Материаловедение

Сущность переохлаждения и его влияние на величину зерна кристаллизирующегося металла. Процессы, протекающие при нагреве деформированного металла выше температуры рекристаллизации. Понятие нормализации, температура нормализации стали 45 и стали У12.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 19.11.2017
Размер файла 253,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Что такое переохлаждение и как оно влияет на величину зерна кристаллизирующегося металла?

Ответ:

При достаточно высокой скорости охлаждения температура металла первоначально понижается ниже температуры затвердевания, т.е. имеет место так называемое переохлаждение. При достижении определенной величины переохлаждения начинается кристаллизация металла.

С увеличением скорости охлаждения степень переохлаждения возрастает и процесс кристаллизации протекает при температурах, лежащих значительно ниже равновесной температуры кристаллизации.

Чем больше скорость образования зародышей и меньше скорость роста их, тем меньше размер кристалла (зерна), выросшего из одного зародыша, и, следовательно, более мелкозернистой будет структура металла.

При небольшой скорости переохлаждения число зародышей будет мало. В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения скорость образования зародышей возрастает, количество их увеличивается и размер зерна в затвердевшем металле уменьшается.

Размер зерна металла сильно влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно.

переохлаждение металл нагрев нормализация

2. Какие процессы протекают при нагреве деформированного металла выше температуры рекристаллизации? Как изменяется при этом структура и свойства?

Ответ:

Рекристаллизация является диффузионным процессом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллизации металл состоит из новых равноосных зерен. Более высокий нагрев приводит к развитию собирательной рекристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше температура нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создаются условия для образования крупнозернистого металла. Собирательная рекристаллизация также протекает неравномерно и практически начинается значительно раньше, чем закончится рекристаллизация обработки.

Рисунок 1 - Схема влияния на величину рекристаллизованного зерна температуры (а) и продолжительности нагрева (б)

Размер рекристаллизованного зерна оказывает большое влияние на свойства металла. Наилучшее сочетание прочности и пластичности наблюдается в мелкозернистых сталях. На величину рекристаллизованного зерна оказывает влияние температура рекристаллизационного отжига (рисунок 1, а), продолжительность процесса (рисунок 1, б), степень предварительной деформации и химический состав металла. Чем выше температура отжига и длительнее процесс, тем больше размер рекристаллизованного зерна.

При нагреве по достижении температуры начала рекристаллизации (tнр) предел прочности и особенно предел текучести резко снижаются, а пластичность увеличивается. В процессе собирательной рекристаллизации механические свойства практически не изменяются. Более высокий нагрев сопровождается дальнейшим ростом зерна и уменьшением пластичности вследствие перегрева.

3. Вычертите диаграмму состояния железо - карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,6% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Ответ:

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1% заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. Bточке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECFобразованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических -- аустенит + ледебурит, эвтектических -- ледебурит и заэвтектических -- цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727єС имеют структуру феррит + перлит и заэвтектоидные - перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 0,6% С, называется доэвтектоидной сталью. Его структура при комнатной температуре - Феррит + Перлит.

а) б)

Рисунок 6: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 0,6% углерода

4. Что такое нормализация? Используя диаграмму состояния железо-цементит, укажите температуру нормализации стали 45 и стали У12. Опишите превращения, происходящие в сталях при выбранном режиме обработки, получаемую структуру и свойства

Ответ:

Нормализацией называется нагрев доэвтектоидной стали до температуры выше Ас3, а заэвтектоидной - выше Аcm на 40-50°С с последующим охлаждением на воздухе. При нормализации происходит перекристаллизация стали, устраняющая крупнозернистую структуру, полученную при литье или ковке. В результате охлаждения на воздухе распад аустенита на ферритно-цементитную смесь происходит при более низких температурах, а, следовательно, повышается дисперсность смеси.

Назначение нормализации различно в зависимости от состава стали.

Для среднеуглеродистой стали 45 нормализацию применяют вместо закалки и высокого отпуска (улучшения). Механические свойства при этом понижаются, но уменьшается деформация изделий по сравнению с получаемой при закалке. Критическая точка Ас3 стали 45 равна 770єС. Поэтому температура нагрева в соответствии с определением нормализации составляет 810-820єС. При этой температуре имеем структуру аустенита (100%). При снижении температуры до Аr3 начинают появляться первые зерна феррита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна феррита, а содержание углерода в остающемся аустените будет увеличиваться и при температуре Аr1 достигнет 0,8%. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Сталь 45 после нормализации имеет структуру перлита и феррита. Механические свойства стали 45 после нормализации: уВ = 610 МПа; уТ = 360 МПа; д = 16%; ш = 40%; KCU = 0,5 МДж/м2.

В заэвтектоидной стали У12 нормализация устраняет грубую сетку вторичного цементита. Критическая точка Асm стали У12 равна 820єС. Поэтому температура нагрева в соответствии с определением нормализации составляет 850-860єС. При этой температуре имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Сталь У12 после нормализации имеет структуру перлита и цементита. Твердость HB стали У12 после нормализации 2690-3410 МПа

Размещено на Allbest.ru

...

Подобные документы

  • Явление полиморфизма в приложении к олову. Температура разделения районов холодной и горячей пластической деформации. Технология поверхностного упрочнения изделий из стали. Определение температуры полного и неполного отжига и нормализации для стали 40.

    контрольная работа [252,2 K], добавлен 26.03.2012

  • Повышение твердости стали за счет образования мартенситной структуры. Превращение перлита в аустенит. Нагрев заэвтектоидной стали до температуры выше критической точки. Основные фазовые превращения, протекающие в сталях при нагреве и охлаждении.

    доклад [19,3 K], добавлен 17.06.2012

  • Технология нормализации стали - процесса термической обработки, заключающегося в нагреве до определенной температуры для доэвтектоидной или для зазвтектоидной стали с последующим охлаждением на воздухе. Камерные, толкательные печи и специальные агрегаты.

    презентация [2,3 M], добавлен 05.10.2011

  • Конструкция сталеразливочных ковшей. Характеристика устройства для регулирования расхода металла и установок для продувки стали инертным газом. Вакуумирование металла в выносных вакуумных камерах. Продувка жидкого металла порошкообразными материалами.

    реферат [987,2 K], добавлен 05.02.2016

  • Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

    контрольная работа [370,2 K], добавлен 12.06.2012

  • Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

    контрольная работа [79,3 K], добавлен 12.12.2011

  • Различные режимы термомеханической обработки стали. Поверхностное упрочнение стальных деталей. Закалка токами высокой частоты. Газопламенная закалка и старение металла. Обработка стали холодом. Упрочнение металла методом пластической деформации.

    презентация [546,9 K], добавлен 14.10.2013

  • Проект отделения для нормализационной обработки изотропной электротехнической стали IV группы легирования. Влияние температуры нормализации на структуру и свойства стали. Годовой экономический эффект и нормативный срок окупаемости капитальных затрат.

    дипломная работа [454,6 K], добавлен 20.02.2011

  • Теория термической обработки. Превращения в стали при нагреве и охлаждении. Отжиг и нормализация. Дефекты термической обработки. Дефекты при отжиге и нормализации. Дефекты при закалке. Химико-термическая обработка и поверхностное упрочнение стали.

    доклад [411,0 K], добавлен 06.12.2008

  • Первичная кристаллизация сплавов системы железо-углерод. Расшифровка марки стали У12А, температура полного и неполного отжига, закалки, нормализации. Влияние легирующих элементов на линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.

    курсовая работа [1,4 M], добавлен 16.05.2015

  • Установки без принудительного перемешивания, с электромагнитным перемешиванием в ковше и с дополнительным подогревом металла. Вакуумирование стали в ковше. Порционный и циркуляционный способы вакуумирования. Комбинированные методы обработки металла.

    курсовая работа [31,1 K], добавлен 15.06.2011

  • Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа [492,5 K], добавлен 19.02.2011

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • Понятие, общая характеристика и виды термической обработки стали. Особенности основных этапов собственно-термической обработки стали, а именно отжига, нормализации, закалки, отпуска и старения. Отпускная хрупкость I, II рода и способы ее устранения.

    лабораторная работа [38,9 K], добавлен 15.04.2010

  • Температурный порог рекристаллизации - температура, при которой протекает рекристаллизация и происходит разупрочнение металла. Основными компонентами железоуглеродистых сплавов являются железо и углерод, которые относятся к полиморфным элементам.

    контрольная работа [3,4 M], добавлен 07.01.2009

  • Расчет склонности стали 40х к трещинообразованию. Выбор сварочных материалов и способа сварки. Расчет химического состава металла шва. Расчет основных параметров режима сварки. Определение склонности металла околошовной зоны к образованию трещин.

    контрольная работа [66,7 K], добавлен 31.03.2016

  • Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.

    контрольная работа [71,5 K], добавлен 01.04.2012

  • Схема процесса коррозионного растрескивания под напряжением (КРН). Сравнительные испытания стойкости металла вблизи шва и основного металла труб 12х1220 мм из стали 17Г1С-У и 17,8х1220 мм из стали К60 к КРН. Анализ состояния образцов после испытаний.

    курсовая работа [2,2 M], добавлен 27.09.2012

  • История развития выплавки стали в дуговых электропечах. Технология плавки стали на свежей углеродистой шихте с окислением. Выплавка стали в двухванном сталеплавильном агрегате. Внеагрегатная обработка металла в цехе. Разливка стали на сортовых МНЛЗ.

    отчет по практике [86,2 K], добавлен 10.03.2011

  • Термическая обработка углеродистой стали. Влияние скорости охлаждения аустенита на характер образующихся продуктов. Изменение зерна перлита в зависимости от температуры нагрева аустенитного зерна. Дисперсионное твердение, естественное старение.

    реферат [362,9 K], добавлен 26.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.