Тепловые насосы
История возникновения тепловых насосов. Понятие, классификация и принцип действия тепловых насосов, эффективность их применения. Источники низкопотенциальной тепловой энергии. Описание и технические характеристики теплового насоса Viesmann Vitocal 222-G.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.11.2017 |
Размер файла | 411,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
2
Министерство образования и науки РФ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
"Воронежский государственный технический университет"
Кафедра проектирования зданий и сооружений им. Н.В. Троицкого
Курсовой проект
По дисциплине «Автоматизация системы управления технологических процессов ИСиС»
на тему «Тепловые насосы»
Выполнила: студентка гр. М291
Кошкина Екатерина Геннадьевна
Руководитель: доцент Кузнецов Р.Н.
Воронеж 2017
СОДЕРЖАНИЕ
- Введение
1. История возникновения тепловых насосов
2. Понятие и классификация тепловых насосов
3. Принцип действия теплового насоса
4. Источники низкопотенциальной тепловой энергии
5. Эффективность применения тепловых насосов
6. Тепловой насос Viesmann Vitocal 222-G
6.1 Описание и технические характеристики
6.2 Условные обозначения, применяемые в Приложении 1
- Заключение
- Список литературы
- Приложение 1 "Принципиальная схема котельной на базе теплового насоса Viesmann Vitocal 222-G"
ВВЕДЕНИЕ
Более половины потерь энергии, приводящих к огромным финансовым затратам при эксплуатации зданий происходит за счет применения устаревших и/или энергозатратных климатических систем.
Одним из направлений энергосбережения в области отопления, вентиляции и кондиционирования и уменьшения финансовых затрат на эксплуатацию зданий являются технологии на основе тепловых насосов.
Тепловой насос - это установка, которая предназначена для осуществления автономного обогрева жилых помещений и производственных зданий, а также для подачи туда горячей воды. Такие установки занимают совсем мало места, являются абсолютно экологически чистыми и, что самое главное, экономичными. Работают тепловые насосы за счет использования энергии от источника энергии с низкой температурой (земля, озера, реки) к потребителю с более высокой температурой. Данный принцип работы был создан уже достаточно давно, похожая техника применяется и в морозильных камерах, но только в другом ключе. Забрав тепло воздуха, насос увеличивает энергию и выполняет с ее помощью свои непосредственные задачи, то есть нагрев воды и отопление помещений.
Срок службы тепловых насосов до капитального ремонта - 10-15 отопительных сезонов, что является очень высоким показателем по сравнению с другими обогревательными системами. Отопление тепловыми насосами происходит полностью в автоматическом режиме. Нужно лишь периодически контролировать режим работы, а также каждый сезон производить технический осмотр. Как правило, окупаемость таких обогревательных установок составляет около трех отопительных сезонов, но, в зависимости от условий их работы, а также сезонности, возможно достижение максимальной отдачи в их работе, что может сделать срок окупаемости еще ниже. Хоть в нашей стране тепловые насосы получают распространение только сейчас, за рубежом их достоинства люди оценили уже давно. Их производство уже налажено во многих странах. По прогнозам, уже в 2020 году применение различных типов тепловых насосов для обогрева и горячего водоснабжения составит 75 %.
В нашей работе мы познакомимся с историей возникновения тепловых насосов, рассмотрим понятие «тепловой насос», разберем классификацию насосов, изучим источники тепловой энергии, а так же представим потенциальную схему котельной на базе теплового насоса.
1. ИСТОРИЯ ВОЗНИКНОВЕНИЯ ТЕПЛОВЫХ НАСОСОВ
Концепция тепловых насосов была разработана еще в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером. Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году. Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер экспериментировал с морозильной камерой. Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что тепло просто выбрасывается наружу. Изобретатель задумался над тем, как использовать это тепло, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть тепла от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника тепла можно нагревать и воду, и воздух одновременно, поэтому Вебер усовершенствовал свое изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять тепло по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» тепло из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» тепло земли. Газ конденсировался, отдавал свое тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь.
В 40-х годах тепловой насос был известен своей чрезвычайной эффективностью, но реальная потребность в нём возникла во время Арабского нефтяного эмбарго в 70-х годах, когда несмотря на низкие цены на энергоносители появился интерес к энергосбережению. Именно тогда доктор Джеймс Бозе, профессор Университета штата Оклахома, случайно наткнулся на старый инженерный текст о концепции тепловых насосов. Доктор Бозе решил помочь собственникам домов, чьи тепловые насосы сбрасывали горячую воду в бассейн, и приспособил тепловой насос для циркуляции воды по трубам вместо слива в бассейн. Это положило начало новой эре в области геотермальных систем. Доктор Бозе вернулся в Университет и начал развивать свою идею. С того времени Университет штата Оклахома стал центром исследования и развития геотермальных тепловых насосов. Международная Ассоциация геотермальных тепловых насосов была основана в Оклахоме и располагается в корпусе государственного Университета штата Оклахома, в которой доктор Бозе является исполнительным директором.
Сегодня именем Риттингера названа Международная премия по тепловым насосам (медаль с его изображением), посвящённая достижениям в области теплонасосных и связанных с ними технологий, таких как отопление и кондиционирование воздуха. Последними владельцами этой престижной премии являются профессор Королевского Института Технологий (Стокгольм, Швеция) Эрик Гренрид, профессор Университета Иллинойс (США) Предраг Хнджак и доктор наук Джеральд Грофф, США, которые были награждены на 9-ой Конференции Международного Энергетического Агентства по тепловым насосам, которая проходила 20-22 мая 2008 года в Цюрихе (Швейцария).[3]
2. ПОНЯТИЕ И КЛАССИФИКАЦИЯ ТЕПЛОВЫХ НАСОСОВ
Тепловой насос - термодинамическая установка, в которой теплота от низкопотенциального источника передается потребителю при более высокой температуре. Тепловой насос состоит из:
а) Теплообменник передачи тепла земли внутреннему контуру
б) Компрессор
в) Теплообменник передачи тепла внутреннего контура системе отопления
г) Дроссельное устройство для понижения давления
д) Рассольный контур и земляной зонд
е) Контур отопления и ГВС.[1]
Существуют разные варианты классификации тепловых насосов. По их оперативным функциям тепловые насосы подразделяются на две основных категории: тепловой насос низкопотенциальный энергия
* тепловые насосы только для отопления и/или горячего водоснабжения, применяемые для обеспечения комфортной температуры в помещении и/или приготовления горячей санитарной воды;
* интегрированные системы на основе тепловых насосов, обеспечивающие отопление помещений, охлаждение, приготовление горячей санитарной воды и иногда утилизацию отводимого воздуха. Подогрев воды может осуществляться либо отбором тепла перегрева подаваемого газа с компрессора, либо комбинацией отбора тепла перегрева и использования регенерированного тепла конденсатора. Тепловые насосы, предназначенные исключительно для приготовления горячей санитарной воды, зачастую в качестве источника тепла используют воздух среды, но равным образом могут использовать и отводимый воздух.
Следует отметить, что постепенно увеличивается предложение тепловых насосов класса реверсивные "воздух-вода", чаще всего поставляемых в комплекте с расширительным баком и насосным агрегатом. По отдельному заказу поставляется накопительный резервуар. Такие насосы можно врезать непосредственно в существующие водопроводные системы. [4]
Рассматривая типы тепловых насосов, можно выделить следующие:
По виду передачи энергии тепловые насосы бывают двух типов:
· Компрессионные. Основные элементы установки - это компрессор, конденсатор, расширитель и испаритель. Используется цикл сжимания-расширения теплоносителя с выделением тепла. Этот тип тепловых насосов прост, высокоэффективен и наиболее популярен.
· Абсорбционные. Это теплонасосы нового поколения, использующие в качестве рабочего тела пару абсорбент-хладон. Применение абсорбента повышает эффективность работы теплового насоса.
По источнику тепла выделяют тепловые насосы:
· Геотермальные. Тепловая энергия берется из грунта или воды.
· Воздушные. Тепло извлекается из атмосферы.
· Использующие вторичное тепло. В качестве источника тепла используются воздух, вода, канализационные стоки.
По виду теплоносителя входного/выходного контура:
· Тепловые насосы «воздух-воздух». Этот вид тепловых насосов забирает тепло у более холодного воздуха, еще больше понижая его температуру, и отдает его в отапливаемое помещение.
· Тепловые насосы «вода-вода». Используется тепло грунтовых вод, которое передается воде для отопления и горячего водоснабжения.
· Тепловые насосы «вода-воздух». Используются зонды или скважины для воды и воздушная система отопления.
· Тепловые насосы «воздух-вода». Атмосферное тепло используется для водяного отопления.
· Тепловые насосы «грунт-вода». Трубы прокладываются под землей, и по ним циркулирует вода, забирающая тепло из грунта.
· Тепловые насосы «лед-вода». Для нагревания воды в системе отопления и горячего водоснабжения используется тепловая энергия, которая высвобождается при получении льда. Замораживание 100-200 л воды способно обеспечить обогрев среднего дома в течение часа.[3]
В настоящее время создано и эксплуатируется большое число тепловых насосных установок, отличающихся по тепловым схемам, рабочим телам и по используемому оборудованию. По обозначению различных классов установок, в известных нам литературных источниках, нет единого установившегося мнения, встречаются различные обозначения и термины.
В связи с этим важное значение приобретает классификация установок, позволяющая проводить рассмотрение их свойств в соответствии с той или иной группой. Все типы тепловых насосных установок можно классифицировать по ряду сходных признаков. Каждый из них отражает только одну характерную особенность установки, поэтому в определении теплонасосной установки может быть два и более признака.
Все тепловые насосы по принципу взаимодействия рабочих тел можно объединить в две основные группы: 1) открытого цикла, в которых рабочее тело забирается и отдается во внешнюю среду; 2) замкнутого цикла, в которых рабочее тело движется по замкнутому контуру, взаимодействуя с источником и потребителем теплоты лишь посредством теплообмена в аппаратах поверхностного типа.
Различают одно- и двухступенчатые и каскадные ТНУ, а также ТНУ с последовательным соединением по нагреваемому и охлаждаемому теплоносителям с противоточным их движением.
По назначению: стационарные и передвижные, для аккумулирования тепловой энергии и ее транспорта и утилизации сбросного тепла.
По производительности: крупные, средние, мелкие.
По температурному режиму: высокотемпературные, среднетемпературные и низкотемпературные.
По режиму работы: стационарные, нестационарные, непрерывные или цикличные, нестационарные с аккумулятором тепловой энергии.
По виду холодильного агента: воздушные, аммиачные, фреоновые, на смесях холодильных агентов.
По виду потребляемой энергии: с приводом от электродвигателя или газовой турбины или от газовой турбины, работающие на вторичных энергоресурсах и др. [3]
3. ПРИНЦИП ДЕЙСТВИЯ ТЕПЛОВОГО НАСОСА
Принцип работы бытового теплонасоса основан на том факте, что любое тело с температурой выше абсолютного нуля обладает запасом тепловой энергии. Этот запас прямо пропорционален массе и удельной теплоемкости тела. Теплоноситель (в роли которого выступает вода), взявший несколько градусов из окружающей среды, проходит через теплообменник теплового насоса, называемый испарителем, и отдает собранное из окружающей среды тепло во внутренний контур теплового насоса. Внутренний контур теплового насоса заполнен хладагентом, который имея очень низкую температуру кипения, проходя через испаритель, превращается из жидкого состояния в газообразное. Это происходит при низком давлении и температуре 5°С. Из испарителя газообразный хладагент попадает в компрессор, где он сжимается до высокого давления и высокой температуры. Далее горячий газ поступает во второй теплообменник -- конденсатор, где происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома. Хладагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый теплоноситель системы отопления поступает к отопительным приборам. (Рисунок 1.)[6]
Рисунок.1 Принцип действия теплового насоса.
4. ИСТОЧНИКИ НИЗКОПОТЕНЦИАЛЬНОЙ ТЕПЛОВОЙ ЭНЕРГИИ
Тепловой насос предназначен для использования энергии, получаемой от источника тепла низкой температуры. Тепловые, энергетические и экономические характеристики тепловых насосов тесно взаимосвязаны с характеристиками источников, из которых насосы берут тепло. Идеальный источник тепла должен давать стабильную высокую температуру в течение отопительного сезона, не быть коррозийным и загрязняющим, иметь благоприятные теплофизические характеристики, не требовать существенных инвестиций и расходов по обслуживанию. В большинстве случаев имеющийся источник тепла является ключевым фактором, определяющим эксплуатационные характеристики теплового насоса.
Источником низкопотенциальной тепловой энергии может быть тепло как естественного, так и искусственного происхождения. В качестве естественных источников низкопотенциального тепла могут быть использованы:
* тепло земли (тепло грунта);
* подземные воды (грунтовые, артезианские, термальные);
* наружный воздух.
В качестве искусственных источников низкопотенциального тепла могут выступать:
* удаляемый вентиляционный воздух;
* канализационные стоки (сточные воды);
* промышленные сбросы;
* тепло технологических процессов;
* бытовые тепловыделения.
Таким образом, существуют большие потенциальные возможности использования энергии вокруг нас, и тепловой насос представляется наиболее удачным путем реализации этого потенциала. Ранее тепловой насос использовался в первую очередь для кондиционирования (охлаждения) воздуха. Система была способна также обеспечить определенную отопительную мощность, в большей или меньшей степени удовлетворяющую потребности в тепле в зимний период. Однако характеристики этого оборудования стремительно меняются: сейчас во многих странах Европы тепловые насосы используются в отоплении и ГВС. Такое положение связано с поиском экологичных решений: вместо традиционного сжигания ископаемого топлива - использование альтернативных источников энергии, например, солнечной. Для массового потребителя одним из наиболее предпочтительных вариантов использования нетрадиционных источников энергии является использование низкопотенциального тепла посредством тепловых насосов.[3]
В качестве источников тепла в небольших системах на базе тепловых насосов широко используются наружный и отводимый воздух, почва и подпочвенная вода, для систем большой мощности применяются морская, озерная и речная вода, геотермические источники и грунтовые воды.
Воздух
Наружный воздух, будучи совершенно бесплатным и общедоступным, является наиболее предпочитаемым источником тепла. Тем не менее тепловые насосы, применяющие именно воздух, имеют фактор сезонной нагрузки (SPF) в среднем ниже на 10-30 % по сравнению с водяными тепловыми насосами. Это объясняется следующими обстоятельствами:
* быстрым снижением мощности и производительности с падением наружной температуры;
* относительно большой разностью температур конденсации и испарения в период минимальных зимних температур, что в целом снижает эффективность процесса;
* энергозатратами на размораживание испарительной батареи и функционирование соответствующих вентиляторов. В условиях теплого и влажного климата на поверхности испарителя в диапазоне от 0 до 6 °С образуется изморось, что ведет к снижению мощности и производительности теплового насоса. Иней уменьшает площадь свободной поверхности и препятствует прохождению воздуха. Как следствие, снижается температура испарения, что, в свою очередь, способствует нарастанию инея и дальнейшему неуклонному снижению производительности вплоть до возможной полной остановки агрегата вследствие срабатывания контрольного датчика низкого давления, если прежде не будет устранено обледенение. Размораживание батареи осуществляется путем инверсии охлаждающего цикла или иными, хотя и менее эффективными способами. Энергопотребление имеет тенденцию к росту. Общий коэффициент производительности СОР сокращается с увеличением частоты размораживания. Применение специальной системы контроля, обеспечивающей размораживание по требованию (т. е. когда оно фактически необходимо), а не периодическое, может существенно повысить общую эффективность. Еще один источник тепла в жилых и торгово-административных сооружениях - отводимый вентиляционный воздух. Тепловой насос регенерирует тепло из отводимого воздуха и обеспечивает приготовление горячей воды или теплого воздуха для отопления помещений. В этом случае, однако, требуется постоянное вентилирование в течение всего отопительного сезона или даже целого года, если предусмотрено кондиционирование помещений в летний период. Существуют аппараты, в которых конструктивно изначально заложена возможность использования и отводимого вентиляционного, и наружного воздуха. В некоторых случаях тепловые насосы, применяющие отводимый воздух, используются в комбинации с рекуператорами "воздух-воздух". Воздух как универсальный теплоноситель используется в больших установках круглогодичного кондиционирования. Он обладает низкими значениями коэффициентов теплоотдачи, поэтому для уменьшения поверхности испарителя приходится снижать температуру кипения рабочего тела, вследствие этого уменьшается степень совершенства теплонаносной установки. Данные испытания таких установок, использующих воздух в качестве источника тепла, свидетельствуют о том, что средний коэффициент m за отопительный сезон не превышает 2 - 2,5. В периоды пик, т. е. При эпизодически низких температурах наружного воздуха, включают запасные электронагреватели. Наилучшим методом борьбы с инеем является его автоматическое оттаивание, проводимое периодически.
Вода
Наиболее целесообразно применение отходов теплой воды промышленных предприятий, в том числе циркуляционной воды тепловых электростанций и др. Кроме того, используют также естественные горячие источники в курортных местностях. Ввиду больших расходов употребление городской воды неэкономично. Однако водные источники из сравнительно глубоких слоев почвы, имеющие температуру близкую к среднегодовой, обеспечивают более высокий коэффициент преобразования m по сравнению с воздухом. Подпочвенные воды есть во многих местах, они имеют достаточно стабильную температуру в диапазоне от 4 до 10 °С. Для использования воды, как источника тепла, применяются, главным образом, открытые системы: подпочвенная вода откачивается и подается на теплообменник системного агрегата, где у воды отбирается часть содержащегося в ней тепла. Вода, охлажденная таким образом, отводится в сливной колодец или в поверхностные воды. Открытые системы требуют самого тщательного проектирования в целях предотвращения проблем с замерзанием, коррозией и накоплением отложений. Большим недостатком тепловых насосов, работающих на подпочвенных водах, является высокая стоимость работ по монтажу водозабора. Кроме того, следует учитывать требования, порой весьма жесткие, местных администраций в вопросах организации сточных вод. Речная и озерная вода с теоретической точки зрения представляется весьма привлекательным источником тепла, но имеет один существенный недостаток - чрезвычайно низкую температуру в зимний период (она может приближаться к 0 °С). Если используются вода рек, озер и морей, то в зимний период она может замерзать на стенках испарителя. По этой причине требуется особое внимание при проектировании системы в целях предотвращения замораживания испарителя. Морская вода представляется в некоторых случаях отличным источником тепла и используется в основном в средних и крупных системах. На глубине от 25 до 50 м морская вода имеет постоянную температуру в диапазоне от 5 до 8 °С. И, как правило, проблем с образованием льда не возникает, поскольку точка замерзания здесь от -2 до -10 °С. Есть возможность использовать как системы прямого расширения, так и системы с рассолом. Важно лишь использовать теплообменники и насосные агрегаты, стойкие к воздействию коррозии, и предотвращать накопление отложений органического характера в водозаборном трубопроводе, теплообменниках, испарителях и пр. Грунтовым водам свойственна относительно высокая и стабильная в течение года температура. Основные ограничения здесь могут составлять расстояние транспортировки и фактические ресурсы, объем которых может меняться. Примерами возможных источников тепла в данной категории носителей можно считать грунтовые воды на канализационных участках (очистные и прочие водостоки), промышленные водостоки, водостоки участков охлаждения промышленных конденсаторов или производства электроэнергии.
Водоём
Ближайший водоём - идеальный источник тепла для теплового насоса. При использовании в качестве источника тепла воды озера или реки контур укладывается на дно. Этот вариант является идеальным с любой точки зрения - «высокая» температура окружающей среды (температура воды в водоеме зимой всегда положительная), короткий внешний контур, высокий коэффициент преобразования энергии тепловым насосом. На 1 метр трубопровода приходится ориентировочно 30 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длинной 300 метров. Для того, чтобы трубопровод не всплывал, необходимо установить около 5 кг груза на 1 погонный метр трубопровода.
Грунт
Грунт применяют в качестве естественного источника тепла для зимнего отопления и летнего кондиционирования. Змеевики испарителя закладывают в грунт, причем выгодно используют его зонную аккумулирующую способность. По практическим данным, коэффициент m составляет от 2,2 до 3,2 в зависимости от внешних условий. Величины теплопередачи в грунте главным образом зависят от его влажности. Тепловые насосы, использующие грунт в качестве источника тепла, применяются для обслуживания жилых и торгово-административных сооружений. Грунт, как и подпочвенные воды, имеет одно преимущество - относительно стабильную в течение года температуру. Тепло отбирается по трубам, уложенным в землю горизонтально или вертикально (спиралеобразно). Могут использоваться: системы прямого расширения с охлаждающей жидкостью, испаряющейся по мере циркуляции в контуре трубопровода, заглубленного в грунт; системы с рассольной жидкостью, прокачиваемой по трубопроводу, заглубленному в грунт. В целом тепловые насосы рассольного типа имеют более низкую производительность по сравнению с агрегатами первого типа в силу происходящего в них "двойного" теплообмена (грунт - рассол, рассол - хладагент) и энергозатрат на обеспечения работы циркуляции рассола, хотя обслуживать такие системы существенно проще. Тепловая емкость грунта варьируется в зависимости от его влажности и общих климатических условий конкретной местности. В силу производимого отбора тепла во время отопительного сезона его температура понижается. В условиях холодного климата большая часть энергии извлекается в форме латентного тепла, когда грунт промерзает. В летний период под действием солнца температура грунта вновь поднимается, и появляется возможность вернуться к первоначальным условиям. Действующие по такому принципу тепловые насосы обычно называют геотермическими, что по сути своей неверно, поскольку здесь не задействовано радиогенное тепло земли, содержащееся в глубинных скальных породах.[1]
5. ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ТЕПЛОВЫХ НАСОСОВ
Тепловые насосы - это компактные отопительные установки, предназначенные для автономного обогрева и горячего водоснабжения жилых и производственных помещений. Они экологически чисты, так как работают без сжигания топлива и не производят вредных выбросов в атмосферу, чрезвычайно экономичны, поскольку, потребляя, к примеру, 1 кВт электроэнергии для циркулирования хладагента, производят до 3-4 кВт тепловой энергии.
Применение тепловых насосов различной модификации является принципиально новым решением проблемы теплоснабжения и позволяет в зависимости от сезонности и условий работы достигать максимальной эффективности в их работе.
Тепловые насосы имеют большой срок службы до капитального ремонта (до 10-15 отопительных сезонов) и работают полностью в автоматическом режиме. Срок окупаемости оборудования не превышает 2-3 отопительных сезонов.
На рынке России тепловые насосы - новинка, однако в развитых странах эти устройства производятся и успешно эксплуатируются уже более 30 лет.
Тепловой насос - это машина, которая поглощает низкопотенциальную теплоту из окружающей среды с температурой 4-6 °С и выше и передает ее в систему теплоснабжения потребителей в виде нагретой воды или воздуха. Передача тепла производится рабочим телом - хладагентом (фреоном). Электроэнергия, потребляемая тепловым насосом, тратится лишь на пере-мещение фреона по системе с помощью компрессора точно так же, как в холодильных машинах. Система работает как котел при отоплении и как кондиционер при охлаждении. Зимой система передает тепло неостывшей земли в дом. Этот же цикл используется и при нагреве воды. Летом излишки тепла в доме передаются через теплообменник в обратном направлении.
В качестве низкопотенциального источника тепловой энергии для обогрева дома может быть использовано тепло естественного происхождения
(наружный воздух; тепло грунтовых, артезианских и термальных вод; воды рек, озер, морей и других незамерзающих природных водоемов). Тепловые насосы комплектуются системой управления и автоматики, которая поддерживает заданный режим работы теплового насоса.
Энергетическая эффективность применения тепловых насосов зависит от температуры низкопотенциального источника и будет тем выше, чем более высокую температуру источник будет иметь.
Экономическая эффективность применения тепловых насосов зависит от температуры низкопотенциального источника тепловой энергии, стоимости электроэнергии в регионе, себестоимости тепловой энергии, производимой с использованием различных видов топлива.
Использование тепловых насосов вместо традиционных источников тепловой энергии экономически выгодно в связи с отсутствием необходимости в закупке, транспортировке, хранении топлива и расходе денежных средств, связанных с этим, а также за счет освобождения значительной территории, необходимой для размещения котельной, подъездных путей и склада с топливом.
В ценовом отношении тепловые насосы действительно не дешевы. Начальные затраты на установку этих систем несколько выше стоимости обычных систем отопления и кондиционирования. Однако если рассматривать эксплуатационные расходы, то первоначальные вложения в геотермальный обогрев, охлаждение и горячее водоснабжение быстро окупаются за счет энергосбережения. Кроме того, необходимо учитывать, что при работе теплового насоса не требуется никаких дополнительных коммуникаций, кроме бытовой электрической сети.
Установка этих систем потребует проведения внутренних электромонтажных работ, прокладки внутренних воздуховодов, монтажа внешнего теплообменника. Стоимость этих работ зависит от ваших требований и расценок монтажной фирмы. [5]
Применение тепловых насосов снижает затраты энергии, полученной путем сжигания топлива, и соответственно, снижает выброс в атмосферу токсичных веществ. Кроме того, применение воздушных систем отопления позволяет контролировать состояние воздуха в доме, удалять вредные примеси, частицы пыли, споры, различные аллергены и запахи.
С учетом компактности, экономичности и простоты в обслуживании, тепловые насосы по совокупности эксплуатационных параметров могут представлять интерес для различных категорий потребителей тепловой энергии.
6. ТЕПЛОВОЙ НАСОС VIESSMANN VITOCAL 222-G
6.1 Описание и технические характеристики
Тепловой насос Viessmann Vitocal 222-G оснащен интегрированной емкостью для горячей воды, насосом рассольного и отопительного контуров, а также трехходовым переключающим клапаном. Встроенный 170 литровый бак обеспечит высокий комфорт горячего водоснабжения.
Как и все новые компактные аппараты Vitocal 222-G работает под управлением нового контролера Vitotronic c интуитивным дружественным интерфейсом. Если возникло хоть одно малейшее затрудение - помощь доступна одним нажатием клавиши. Информация настроек отопительных кривых, временные программы наглядно отображаются на дисплее. Блок управления может быть перенесен с фронтальной части аппарата и установлен в более удобном месте на стене в пределах 5 м от теплового насоса.
Новая эффективная защита от вибраций и шумоизоляция делают Vitocal 222-G необычайно тихим, что позволяет устанавливать его в жилых помещениях.
Рисунок 2. Строение теплового насоса: А - емкостный водонагреватель объемом 170 л, В - погодозависимый контроллер цифрового программного управления тепловым насосом, С - теплообменник для нагрева емкостного водонагревателя, D - 3-ходовой переключающий клапан "Отопление/горячая вода", Е- первичный насос (рассол), F- вторичный насос (отопительный контур), G- герметичный компрессор, H- проточный нагреватель для теплоносителя
Отличительные особенности:
· Высокий комфорт горячего водоснабжения благодаря встроенной 170 литровой емкости
· Предельно низкий уровень шума (43 дБ (A) при 0/35 °C.) благодаря высокоэффективной шумоизолирующей облицовке
· Простой в эксплуатации контроллер Vitotronic с текстовой и
· графической индикацией
· Возможность настенного монтажа блока управления
· Готовый для подключения
· Возможна функция охлаждения "natural cooling"
· Низкие эксплуатационные расходы благодаря высокому
· значению коэффициента мощности COP
· (COP = Coefficient of Performance) согласно EN 14511: до 4,3
· (рассол 0 °C/вода 35 °C)
· Встроенный проточный нагреватель теплоносителя
· Быстрый и простой монтаж с помощью дополнительных принадлежностей.
Таблица 1. Технические характеристики теплового насоса
Мощностные показатели теплового насоса |
|||
Тепловая мощность |
кВт |
10,4 |
|
Холодопроизводительность |
кВт |
8,3 |
|
Потребляемая электрическая мощность |
кВт |
2,23 |
|
Коэффициент преобразования (COP) |
4,6 |
||
Электрические параметры |
|||
Напряжение питания (тепловой насос) |
400 В/50 Гц |
||
Напряжение питания (управляющие цепи) |
230 В/50 Гц |
||
Холодильный контур |
|||
Рабочая среда |
R 410 A |
||
Тип компрессора |
спиральный герметичный |
||
Габариты и вес |
|||
Длина |
мм |
680 |
|
Ширина |
мм |
600 |
|
Высота |
мм |
1829 |
|
Масса |
кг |
256 |
|
Комплектация |
|||
Циркуляционый насос первичного контура |
есть |
||
Циркуляционый насос вторичного контура |
есть |
||
Бойлер |
170 |
||
Контроллер |
Vitotronic 200 W01B |
6.2 Условные обозначения, применяемые в схеме в Приложении 1 «Принципиальная схема котельной на базе теплового насоса»
вентиль (клапан) запорный
клапан предохранительный угловой
Размещено на http://www.allbest.ru
2
направление потока жидкости
кран проходной
Размещено на http://www.allbest.ru
2
Р датчик давления
ЗАКЛЮЧЕНИЕ
В данном курсовом проекте мы провели обзор существующих тепловых насосов, а именно познакомились с историей возникновения тепловых насосов, рассмотрели классификацию и принцип работы тепловых насосов. Разобрали существующие источники тепловой энергии. Рассмотрев всё вышеперечисленное, мы пришли к выводу о том, что применение тепловых насосов различной модификации является принципиально новым решением проблемы теплоснабжения и позволяет в зависимости от сезонности и условий работы достигать максимальной эффективности в их работе. Использование тепловых насосов вместо традиционных источников тепловой энергии экономически выгодно в связи с отсутствием необходимости в закупке, транспортировке, хранении топлива и расходе денежных средств, связанных с этим, а также за счет освобождения значительной территории, необходимой для размещения котельной, подъездных путей и склада с топливом.
СПИСОК ЛИТЕРАТУРЫ
1. Васильев Г.П. Использование низкопотенциальной тепловой энергии земли в теплонасосных установках / Г.П. Васильев, Н.В. Шилкин // АВОК.-2003.-№2.-С.52-60
2. Калнинь И.М. Энергосберегающие теплонасосные технологии / И.М. Калнинь. 2001.
3. Лобачев П. В. Насосы и насосные станции: Учебник . - 2-е изд., перераб. и доп. - М.: Стройиздат., 1983. - 191 с.
4. http://cyberleninka.ru
5. http://efarostov.ru
6. http://www.heatpp.narod.ru
7. http://www.teplodarom.com
8. http://www.kp.ru (тепловые насосы)
9. Библиотека научных статей журнал «Энергосбережении» www.domsovet.ru
ПРИЛОЖЕНИЕ 1. «ПРИНЦИПИАЛЬНАЯ СХЕМА КОТЕЛЬНОЙ НА БАЗЕ ТЕПЛОВОГО НАСОСА»
На данной схеме тепловой насос подключен в систему отопления через буферную емкость, которая служит для того чтобы аккумулировать тепло. Грунтовый тепловой насос рассол/вода использует тепло недр земли, которое отбирает при помощи грунтовых зондов. В буферную емкость подается холодная вода, которая поступает в теплообменник теплового насоса, насос в свою очередь, благодаря грунтовым зондам, нагревает поступившую в него воду, (охлаждаясь, хладагент отдает свое тепло теплоносителю (воде)), которая поступает к отопительным приборам (теплым полам, радиаторам, и выступает как горячее водоснабжение).
Размещено на Allbest.ru
...Подобные документы
Принцип работы бытовых и хозяйственных тепловых насосов. Конструкция и принципы работы парокомпрессионных насосов. Методика расчета теплообменных аппаратов абсорбционных холодильных машин. Расчет тепловых насосов в схеме сушильно-холодильной установки.
диссертация [3,0 M], добавлен 28.07.2015Насосы - гидравлические машины, предназначенные для перемещения жидкостей. Принцип действия насосов. Центробежные насосы. Объемные насосы. Монтаж вертикальных насосов. Испытания насосов. Применение насосов различных конструкций. Лопастные насосы.
реферат [305,4 K], добавлен 15.09.2008Классификация насосов по принципу действия. Устройство и принцип действия возвратно-поступательных насосов (поршневые, плунжерные, диафрагмовые, винтовые, шестеренные). Электроприводной поршневой насос, вычисление рабочего объема пластинчатого насоса.
реферат [1,1 M], добавлен 07.06.2010Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.
контрольная работа [4,1 M], добавлен 20.10.2011Описание рабочего процесса объёмных насосов, их виды и характеристики, устройство и принцип действия, достоинства и недостатки. Конструктивные особенности и область применения насосов различных конструкций. Техника безопасности при их эксплуатации.
реферат [909,2 K], добавлен 11.05.2011Насосы-гидравлические машины, предназначенные для перемещения жидкостей. Технология монтажа центробежного насоса. Монтаж центробежного насоса. Принцип действия насоса. Монтаж горизонтальных насосов. Монтаж вертикальных насосов. Испытание насосов.
реферат [250,5 K], добавлен 18.09.2008Основные типы насосов и гидродвигателей, их назначение, классификация и область применения. Параметры гидромашин. Устройство, принцип действия шестеренного насоса. Классификация гидродвигателей. Пластинчатые насосы однократного и двукратного действия.
презентация [344,2 K], добавлен 22.09.2009Принцип действия, устройство, схема вихревого насоса, его характеристики. Рабочее колесо вихревого насоса. Движение жидкости в проточных каналах. Способность к сухому всасыванию. Напор и характеристики вихревых насосов. Гидравлическая радиальная сила.
презентация [168,5 K], добавлен 14.10.2013Устройство, преимущества и особенности применения поршневых насосов в промышленности. Теоретическая секундная подача объемного насоса. Определение высоты всасывания поршневого насоса. Мероприятия по технике безопасности при использовании насоса.
курсовая работа [374,6 K], добавлен 09.03.2018Затраты на отопление и теплоснабжение, выбор между централизованным и автономным видом отопления. Фактические данные по расходу электроэнергии на отопление тепловыми гидродинамическими насосами. Принцип работы и преимущества гидродинамического насоса.
статья [568,6 K], добавлен 26.11.2009Понятие, классификация и область применения холодильной машины и теплового насоса - термодинамической установки, в которой теплота от низкопотенциального источника передается потребителю при более высокой температуре. Примерная схема теплоснабжения.
реферат [41,8 K], добавлен 15.03.2011Принцип действия тепловых реле, влияние перегрузок и температуры окружающей среды на их долговечность. Время-токовые характеристики и выбор тепловых реле. Конструктивные особенности тепловых реле, применение во всех сферах промышленности и в быту.
контрольная работа [1,2 M], добавлен 26.06.2011Проект теплоснабжения промышленного здания в г. Мурманск. Определение тепловых потоков; расчет отпуска тепла и расхода сетевой воды. Гидравлический расчёт тепловых сетей, подбор насосов. Тепловой расчет трубопроводов; техническое оборудование котельной.
курсовая работа [657,7 K], добавлен 06.11.2012Насосы и насосное оборудование. Наиболее распространенные типы центробежных насосов. Определяющие технические параметры насоса. Номинальные величины коэффициента полезного действия. Изменение числа оборотов привода. Оптимальный коэффициент диффузорности.
курсовая работа [697,8 K], добавлен 27.06.2011Центробежные насосы и их применение. Основные элементы центробежного насоса. Назначение, устройство и техническая характеристика насосов. Капитальный ремонт центробежных насосов типа "НМ". Указания по дефектации деталей. Обточка рабочего колеса.
курсовая работа [51,3 K], добавлен 26.06.2011Конструкция и принцип действия поршневых эксцентриковых насосов, их применение для преобразования механической энергии двигателя в механическую энергию перекачиваемой жидкости. Применение гидромеханической трансмиссии на сельскохозяйственном тракторе.
контрольная работа [3,7 M], добавлен 08.07.2011Техническая характеристика роторных насосов. Назначение и принцип работы консольных насосов, их конструктивные особенности. Определение оптимальной зоны работы центробежного насоса, изменения производительности насосной станции, подачи по трубопроводу.
курсовая работа [584,4 K], добавлен 23.11.2011Понятие и классификация гидравлических машин, их разновидности и функциональные особенности. Общая характеристика и свойства насосов, параметры и факторы, которые на них влияют. Основное уравнение турбомашин. Характеристики центробежного насоса.
презентация [491,3 K], добавлен 14.10.2013Общая характеристика поршневых насосов, подробное описание конструкции, устройство основных узлов и агрегатов на примере одного насоса. Изучение принципа действия поршневых насосов на примере УНБ-600, проведение инженерного расчета, уход и эксплуатация.
дипломная работа [7,6 M], добавлен 28.07.2010Краткая техническая характеристика АО "Волковгеология". Классификация насосов, принцип действия. Подготовка к эксплуатации НБ-32. Структура капитального ремонта. Режим работы ремонтного предприятия и фонд времени. Способ посадки втулки в корпус насоса.
дипломная работа [4,1 M], добавлен 22.04.2015