратов охлаждаемые. Основная камера сгорания кольцевая. В конструкции двигателя широко применяются титановые сплавы (до 35 % массы) и жаропрочные стали.

1.2 Турбина

Общие характеристики

Турбина двигателя осевая, реактивная, двухступенчатая, двухвальная. Первая ступень - турбина высокого давления. Вторая ступень - низкого давления. Все лопатки и диски турбины охлаждаемые.

Основные параметры (Н=0, М=0, режим «Максимальный») и материалы деталей турбины приведены в таблице 1.1 и 1.2.

Таблица 1.1

Параметр

ТВД

ТНД

Степень понижения полного давления газа

2,9

2,3

КПД турбины по заторможенным параметрам потока

0,87

0,86

Окружная скорость на периферии лопаток, м/с

510

432

Частота вращения ротора, об/мин

13300

10200

Втулочное отношение

0,81

0,76

Температура газа на входе в турбину

1550

1206

Расход газа, кг/сек

70

72

Параметр нагруженности, м/с

0,46

0,45

Таблица 1.2

Деталь

ТВД

ТНД

Рабочие лопатки

ЖС-32

ЖС6-У

Сопловые лопатки

ЖС6-У

ЖС6-У

Диск

ЭП742-ИД

ЭП742-ИД

Вал

ЭП866-Ш

ЭП866-Ш

Средняя часть вала выполнена из ВТ-9

Корпус

ЭП708-ВД

ЭП708-ВД

Конструкция турбины высокого давления

Турбина высокого давления предназначена для привода компрессора высокого давления, а также двигательных и самолётных агрегатов, установленных на коробках приводов. Турбина конструктивно состоит из ротора и статора.

Ротор турбины высокого давления

Ротор турбины состоит из рабочих лопаток, диска и цапфы.

Рабочая лопатка - литая, полая с полупетлевым течением охлаждающего воздуха.

Во внутренней полости, с целью организации течения охлаждающего воздуха, предусмотрены рёбра, перегородки и турбулизаторы.

На последующих сериях лопатка с полупетлевой схемой охлаждения заменяется лопаткой с циклонно-вихревой схемой охлаждения.

Во внутренней полости вдоль передней кромки выполнен канал, в котором, как в циклоне, формируется течение воздуха с закруткой. Закрутка воздуха происходит вследствие его тангенциального подвода в канал через отверстия перегородки.

Из канала воздух выбрасывается через отверстия (перфорацию) стенки лопатки на спинку лопатки. Этот воздух создаёт на поверхности защитную плёнку.

В центральной части лопатки на внутренних поверхностях выполнены каналы, оси которых пересекаются. В каналах формируется турбулуизированное течение воздуха. Турбулизация струи воздуха и увеличение площади контакта обеспечивают увеличение эффективности теплообмена.

В районе выходной кромки выполнены турбулизаторы (перемычки) различной формы. Эти турбулизаторы интенсифицируют теплообмен, увеличивают прочность лопатки.

Профильная часть лопатки отделена от замка полкой и удлинённой ножкой. Полки лопаток, стыкуясь, образуют коническую оболочку, защищающую замковую часть лопатки от перегрева.

Удлинённая ножка, обеспечивая отдаление высокотемпературного газового потока от замка и диска, приводит к снижению количества тепла, передаваемого от профильной части к замку и диску. Кроме того, удлинённая ножка, обладая относительно низкой изгибной жёсткостью, обеспечивает снижения уровня вибрационных напряжений в профильной части лопатки.

Трёхзубый замок типа «Ёлочка» обеспечивает передачу радиальных нагрузок с лопаток на диск.

Зуб, выполненный в левой части замка, фиксирует лопатку от перемещения её по потоку, а паз совместно с элементами фиксации обеспечивает удержание лопатки от перемещения против потока.

На периферийной части пера, с целью облегчения приработки при касании о статор и, следовательно, предотвращения разрушения лопатки, на её торце сделана выборка

Для снижения уровня вибрационных напряжений в рабочих лопатках между ними под полками размещают демпферы, имеющие коробчатую конструкцию. При вращении ротора под действием центробежных сил демпферы прижимаются к внутренним поверхностям полок вибрирующих лопаток. За счёт трения в местах контакта двух соседних полок об один демпфер энергия колебаний лопаток будет рассеиваться, что и обеспечивает снижение уровня вибрационных напряжений в лопатках.

Диск турбины штампованный, с последующей механической обработкой. В периферийной части диска выполнены пазы типа «Ёлочка» для крепления 90 рабочих лопаток, канавки для размещения пластинчатых замков осевой фиксации лопаток и наклонные отверстия подвода воздуха, охлаждающего рабочие лопатки.

Воздух отбирается из ресивера, образованного двумя буртиками, левой боковой поверхностью диска и аппаратом закрутки. Под нижним буртиком размещены балансировочные грузы. На правой плоскости полотна диска выполнены буртик лабиринтного уплотнения и буртик, используемый при демонтаже диска. На ступенчатой части диска выполнены цилиндрические отверстия, под призонные болты, соединяющие вал, диск и цапфу ротора турбины.

Осевая фиксация рабочей лопатки осуществляется зубом с пластинчатым замком. Пластинчатый замок (один на две лопатки) вставляется в пазы лопаток в трёх местах диска, где сделаны вырезы, и разгоняется по всей окружности лопаточного венца. Пластинчатые замки, устанавливаемы в месте расположения вырезов в диске, имеют особую форму. Эти замки монтируются в деформированном состоянии, а после выпрямления входят в пазы лопаток. При выпрямлении пластинчатого замка лопатки поддерживают с противоположных торцов.

Балансировка ротора осуществляется грузиками, закрепляемыми в проточке буртика диска и зафиксированными в замке. Хвостик замка загибается на балансировочный грузик. Место отгиба контролируется на отсутствие трещин путём осмотра через лупу. Уравновешивание ротора можно выполнять перестановкой лопаток, допускается подрезка торцов грузов. Остаточный дисбаланс не более 25 гсм.

Диск с цапфой и валом КВД соединён призонными болтами. Головки болтов фиксируются от поворота пластинами, загибаемыми на срезы головок. От продольного перемещения болты удерживаются выступающими частями головок, входящих в кольцевой паз вала.

Цапфа обеспечивает опирание ротора на роликовый подшипник (межроторный подшипник).

Фланцем цапфа центрируется и соединяется с диском турбины. На наружных цилиндрических проточках цапфы размещении втулки лабиринтных уплотнений. Осевая и окружная фиксация лабиринтов осуществляется радиальными штифтами. Для предотвращения выпадения штифтов под воздействием центробежных сил после их запрессовки отверстия во втулках развальцовываются.

На наружной части хвостовика цапфы, ниже лабиринтов, размещено контактное уплотнение, зафиксированное корончатой гайкой. Гайка законтрена пластинчатым замком.

Внутри цапфы в цилиндрических поясках центрируется втулки контактного и лабиринтного уплотнений. Втулки удерживаются корончатой гайкой, ввернутой в резьбу цапфы. Гайка контрится отгибом усиков коронки в торцевые прорези цапфы.

В правой части внутренней полости цапфы размешено наружное кольцо роликового подшипника, удерживаемого корончатой гайкой, ввернутой в резьбу цапфы, которая контрится аналогичным образом.

Контактное уплотнение представляет собой пару, состоящую из стальных втулок и графитовых колец. Для гарантированного контактирования пар между графитовыми кольцами размещены плоские пружины. Между стальными втулками размещают дистанционную втулку, предотвращающую пережатие торцевого контактного уплотнения.

Статор турбины высокого давления

Статор турбины высокого давления состоит из наружного кольца, блоков сопловых лопаток, внутреннего кольца, аппаратом закрутки, уплотнения со вставками ТВД.

Наружное кольцо- цилиндрическая оболочка с фланцем. Кольцо расположено между корпусом камеры сгорания и корпусом ТНД.

В средней части наружного кольца выполнена проточка, по которой отцентрирована разделительная перегородка теплообменника.

В левой части наружного кольца на винтах присоединено кольцо верхнее, являющееся опорой жаровой трубы камеры сгорания и обеспечивающая подвод охлаждающего воздуха на обдув наружных полок лопаток соплового аппарата.

В правой части наружного кольца устанавливается уплотнение. Уплотнение состоит из кольцевой проставки с экранами, 36 секторных вставок ТВД и секторов крепления вставок ТВД на проставку.

На внутреннем диаметре вставок ТВД выполнена кольцевая нарезка, для уменьшения площади поверхности при касании рабочих лопаток ТВД для предотвращения перегрева периферийной части рабочих лопаток.

Уплотнение крепится на наружном кольце при помощи штифтов, в которых выполнены сверления. Через эти сверления на вставки ТВД подается охлаждающий воздух.

Через отверстия во вставках охлаждающий воздух выбрасывается в радиальный зазор между вставками и рабочими лопатками.

Для уменьшения перетекания горячего газа между вставками установлены пластины.

При сборке уплотнения вставки ТВД крепятся на проставке секторами при помощи штифтов. Такое крепление позволяет вставкам ТВД перемещаться относительно друг друга и проставки при нагреве в процессе работы.

Лопатки соплового аппарата объединены в 14 трехлопаточных блоков. Лопаточные блоки литые, со вставными и припаянными в двух местах дефлекторами с припаянной нижней крышкой с цапфой. Литая конструкция блоков, обладая высокой жесткостью, обеспечивает стабильность углов установки лопаток, снижение утечек воздуха и, следовательно, повышение КПД турбины, кроме того, такая конструкция более технологична.

Внутренняя полость лопатки перегородкой разделена на два отсека. В каждом отсеке размещены дефлекторы с отверстиями, обеспечивающими струйное натекание охлаждающего воздуха на внутренние стенки лопатки. На входных кромках лопаток выполнена перфорация.

В верхней полке блока выполнении 6 резьбовых отверстий, в которые вворачиваются винты крепления блоков сопловых аппаратов к наружному кольцу.

Нижняя полка каждого блока лопаток имеет цапфу, по которой через втулку центрируется внутренне кольцо.

Профиль пера с прилегающими поверхностями полок алюмосилицируется. Толщина покрытия 0,02-0,08 мм.

Для снижения перетекания газа между блоками, их стыки уплотнены пластинами, вставленными в прорези торцов блоков. Канавки в торцах блоков выполняются электроэрозионным способом.

Внутреннее кольцо выполнено в виде оболочки с втулками и фланцами, к которой приварена коническая диафрагма.

На левом фланце внутреннего кольца винтами присоединено кольцо, на которое опирается жаровая труба и через которое обеспечивается подвод воздуха, обдувающего внутренние полки лопаток соплового аппарата.

В правом фланце винтами закреплен аппарат закрутки, представляющий собой сварную оболочечную конструкцию. Аппарат закрутки предназначен для подачи и охлаждения воздуха, идущего к рабочим лопаткам за счет разгона и закрутки по направлению вращения турбины. Для повышения жесткости внутренней оболочки к ней приварены три подкрепляющих профиля.

Разгон и закрутка охлаждающего воздуха происходят в сужающейся части аппарата закрутки.

Разгон воздуха обеспечивает снижение температуры воздуха, идущего на охлаждение рабочих лопаток.

Закрутка воздуха обеспечивает выравнивание окружной составляющей скорости воздуха и окружной скорости диска.

Конструкция турбины низкого давления

Турбина низкого давления (ТНД) предназначена для привода компрессора низкого давления (КНД). Конструктивно состоит из ротора ТНД, статора ТНД и опоры ТНД.

Ротор турбины низкого давления

Ротор турбины низкого давления состоит из диска ТНД с рабочими лопатками, закреплёнными на диске, напорного диска, цапфы и вала.

Рабочая лопатка - литая, охлаждаемая с радиальным течением охлаждающего воздуха.

Во внутренней полости размещено 11 рядов по 5 штук в каждом цилиндрических штырьков - турбулизаторов, соединяющих спинку и корыто лопатки.

Периферийная бандажная полка обеспечивает уменьшение радиального зазора, что ведёт к повышению КПД турбины.

За счёт трения контактных поверхностей бандажных полок соседних рабочих лопаток происходит снижение уровня вибрационных напряжений.

Профильная часть лопатки отделена от замковой части полкой, формирующей границу газового потока и защищающую диск от перегрева.

Лопатка имеет замок типа «ёлочка».

Отливка лопатки выполняется по выплавляемым моделям с поверхностным, модифицированием алюминатом кобальта, улучшающим структуру материала измельчением зёрен за счёт формирования центров кристаллизации на поверхности лопатки.

Наружные поверхности пера, бандажной и замковой полок с целью повышения жаростойкости подвергаются шликерному алюмосицилированию с толщиной покрытия 0,02-0,04.

Для осевой фиксации лопаток от перемещения против потока на ней выполнен зуб, упирающийся в обод диска.

Для осевой фиксации лопатки от перемещения по потоку в замковой части лопатки в районе полки выполнен паз, в который входит разрезное кольцо с замком, удерживаемое от осевого перемещения буртиком диска. При монтаже кольцо за счёт наличия выреза, обжимается и вводится в пазы лопаток, а бурт диска входит в паз кольца.

Закрепление разрезного кольца в рабочем состоянии выполнено замком с фиксаторами, отгибаемыми на замок и проходящими через отверстия в замке и прорези в буртике диска.

Диск турбины - штампованный, с последующей механической обработкой. В периферийной зоне для размещения лопаток выполнены пазы типа «Ёлочка» и наклонные отверстия подвода охлаждающего воздуха.

На полотне диска выполнены кольцевые буртики, на которых размещены крышки лабиринтов и напорный диск-лабиринт. Фиксация этих деталей осуществлена штифтами. Для предотвращения выпадения штифтов отверстия развальцовываются.

Напорный диск, имеющий лопатки, нужен для поджатия воздуха, поступающего на охлаждение лопаток турбины. Для балансировки ротора на напорном диске закреплены пластинчатыми фиксаторами балансировочные грузы.

На ступице диска также выполнены кольцевые буртики. На левом буртики установлены крышки лабиринтов, на правом буртике устанавливается цапфа.

Цапфа предназначена для опирания ротора низкого давления на роликовый подшипник и передачи крутящего момента от диска на вал.

Для соединения диска с цапфой на ней в периферийной части выполнен вильчатый фланец, по которому осуществляется центрирование. Кроме того, центрирование и передача нагрузок идут по радиальным штифтам, удерживаемым от выпадения лабиринтом.

На цапфе ТНД также закреплено кольцо лабиринтного уплотнения.

На периферийной цилиндрической части цапфы справа размещено торцевое контактное уплотнение, а слева - втулка радиально-торцевого контактного уплотнения. Втулка отцентрирована по цилиндрической части цапфы, в осевом направлении зафиксирована отгибкой гребешка.

В левой части цапфы на цилиндрической поверхности размещены втулки подвода масла к подшипнику, внутреннее кольцо подшипника и детали уплотнения. Пакет этих деталей стянут корончатой гайкой, законтренной пластинчатым замком. На внутренней поверхности цапфы выполнены шлицы, обеспечивающие передачу крутящего момента от цапфы на вал. В теле цапфы выполнены отверстия подвода масла к подшипникам.

В правой части цапфы, на внешней проточке, гайкой закреплено внутреннее кольцо роликового подшипника опоры турбины. Корончатая гайка законтрена пластинчатым замком.

Вал турбины низкого давления состоит из 3-х частей, соединённых друг с другом радиальными штифтами. Правая часть вала своими шлицами входит в ответные шлицы цапфы, получая от неё крутящий момент.

Осевые силы с цапфы на вал передаются гайкой, навёрнутой на резьбовой хвостовик вала. Гайка законтрена от отворачивания шлицевой втулкой. Торцевые шлицы втулки входят в торцевые прорези вала, а шлицы на цилиндрической части втулки входят в продольные шлицы гайки. В осевом направлении шлицевая втулка зафиксирована регулировочным и разрезным кольцами.

На наружной поверхности правой части вала радиальными штифтами закреплён лабиринт. На внутренней поверхности вала радиальными штифтами закреплена шлицевая втулка привода насоса откачки масла от опоры турбины.

В левой части вала выполнены шлицы, передающие крутящий момент на рессору и далее на ротор компрессора низкого давления. На внутренней поверхности левой части вала нарезана резьба, в которую ввёрнута гайка, законтренная осевым штифтом. В гайку вворачивается болт, стягивающий ротор компрессора низкого давления и ротор турбины низкого давления.

На наружной поверхности левой части вала размещено радиально-торцевое контактное уплотнение, дистанционная втулка и роликовый подшипник конической шестерни. Все эти детали стянуты корончатой гайкой.

Составная конструкция вала позволяет повысить его жёсткость за счёт увеличенного диаметра средней части, а также снизить вес - средняя часть вала выполнена из титанового сплава.

Статор турбины низкого давления

Статор состоит наружного корпуса, блоков лопаток соплового аппарата, внутреннего корпуса.

Наружный корпус - сварная конструкция, состоящая из конической оболочки и фланцев, по которым корпус стыкуется с корпусом турбины высокого давления и корпусом опоры. Снаружи к корпусу приварен экран, образующий канал подвода охлаждающего воздуха. Внутри выполнены буртики, по которым центрируется сопловой аппарат.

В районе правого фланца установлен буртик, на котором установлены и радиальными штифтами зафиксированы вставки ТНД с сотами.

Лопатки соплового аппарата с целью увеличения жесткости в одиннадцать трехлапаточных блоков.

Каждая лопатка - литая, пустотелая, охлаждаемая с внутренними дефлекторами. Перо, наружная и внутренние полки образуют проточную часть. Наружные полки лопатки имеют буртики, которыми они центрируются по проточкам наружного корпуса.

Осевая фиксация блоков сопловых лопаток осуществляется разрезным кольцом. Окружная фиксация лопаток осуществляется выступами корпуса, входящими в прорези, выполненные в наружных полках.

Наружная поверхность полок и профильной части лопаток с целью повышения жаростойкости алюмосицилируется. Толщина защитного слоя 0,02-0,08 мм.

Для снижения перетекания газа между блоками лопаток в прорези устанавливаются уплотнительные пластины.

Внутренние полки лопаток оканчиваются сферическими цапфами, по которым центрируется внутренний корпус, представляющий сварную конструкцию.

В ребрах внутреннего корпуса выполнены проточки, которые с радиальным зазором входят в гребешки внутренних полок сопловых лопаток. Этот радиальный зазор обеспечивает свободу теплового расширения лопаток.

Опора турбины НД

Опора турбины состоит из корпуса опоры и корпуса подшипника.

Корпус опоры представляет собой сварную конструкцию, состоящую из оболочек, соединенных стойками. Стойки и оболочки защищены от газового потока клепаными экранами. На фланцах внутренней оболочки опоры закреплены конические диафрагмы, поддерживающие корпус подшипника. На этих фланцах слева закреплена втулка лабиринтного уплотнения, а справа - экран, защищающий опору от газового потока.

На фланцах корпуса подшипника слева закреплена втулка контактного уплотнения. Справа винтами закреплены крышка масляной полости и теплозащитный экран.

Во внутренней расточке корпуса помещен роликовый подшипник. Между корпусом и наружным кольцом подшипника находятся упругое кольцо и втулки. В кольце выполнены радиальные отверстия, через которые при колебаниях роторов прокачивается масло, на что рассеивается энергия.

Осевая фиксация колец осуществляется крышкой, притянутой к опоре подшипника винтами. В полости под теплозащитным экраном размещен откачивающий масляный насос и форсунки масляной с трубопроводами. В корпусе подшипника выполнены отверстия, подводящие масло к демпферу и форсунками.

Охлаждение турбины

Система охлаждения турбины - воздушная, открытая, регулируемая за счет дискретного изменения расхода воздуха, идущего через воздухо-воздушный теплообменник.

Входные кромки лопаток соплового аппарата турбины высокого давления имеют конвективно-пленочное охлаждение вторичным воздухом. Вторичным же воздухом охлаждаются полки этого соплового аппарата.

Задние полоски лопаток СА, диск и рабочие лопатки ТНД, корпуса турбин, лопатки СА турбины вентилятора и ее диск с левой стороны охлаждаются воздухом, проходящим через воздухо-воздушный теплообменник (ВВТ).

Вторичный воздух через отверстия в корпусе камеры сгорания поступают в теплообменник, там охлаждаются на - 150-220 К и через клапанный аппарат идет на охлаждение деталей турбин.

Воздух второго контура через стойки опоры и отверстия подводится к напорному диску, который, увеличивая давление, обеспечивает подачу его в рабочие лопатки ТНД.

Корпус турбины снаружи охлаждается воздухом второго контура, а изнутри - воздухом из ВВТ.

Охлаждение турбины осуществляется на всех режимах работы двигателя. Схема охлаждения турбины представлена на рис 1.1.

Силовые потоки в турбине

Инерционные силы с рабочих лопаток через замки типа «Ёлочка» передаются на диск и нагружают его. Неуравновешенные инерционные силы облопаченных дисков через призонные болты на роторе ТВД и через центрирующие буртики и радиальные штифты на роторе ТВД передаются на вал и цапфы, опирающиеся на подшипники. С подшипников радиальные нагрузки передаются на детали статора.

Осевые составляющие газовых сил, возникающих на рабочих лопатках ТВД, за счет сил трения по поверхностям контактов в замке и упором «зубом» лопатки в диск передаются на диск. На диске эти силы суммируются с осевыми силами, возникающими из-за перепада давления на нем и через призонные болты передаются на вал. Призонные болты от этой силы работают на растяжение. Осевая сила ротора турбины суммируется с осевой.

Наружный контур

Наружный контур предназначен для перепуска за ТНД части потока воздуха, сжатого в КНД.

Конструктивно наружный контур представляет собой два (передний и задний) профилированных корпуса, являющихся внешней оболочкой изделия и используемых также для крепления коммуникаций и агрегатов. Корпуса наружного корпуса изготовлены из титанового сплава. Корпус входит в силовую схему изделия, воспринимает крутящий момент роторов и частично вес внутреннего контура, а также усилия перегрузок при эволюциях объекта.

Передний корпус наружного контура имеет горизонтальный разъем для обеспечения доступа к КВД, КС и турбине.

Профилирование проточной части наружного контура обеспечено установкой в переднем корпусе наружного контура внутреннего экрана, связанного с ним радиальным стрингерами, одновременно являющимися и ребрами жесткости переднего корпуса.

Задний корпус наружного контура представляет собой цилиндрическую оболочку, ограниченную передним и задним фланцами. На заднем корпусе с внешней стороны расположены стрингера жесткости. На корпусах наружного корпуса расположены фланцы:

· Для отбора воздуха их внутреннего контура изделия за 4 и 7 ступенями КВД, а также из канала наружного контура для нужд объекта;

· Для запальных устройств КС;

· Для окон осмотра лопаток КВД, окон осмотра КС и окон осмотра турбины;

· Для коммуникаций подвода и отвода масла к опоре турбины, суфлировании воздушной и масляной полости задней опоры;

· Отбора воздуха в пневмоцилиндры реактивного сопла (РС);

· Для крепления рычага обратной связи системы управления НА КВД;

· Для коммуникаций подвода топлива в КС, а также для коммуникаций отбора воздуха за КВД в топливную систему изделия.

На корпусе наружного контура также спроектированы бобышки для крепления:

· Распределителя топлива; топливо-масляных теплообмнников маслобака;

· Топливного фильтра;

· Редуктора автоматики КНД;

· Сливного бачка;

· Агрегата зажигания, коммуникаций систем запуска ФК;

· Шпангоуты с узлами крепления регулятора сопла и форсажа (РСФ).

В проточной части наружного контура установлены двухшарнирные элементы коммуникаций системы изделия, компенсирующие температурные расширения в осевом направлении корпусов наружного и внутреннего контуров при работе изделия. Расширение корпусов в радиальном направлении компенсируется перемешением двухшарнирных элементов, конструктивно выполненных по схеме «поршень-цилиндр».

2. Расчет на прочность диска рабочего колеса турбины

2.1 Расчетная схема и исходные данные

Графическое изображение диска рабочего колеса ТВД и расчетной модели диска показаны на рис.2.1.Геометрические размеры представлены в таблице 2.1. Детальный расчет представлен в Приложении 1.

Рис. 2.1

Таблица 2.1

Сечение i

, см

, см

T, с

1

4,43

7,81

550

2

6,74

7,81

580

3

7,51

5,95

590

4

8,39

3,79

600

5

11,21

2,75

620

6

15,2

2,19

650

7

20,83

1,39

705

8

24,88

1,39

755

9

24,88

3,27

775

10

25,89

3,27

800

n - число оборотов диска на расчетном режиме равно 12430 об/мин. Диск выполнен из материала ЭП742-ИД. Температура по радиусу диска непостоянна. - лопаточная (контурная) нагрузка, имитирующая действие на диск центробежных сил лопаток и их замковых соединений (хвостовиков лопаток и выступов диска) на расчетном режиме.

- характеристики материала диска (плотность, модуль упругости, коэффициент Пуассона, коэффициент линейного расширения, длительная прочность). При вводе характеристик материалов рекомендуется воспользоваться готовыми данными из включенного в программу архива материалов.

Расчет контурной нагрузки производится по формуле:

(2.1)

где

- сумма центробежных сил перьев лопаток,

- сумма центробежных сил замковых соединений (хвостовиков лопаток и выступов дисков),

- площадь периферийной цилиндрической поверхности диска, через которую передаются на диск центробежные силы и :

(2.2)

Силы , рассчитываются по формулам

(2.3)

где

z- число лопаток,

- площадь корневого сечения пера лопатки,

- напряжение в корневом сечении пера лопатки, создаваемое центробежными силами. Расчет этого напряжения был произведен в разделе 2.

(2.4)

где

- масса кольца, образованного замковыми соединениями лопаток с диском,

- радиус инерции кольца замковых соединений,

щ - угловая скорость вращения диска на расчетном режиме, рассчитываемая через обороты следующим образом: ,

Масса кольца и радиус рассчитываются по формулам:

(4.5)

(2.6)

Площадь периферийной цилиндрической поверхности диска рассчитывается по формуле 4.2.

Подставляя исходные данные в формулу для указанных выше параметров, получим:

Расчет диска на прочность производится по программе DI.EXE, имеющаяся в компьютерном классе 203 кафедры. [5]

Следует иметь ввиду, что геометрические размеры диска (радиусы и толщины) вводятся в программу DI.EXE в сантиметрах, а контурная нагрузка - в (перевод ).

2.2 Результаты расчета

Результаты расчета представлены в таблице 2.2.

Таблица 2.2

В первых столбцах таблицы 2.2 представлены исходные данные по геометрии диска и распределению температуры по радиусу диска. В столбцах 5-9 представлены результаты расчета: напряжения радиальные (рад.) и окружные (окр.), запасы по эквивалентному напряжению (экв. напр.) и разрушающим оборотам (цил. сеч.), а также удлинения диска под действием центробежных сил и температурных расширениях на разных радиусах.

Наименьший запас прочности по эквивалентному напряжению получен в основании диска. Допустимое значение [6]. Условие прочностивыполняется.

Наименьший запас прочности по разрушающим оборотам получен так же в основании диска. Допускаемое значение [6]. Условие прочностивыполняется.

Рис. 2.2 Распределение напряжения (рад. и окр.) по радиусу диска

Рис. 2.3 Распределение запаса прочности (запасы по эквив. напряжению) по радиусу диска

Рис. 2.4 Распределение запаса прочности по разрушающим оборотам

Рис. 2.5 Распределение температуры, напряжения (рад. и окр.) по радиусу диска

Литература

1. Хронин Д.В., Вьюнов С.А. и др. «Конструкция и проектирование авиационных газотурбинных двигателей». - М, Машиностроение, 1989.

2. «Газотурбинные двигатели», А.А. Иноземцев, В.Л. Сандрацкий, ОАО «Авиадвигатель», г. Пермь, 2006г.

3. Лебедев С.Г. Курсовой проект по дисциплине «Теория и расчет авиационных лопаточных машин», - М, МАИ, 2009.

4. Перель Л.Я., Филатов А.А. Подшипники качения. Справочник. - М, Машиностроение, 1992.

5. Программа DISK-MAI, разработанная на кафедре 203 МАИ, 1993.

6. Иноземцев А.А., Нихамкин М.А., Сандрацкий В.Л. «Газотурбинные двигатели. Динамика и прочность авиационных двигателей и энергетических установок». - М, Машиностроение, 2007.

7. ГОСТ 2.105 - 95.

Размещено на Allbest.ru

...

Подобные документы

  • Термогазодинамический расчет двигателя, выбор и обоснование параметров. Согласование параметров компрессора и турбины. Газодинамический расчет турбины и профилирование лопаток РК первой ступени турбины на ЭВМ. Расчет замка лопатки турбины на прочность.

    дипломная работа [1,7 M], добавлен 12.03.2012

  • Термогазодинамический расчет двигателя. Согласование работы компрессора и турбины. Газодинамический расчет осевой турбины на ЭВМ. Профилирование рабочих лопаток турбины высокого давления. Описание конструкции двигателя, расчет на прочность диска турбины.

    дипломная работа [3,5 M], добавлен 22.01.2012

  • Термогазадинамический расчет двигателя, профилирование лопаток рабочих колес первой ступени турбины. Газодинамический расчет турбины ТРДД и разработка ее конструкции. Разработка плана обработки конической шестерни. Анализ экономичности двигателя.

    дипломная работа [1,5 M], добавлен 22.01.2012

  • Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

    дипломная работа [2,4 M], добавлен 22.01.2012

  • Описание конструкции двигателя. Термогазодинамический расчет турбореактивного двухконтурного двигателя. Расчет на прочность и устойчивость диска компрессора, корпусов камеры сгорания и замка лопатки первой ступени компрессора высокого давления.

    курсовая работа [352,4 K], добавлен 08.03.2011

  • Расчет на длительную статическую прочность элементов авиационного турбореактивного двигателя р-95Ш. Расчет рабочей лопатки и диска первой ступени компрессора низкого давления на прочность. Обоснование конструкции на основании патентного исследования.

    курсовая работа [2,2 M], добавлен 07.08.2013

  • Проектирование центробежного турбокомпрессора, состоящего из центробежного компрессора и радиально-осевой газовой турбины. Уточнение расчетных параметров и коэффициента полезного действия турбины. Расчет соплового аппарата и рабочего колеса турбины.

    курсовая работа [1,7 M], добавлен 08.05.2021

  • Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа [907,7 K], добавлен 24.12.2010

  • Расчет на прочность элементов первой ступени компрессора высокого давления турбореактивного двухконтурного двигателя со смешением потоков для боевого истребителя. Расчет припусков на обработку для наружных, внутренних и торцевых поверхностей вращения.

    дипломная работа [2,0 M], добавлен 07.06.2012

  • Согласование параметров компрессора и турбины и ее газодинамический расчет на ЭВМ. Профилирование лопатки рабочего колеса и расчет его на прочность. Схема процесса, проведение токарной, фрезерной и сверлильной операций, анализ экономичности двигателя.

    дипломная работа [3,8 M], добавлен 08.03.2011

  • Определение работы расширения (располагаемый теплоперепад в турбине). Расчет процесса в сопловом аппарате, относительная скорость при входе в РЛ. Расчет на прочность хвостовика, изгиб зуба. Описание турбины приводного ГТД, выбор материала деталей.

    курсовая работа [382,6 K], добавлен 19.07.2010

  • Выбор параметров двигателя. Температура газа перед турбиной. Коэффициенты полезного действия компрессора и турбины. Потери в элементах проточной части двигателя. Скорость истечения газа из выходного устройства. Термогазодинамический расчет двигателя.

    курсовая работа [1,3 M], добавлен 10.02.2012

  • Краткое описание конструкции двигателя. Нормирование уровня надежности лопатки турбины. Определение среднего времени безотказной работы. Расчет надежности турбины при повторно-статических нагружениях и надежности деталей с учетом длительной прочности.

    курсовая работа [576,7 K], добавлен 18.03.2012

  • Расчет параметров потока и построение решеток профилей ступени компрессора и турбины. Профилирование камеры сгорания, реактивного сопла проектируемого двигателя и решеток профилей рабочего колеса турбины высокого давления. Построение профилей лопаток.

    курсовая работа [1,8 M], добавлен 27.02.2012

  • Разработка конструкции охлаждаемой лопатки ступени турбины высокого давления ТРДД. Создание сетки конечных элементов с помощь подмодуля САПР. Расчет граничных условий теплообмена, температурного поля, термонапряженного состояния и его оптимизации.

    курсовая работа [1,5 M], добавлен 17.02.2012

  • Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа [3,1 M], добавлен 26.12.2011

  • Проект двигателя для привода газоперекачивающего агрегата. Расчет термодинамических параметров двигателя и осевого компрессора. Согласование параметров компрессора и турбины, профилирование компрессорной ступени. Газодинамический расчет турбины на ЭВМ.

    курсовая работа [429,8 K], добавлен 30.06.2012

  • Расчет на прочность и устойчивость пера лопатки и диска рабочего колеса, лопаточного замка и корпуса камеры сгорания. Определение динамики первой формы колебаний пера лопатки. Описание конструкции узла компрессора низкого давления авиационного двигателя.

    курсовая работа [828,1 K], добавлен 21.01.2012

  • Профилирование лопатки первой ступени турбины высокого давления. Расчет и построение решеток профилей дозвукового осевого компрессора. Профилирование решеток профилей рабочего колеса по радиусу. Расчет и построение решеток профилей РК турбины на ПЭВМ.

    курсовая работа [2,5 M], добавлен 04.02.2012

  • Выбор и обоснование параметров газотурбинного двигателя. Термогазодинамический расчет и обоснование параметров. Выбор степени двухконтурности, температуры газа перед турбиной. Согласование параметров компрессора и турбины. Формирование облика двигателя.

    курсовая работа [2,5 M], добавлен 13.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.