Свойства композиционных материалов

История происхождения композиционных материалов. Области их применения человеком. Примеры уникальных конструкций, созданных на основе композитов. Преимущества и недостатки современных гетерофазных материалов. Классификация композитных полимеров.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 20.12.2017
Размер файла 32,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

Московский государственный технический университет имени Н.Э. Баумана

Факультет "Специальное машиностроение"

Кафедра "Ракетно-космические композиционные конструкции"

Реферат

на тему: "Свойства композиционных материалов"

по дисциплине: "Ракетно-космические композиционные конструкции"

Выполнил: Ким Н.О.,

группа: СМ 13-12б

Преподаватель: Сапронов Д.

Москва, 2017

Содержание

  • Введение
  • 1. Исторические факты
  • 2. Область применения композиционных материалов
  • 3. Классификация композиционных материалов
  • Заключение
  • Список литературы

Введение

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ (композиты) - многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Для развития техники в современной авиационно-космической промышленности необходимо решить проблему создания агрегатов, обладающих свойствами, которые не могут быть обеспечены применением традиционных технологических методов.

Стойкость к повышенной радиации, глубокому вакууму, циклическому изменению температуры и ее резким перепадам, а также высокую прочность, стойкость и близкий к нулю коэффициент температурного расширения обеспечиваются применением композиционных материалов на полимерной и металлической основе.

Синхронность процесса создания композиционных материалов дает возможность управлять схемой армирования, устраняет многие промежуточные операции, присущие традиционным технологическим процессам, снижает трудоемкость изготовления конструкций из композиционных материалов. При этом значительно расширяются возможности оптимизации конструктивно-технологических решений.

Существуют и недостатки применения композиционных материалов. Высокие потенциальные возможности конструкций из композиционных материалов не всегда реализуются в конструкциях с желаемым эффектом. Причиной этому являются несовершенства существующих методов расчета, проектирования и технологии изготовления композитных конструкций.

1. Исторические факты

Два или более неоднородных материала используют вместе, чтобы создать новый уникальный материал или же улучшить характеристики одного из них. Первое использование этого метода относится к 1500 году до нашей эры, когда в Египте и Месопотамии начали использовать глину и солому для строения зданий. Также солому вносили в состав для укрепления керамических изделий и лодок.

Инки использовали растительные волокна при изготовлении керамики, а английские строители до недавнего времени добавляли в штукатурку немного волоса.

Действительно, история использования человеком композиционных материалов насчитывает много веков, а представление о композиционных материалах заимствовано человеком у природы. Уже на ранних стадиях развития цивилизации человек использовал для строительства кирпич из глины, в которую замешивалась солома, придававшая повышенную прочность. Кирпичи, в которых использовалась слома, называют "саман". Использование природных битумов позволило повысить водостойкость природных материалов и изготавливать суда из камыша, пропитанного битумом.

Другой композит, известный еще в Древнем Египте, содержал намного больший процент волокон, чем египетские кирпичи. Оболочки для египетских мумий делали из кусков ткани или папируса, пропитанных смолой или клеем. Этот материал (папье-маше) был заново открыт только в 18 в. (вместо папируса использовались куски бумаги) и был популярен до середины 20 в. Из папье-маше делали игрушки, рекламные макеты, а иногда даже мебель.

Следующая веха - это 1200 год нашей эры. Постарались монголы: они создали первый композиционный лук из таких материалов, как древесина, кость и животный клей. Монгольский лук делали обычно из нескольких слоев древесины (в основном это была береза), которые склеивали с помощью животного клея. Роговые накладки помещали на внутренней стороне лука, закрепляя жилами.

Наиболее известным на сегодняшний день композитом, вероятнее всего, является железобетон. Сочетание бетона и железных прутьев дает материал, из которого сооружают конструкции (пролеты мостов, балки и т.п.), которые выдерживают большие нагрузки, вызывающие растрескивание обычного бетона. Интересно, что первыми применять железо в качестве арматуры стали древние греки, причем армировали они мрамор. Когда архитектору Мнесиклу в 437 до н.э. понадобилось перекрыть пролеты длиной в 4-6 м, он замуровал в специальных канавках в мраморных плитах двухметровые железные стержни, чтобы перекрытия справились с напряжениями.

Компонентами композитов являются самые разнообразные материалы - металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы - полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.

Не было бы современных композитов, если бы ученые не придумали пластмассы. До этого единственным источником клея и связующих веществ служили природные смолы, которые получали из животных или растений. А в начале XX века разработали винил, полистирол, фенол и полиэстр. Эти материалы значительно превосходили ранее используемые.

Но и пластмассы не могли обеспечить достаточную прочность. Нужно было армирование получше, и в 1935 году фирма Owens/Corning разработала стекловолокно. В сочетании с пластиковыми полимерами оно представляет собой чрезвычайно прочную и при этом очень легкую структуру. Это стало началом армированной полимерной промышленности.

Первая реклама продукта из стекловолокна относится к 1939 году. Это воздушный фильтр компании Owens-Corning.

Приведенные примеры позволяют выделить то общее, что объединяет композиционные материалы независимо от их происхождения, а именно все эти материалы являются результатом объемного сочетания разнородных компонентов, один из которых пластичен (связующее, матрица), а другой обладает высокой прочностью и жесткостью (наполнитель, арматура), и при этом композиции имеют свойства, которых не имеют отдельные составляющие.

Ясно, что в качестве как первого, так и второго компонента могут выступать самые разнообразные по природе и происхождению материалы. Известны композиты на базе металлов, керамики, стекол, углерода, пластиков и других материалов. В широком смысле слова практически всякий современный материал представляет собой композицию, поскольку все материалы чрезвычайно редко применяются в чистейшем виде. Это создает определенные сложности с точки зрения использования термина - он распространяется зачастую механически на все сложные системы, содержащие несколько компонентов. Следует подчеркнуть, что наука о композиционных материалах (раздел материаловедения) зародилась недавно, на рубеже 60-х годов, и разрабатывалась главным образом для решения проблемы улучшения механических характеристик и жаростойкости. В последние годы в связи с расширением комплекса свойств, реализуемых с помощью полимерных композиционных материалов, значительно расширились исследования по созданию антифрикционных композиционных материалов медицинского и биологического назначения, газонаполненных композиционных материалов, тепло- и электропроводных КМ, негорючих КМ и др.

В этой связи уместно сказать, что современное определение композиционных материалов предполагает выполнение следующих условий.

1. Композиция должна представлять собой сочетание хотя бы двух разнородных материалов с четкой границей раздела между фазами.

2. Компоненты композиции образуют ее своим объемным сочетанием.

3. Композиция должна обладать свойствами, которых нет ни у одного из ее компонентов в отдельности.

2. Область применения композиционных материалов

Космос и авиация. Алюминий и другие металлы при производстве деталей самолетов заменяют на композиты низкой плотности, что позволяет снизить массу самолетов. Это, в свою очередь, экономит топливо. Так что в гражданской авиации сейчас широко используются композиты.

В Boeing 787 DreamLiner из композитных материалов на основе углерода изготовлены 50 % элементов фюзеляжа. Таким образом, этот самолет легче и прочнее обычного лайнера с алюминиевым фюзеляжем. Двигатель Genx от General Electric также имеет в себе композитные материалы: из них изготовлены корпус, лопатки турбины и форсунки, впрыскивающие топливо в камеру внутреннего сгорания.

Композиционные материалы широко применяется и в беспилотном авиастроении. Например, для дополнительной защиты беспилотных летательных аппаратов.

Оружие. Само собой, композиционные материалы используются при создании оружия. Например, межконтинентальная баллистическая ракета "Тополь-М": она на 90 % состоит из композитов, включая конструкции двигателей и головную часть. Также Композиционные материалы широко применяются при изготовлении прикладов и сменных стволов винтовок и другого огнестрельного оружия. Это обеспечивает снижение массы оружия, что повышает общую боевую эффективность.

Автопром. Автомобили - еще одно важное направление для полимерных композитов.

В 1954 году в США в продаже появился первый спорткар, корпус которого сделан из стекловолокна: Kaiser-Darrin. Эта машинка разгонялась до 60 миль в час за 15,1 секунды. А максимальная скорость - чуть меньше 100 миль в час, то есть около 160 км/ч. Такие характеристики стали достижимыми во многом благодаря небольшому весу автомобиля - около 2200 фунтов, то есть 997 кг.

В 1970-х материалы стали еще лучше и сложнее. Компания DuPont, а именно одна группа под управлением Стефани Кволек, разработала арамидные волокна, известные, как кевлар. Сейчас это общеизвестный материал, используемый в бронежилетах. Кевлар в пять раз прочнее стали. Создавали его материал для армирования автомобильных шин, он и сейчас применяется в этих целях. Также им армируют медные и волоконно-оптические кабели.

Нанотехнологии. Самая интересная группа композитов - полимеры. Сами полимерные композиты вряд ли можно назвать нанотехнологичными, если нанотехнологии определять как "совокупность технологических методов и приемов, используемых при изучении, проектировании и производстве материалов, устройств и систем, включающих целенаправленный контроль и управление строением, химическим составом и взаимодействием составляющих их отдельных наномасштабных элементов (с размерами порядка 100 нм и меньше), которые приводят к улучшению, либо появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов". Но в недавнее время на рынок вышли полимерные смолы, выполняющие роль связующего, которые, исходя из процесса их производства, вполне подпадают под определение нанотехнологии.

Медицина. Композиционные материалы широко применяются в медицине. Примером тому могут быть светоотверждаемые пломбы и пломбы химического отверждения. Например, стеклоиономерный цемент из порошка и жидкости, в котором порошок - алюмофторсиликатное стекло с фтором, а жидкость - водный раствор полиакриловой кислоты.

Композитные волокна используются при производстве ортезов. Ортез - это специальное приспособление, предназначенное для разгрузки, фиксации, активации или коррекции функций сустава или конечности. Здесь имеются кортезы, бандажи, обувь и другие продукты. Протезы также делают из композиционных материалов. В случае с образцами для бегунов это просто необходимо, так как подобную гибкость и прочность другие материалы дать неспособны.

3. Классификация композиционных материалов

Структура композиционных материалов. По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Волокнистые композиты армированы волокнами или нитевидными кристаллами - кирпичи с соломой и папье-маше можно отнести как раз к этому классу композитов. Уже небольшое содержание наполнителя в композитах такого типа приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Кроме того, армирование волокнами придает материалу анизотропию свойств (различие свойств в разных направлениях), а за счет добавки волокон проводников можно придать материалу электропроводность вдоль заданной оси.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25 % (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15 % (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов - нового класса композиционных материалов - еще меньше и составляют 10-100 нм.

Полимерные композиционные материалы (ПКМ). Композиты, в которых матрицей служит полимерный материал, являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30 % веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000$. В качестве наполнителей ПКМ используется множество различных веществ.

А) Стеклопластики - полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Использование стеклопластиков началось в конце Второй мировой войны для изготовления антенных обтекателей - куполообразных конструкций, в которых размещается антенна локатора. В первых армированных стеклопластиках количество волокон было небольшим, волокно вводилось, главным образом, чтобы нейтрализовать грубые дефекты хрупкой матрицы. Однако со временем назначение матрицы изменилось - она стала служить только для склеивания прочных волокон между собой, содержание волокон во многих стеклопластиках достигает 80 % по массе. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Стеклопластики - достаточно дешевые материалы, их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

Б) Углепластики - наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Термическая обработка волокна проводится, как правило, в три этапа (окисление - 220° С, карбонизация - 1000-1500° С и графитизация - 1800-3000° С) и приводит к образованию волокон, характеризующихся высоким содержанием (до 99,5 % по массе) углерода. В зависимости от режима обработки и исходного сырья полученное углеволокно имеет различную структуру. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков - чаще всего - термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики - очень легкие и, в то же время, прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения. Все углепластики хорошо проводят электричество, черного цвета, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы - наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

В) Боропластики - композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30 % стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики. композит классификация применение преимущество

Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Г) Органопластики - композиты, в которых наполнителями служат органические синтетические, реже - природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40-70 % наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров - полиэтилена, ПВХ, полиуретана и т.п. - варьируется в значительно больших пределах - от 2 до 70 %. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.

Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.

Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Д) Полимеры, наполненные порошками. Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформальдегидной (бакелитовой) смолы. Сама по себе эта смола - вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал - бакелит - приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя - пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это - ручка переключателя скоростей автомобиля "Роллс-Ройс". Наполненные термореактивные полимеры широко используются по сей день.

Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал. Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители - древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.

Е) Текстолиты - слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов - покрытия для кухонных столов - трудно переоценить.

Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, иногда даже применяются и неорганические связующие - на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон - хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат или высокопрочные волокна, или тугоплавкие, не растворяющиеся в основном металле частицы различной дисперсности.

Свойства дисперсноупрочненных металлических композитов изотропны - одинаковы во всех направлениях. Добавление 5-10 % армирующих наполнителей (тугоплавких оксидов, нитридов, боридов, карбидов) приводит к повышению сопротивляемости матрицы нагрузкам. Эффект увеличения прочности сравнительно невелик, однако ценно увеличение жаропрочности композита по сравнению с исходной матрицей. Так, введение в жаропрочный хромоникелевый сплав тонкодисперсных порошков оксида тория или оксида циркония позволяет увеличить температуру, при которой изделия из этого сплава способны к длительной работе, с 1000° С до 1200° С. Дисперсноупрочненные металлические композиты получают, вводя порошок наполнителя в расплавленный металл, или методами порошковой металлургии.

Армирование металлов волокнами, нитевидными кристаллами, проволокой значительно повышает как прочность, так и жаростойкость металла. Например, сплавы алюминия, армированные волокнами бора, можно эксплуатировать при температурах до 450-500° С, вместо 250-300° С. Применяют оксидные, боридные, карбидные, нитридные металлические наполнители, углеродные волокна. Керамические и оксидные волокна из-за своей хрупкости не допускают пластическую деформацию материала, что создает значительные технологические трудности при изготовлении изделий, тогда как использование более пластичных металлических наполнителей позволяет переформование. Получают такие композиты пропитыванием пучков волокон расплавами металлов, электроосаждением, смешением с порошком металла и последующим спеканием и т.д.

В 1970-х появились первые материалы, армированные нитевидными монокристаллами ("усами"). Нитевидные кристаллы получают, протягивая расплав через фильеры. Используются "усы" оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм. Армирование "усами" позволяет значительно увеличить прочность материала и повысить его жаростойкость. Например, предел текучести композита из серебра, содержащего 24 % "усов" оксида алюминия, в 30 раз превышает предел текучести серебра и в 2 раза - других композиционных материалов на основе серебра. Армирование "усами" оксида алюминия материалов на основе вольфрама и молибдена вдвое увеличило их прочность при температуре 1650° С, что позволяет использовать эти материалы для изготовления сопел ракет.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам - материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники - это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Керамические композиционные материалы получают методами горячего прессования (таблетирование с последующим спеканием под давлением) или методом шликерного литья (волокна заливаются суспензией матричного материала, которая после сушки также подвергается спеканию).

Заключение

Приведенные примеры композиционных материалов на различных матрицах свидетельствуют о возможности реализации в них чрезвычайно интересных сочетаний важнейших эксплуатационных характеристик - высокой прочности, включая диапазон высоких температур, жаростойкости, усталостной прочности и др. Уже сейчас на керамических матрицах рабочие температуры могут достигать 1600° С, на металлических - до 1370° С. Увеличение рабочих температур в двигателях приводит к уменьшению их размеров, росту мощности и снижению стоимости эксплуатации. Вместе с тем, как это видно из данных табл. 3, применение для армирования таких волокнистых материалов, как углеродное волокно, окисные волокна и усы, карбиды и другие материалы с низкой плотностью, позволяет реализовать в композитах значительное снижение массы деталей при сохранении ими неизменной прочности. Это предопределило тот факт, что наибольшие успехи в практическом использовании композиционных материалов достигнуты в аэрокосмической технике (сопловые блоки ракет, носовые конуса), производстве газотурбинных двигателей (лопатки турбин), вертолетостроении. Уже сейчас композиционные материалы широко применяются в строительстве скоростных автомобилей, корпусов экстремальных яхт и гоночных судов, спортивного инвентаря и т.п. В настоящее время важнейшими факторами, сдерживающими применение большинства композиционных материалов, являются высокая стоимость армирующих волокон, в первую очередь нитевидных монокристаллов, а также серьезные проблемы технологического характера, затрудняющие высокую степень реализации прочности армирующих волокон в деталях из композиционных материалов.

Поэтому основные усилия исследователей и производственников направлены на разработку эффективных, технологичных и экономичных методов получения армирующих волокон, а также на совершенствование технологических процессов изготовления материалов и изделий. Успешное решение этих проблем позволит надеяться, что преимущества, связанные с использованием композиционных материалов, будут успешно реализованы в самом широком ассортименте изделий, с которыми нам приходится иметь дело постоянно.

Список литературы

1. Дж. Уиктн, Э. Скал Волоконные композиционные материалы. 1978.

2. Кербер М.Л. Композиционные материалы. Соросовский образовательный Журнал. 1999, № 5.

3. Берлин А.А., Пахомова Л.К. Полимерные матрицы для высокопрочных армированных композитов. - Высокомолекулярные соединения. Том (А) 32, 1990, № 7.

4. Берлин А.А. Современные полимерные композиционные материалы. - Соросовский Образовательный Журнал. 1995, № 1.

5. Молодцов Г.А., Биткин В.Е., Симонов В.Ф., Урмансов Ф.Ф. Формостабильные и интеллектуальные конструкции из композиционных материалов. М. Машиностроение, 2000.

Размещено на Allbest.ru

...

Подобные документы

  • Структура композиционных материалов. Характеристики и свойства системы дисперсно-упрочненных сплавов. Сфера применения материалов, армированных волокнами. Длительная прочность КМ, армированных частицами различной геометрии, стареющие никелевые сплавы.

    презентация [721,8 K], добавлен 07.12.2015

  • Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.

    реферат [17,4 K], добавлен 04.01.2011

  • Подготовительные технологические процессы, расчет количества ткани и связующего для пропитки. Изготовление препрегов на основе тканевых наполнителей. Методы формообразования изделия из армированных композиционных материалов, расчёт штучного времени.

    курсовая работа [305,7 K], добавлен 26.03.2016

  • Разработка принципов и технологий лазерной обработки полимерных композиционных материалов. Исследование образца лазерной установки на основе волоконного лазера для отработки технологий лазерной резки материалов. Состав оборудования, подбор излучателя.

    курсовая работа [1,3 M], добавлен 12.10.2013

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Способы получения полимерных композитов, тип наполнителя и агрегатное состояние полимера. Физико-химические аспекты упрочнения и регулирования свойства полимеров, корреляция между адгезией и усилением. Исследование взаимодействия наполнитель-связующее.

    реферат [21,9 K], добавлен 30.05.2010

  • Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.

    диссертация [795,6 K], добавлен 28.05.2019

  • Понятие полимерных композиционных материалов. Требования, предъявляемые к ним. Применение композитов в самолето- и ракетостроении, использование полиэфирных стеклопластиков в автомобильной индустрии. Методы получения изделий из жестких пенопластов.

    реферат [19,8 K], добавлен 25.03.2010

  • Производство изделий из композиционных материалов. Подготовительные технологические процессы. Расчет количества армирующего материала. Выбор, подготовка к работе технологической оснастки. Формообразование и расчет штучного времени, формование конструкции.

    курсовая работа [457,2 K], добавлен 26.10.2016

  • Подготовительные технологические процессы для производства изделий из композиционных материалов. Схема раскроя препрегов. Расчет количества армирующего материала и связующего, необходимого для его пропитки. Формообразования и расчет штучного времени.

    курсовая работа [149,9 K], добавлен 15.02.2012

  • Расчет стенки моторамы на срез и смятие композиционных материалов. Формообразование несущего профиля моторамы. Расчет воздухообмена при изготовлении моторамы легкого самолета. Оценка прямых и косвенных расходов на содержание и эксплуатацию оборудования.

    дипломная работа [396,6 K], добавлен 13.05.2012

  • Классификация композитов - искусственно созданных неоднородных сплошных материалов, состоящих из двух или более компонентов с чёткой границей раздела между ними. Схема методов для получения магнитных гидрогелей. Применение магнитополимерных материалов.

    реферат [6,0 M], добавлен 07.10.2015

  • Классификация и основные свойства теплоизоляционных материалов и изделий. Характеристика их отдельных видов, созданных на основе синтетического сырья. Сопротивление теплопередаче наружных стен зданий. Методы получения высокопористой структуры материалов.

    реферат [27,6 K], добавлен 01.05.2017

  • Разработка варианта конструкции фюзеляжа самолета легкого типа из полимерных композиционных материалов и обоснование принятых решений расчетами. Технологический процесс изготовления конструкции. Анализ дефектов тонкостенных деталей трубопроводов.

    дипломная работа [1,3 M], добавлен 11.02.2015

  • Теплопроводность материала. Теплоизоляция строительных конструкций. Изучение влияния влажности на свойства древесины. Возникновение коробления при механической обработке сухих пиломатериалов. Изготовление отделочных материалов на основе полимеров.

    контрольная работа [156,0 K], добавлен 16.03.2015

  • Создание и применение металлических слоистых композиционных материалов, их физико-механические и эксплуатационные свойства. Технология производства трехслойной втулки из магниево-алюминиевых композитов АМг6 и АД1. Способы изготовления, оборудование.

    курсовая работа [1,5 M], добавлен 25.12.2014

  • Порошковая металлургия как отрасль техники, занимающаяся получением металлических порошков. Анализ схемы строения композиционных материалов. Знакомство с основными функциями и назначением алюминиевой пудры. Особенности физико-химических свойств алюминия.

    дипломная работа [1,8 M], добавлен 22.11.2014

  • Общая характеристика и классификация полимеров и полимерных материалов. Технологические особенности переработки полимеров, необходимые процессы для создания нужной структуры материала. Технологии переработки полимеров, находящихся в твердом состоянии.

    контрольная работа [1,3 M], добавлен 01.10.2010

  • Исследование роли композитных материалов в многослойных конструкциях в аэрокосмической промышленности. Анализ дефектов, встречающихся в процессе эксплуатации. Совершенствование ультразвуковой дефектоскопии с помощью многослойных композитных материалов.

    дипломная работа [2,2 M], добавлен 08.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.