Особенности и механизм действия иммобилизованных биологических объектов

Анализ результатов научных исследований процесса иммобилизации культур микроорганизмов для увеличения выживаемости пробиотических культур в молочных продуктах. Характеристика основных преимуществ использования иммобилизованных биологических объектов.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 24.12.2017
Размер файла 22,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности и механизм действия иммобилизованных биологических объектов

Фамилия автора: Т.А. Назаренко

В статье приведены результаты научных исследований процесса иммобилизации культур микроорганизмов для увеличения выживаемости пробиотических культур в молочных продуктах.

Иммобилизованные биологические объекты можно рассматривать как отдельную отрасль создания и использования биологических объектов. иммобилизация микроорганизм пробиотический молочный

Иммобилизованный объект представляет собой гармоничную систему, действие которой в целом определяется правильным подбором трех основных компонентов: биологического объекта, носителя и способа связывания объекта с носителем.

Теоретические основы иммобилизации заложены в трудах отечественных и зарубежных ученых - Д.В. Ганиной, А.М. Аксуповой, Ю.А. Синявского, Дж. Вудворда, П. Марек, Дж. Кристен, П. Кафлэн и др.

В основном используются следующие группы методов иммобилизации биологических объектов:

· включение в гели, микрогранулы,микрокапсулы;

· адсорбция на нерастворимых носителях;

· ковалентное связывание с носителем;

· сшивка бифункциональными реагентами без использования носителя;

· «самоагрегация» в случае интактных клеток.

Основными преимуществами использования иммобилизованных биологических объектов являются:

· высокая активность;

· возможность контроля над микроокружением агента;

· возможность полного и быстрого отделения целевых продуктов;

· возможность организации непрерывных процессов с многократным использованием объекта.

Следует особо выделить группу биологических объектов: ферменты-катализатор биологического происхождения, изучением которых в прикладном аспекте занимается инженерная энзимология. Основная ее задача - разработка биотехнологических процессов каталитического действия энзимов, как правило, выделенных из состава биологических систем или находящихся внутри клеток, искусственно лишенных способности роста [1].

Благодаря ферментам скорость реакций, по сравнению с реакциями, протекающими в отсутствии этих катализаторов, возрастает в 106-108раз. Как следует из вышеизложенного, в биотехнологических процессах возможно использование ряда биологических объектов, характеризующихся различными уровнями сложности биологической регуляции, например клеточным, субклеточным, молекулярным. От особенностей конкретного биологического объекта самым непосредственным образом зависит подход к созданию всей биотехнологической системы в целом. В результате научных исследований расширяются возможности прикладного использования той или иной биологической системы в качестве активного начала биотехнологического процесса. Набор биологических объектов в процессе научных исследований непрерывно пополняется.

Коадгезия прокариот является общебиологическим свойством и обеспечивает эндотрофной микрофлоре биотопов (ЭМБ) селективное преимущество. Идея создания иммобилизованных пробиотиков (ИП) основана на этой основе. К иммобилизованным относят пробиотики, в состав которых входит эубиотическая микрофлора (ЭМ) и вещества, обладающие сорбционным эффектом к ней. ЭМ могут быть соадгезированы (иммобилизованы) на частицах материала или коадгезированы с его помощью. Заметим, что видовой специфической адгезии в отношении конкретного сорбента не существует.

Формирование и сохранение микробиоценозов поэтапно включает:

· передачу ЭМБ от донора к реципиенту, коадгезию или соадгезию микроорганизмов во внешней среде, образование бактериальных агрегатов, имеющих необходимую биологически дееспособную дис- кретную плотность (БДДП);

· гистадгезию бактерий в пристеночном, или соадгезию в полостном, микробиотопе; колонизацию и расселение ЭМБ по ярусам биотопа;

· реализацию репродуктивного, затухающего или поддерживающего колонизационного процесса в системе тканевых популяционкых циклов и замкнутых посевных контуров.

Использование ИП позволяет исключить этап 1 и усилить эффективность этапов 2, 3.

Механизм действия ИП складывается из взаимодействия конгломератов (адгезированные на сорбенте ЭМ) с каким-то множеством локальных площадок слизистой поверхности биотопа (пристеночного микробиотопа). Вероятность возбуждения гистадгезии ЭМ на локальных площадках зависит от физико- химических факторов среды, морфологической характеристики производственного штамма, электростатики и гидрофобности функциональных групп и структуры поверхности сорбента. Количество клеток, архитектоника конгломерата, другие свойства должны удовлетворять требования к реплика-ционной дозе или БДДП. Противодействуют или способствуют развитию популяции в биотопе лимитирующие, стимулирующие, прото - кооперативные, экологические и социальные факторы, поэтому вероятность клинически эффективной колонизации зависит от числа возбужденных дискретных площадок. Например, конгломерат, состоящий из 20 клеток бифидобактерий с площадью проекции 70-100 мкм2 (БДДП-0,28-0,2) придает максимальную возможность локальной гистадгезии. Вероятность развития поддерживающего процесса колонизации биотопа составляет 31,6% при возбуждении 10 дискретных площадок и повышается до 82-91% при 10 дискретных площадок. При диффузном распределении клеток ЭМ в биотопе, его ярусе или микробиотопе вероятность создания БДДП значительно ниже и в основном зависит от свойств химуса или других возможностей агрегирования [2].

На модели кишечного биотопа новорожденных поросят изучали особенности колонизации кишечника при изменении количественной и качественной характеристик вводимых доз бифидобактерий. Для этого иммобилизированные на активном угле Bifidobacterium bifidum (биомасса «Бифидумбактерина форте») вводили : а) одноразово в мегадозе 1,0-1010 микробных клеток и б) по 3,0 * 107 в течение трех дней. Животных вскрывали через сутки после введения препарата. Результаты колонизации оценивали количественными посевами слизистой и прилегающего к ней химуса.

При введении мегадозы распределение бифидофлоры по биотопу представило: слепые кишки 1,08-3,2-107 МК/ мм2 слизистой поверхности и 3,1-4,3-109 МК/мг химуса; дистальный отдел подвздошной кишки - 6,75-8,2-106 МК/ мм2, 5,1-6,3-107 МК/мг; средний отдел толстой кишки - 3,6-5,2 * 105 МК/мм2, 1,1-3,0-108 МК/мг. Слизистая оболочка двенадцатиперстной кишки содержала 2,8-6, 4-103 МК/мм2. При трехдневном введении поросятам биомассы в слизистой слепых кишок обнаружено 7,8-9,1-102 МК/ мм2 и в химусе 1,2-10 МК/мг бифидобактерий. При расчете уровней колонизации (УК) слизистой поверхности учитывали, что для покрытия ее в один мультислой требуется 1,0-1,2-106 МК.

Из полученных данных можно сделать вывод, что основной экологической нишей бифидофлоры являются пристеночные микробиотопы слепых кишок и дистальные отделы тонкого кишечника (УК = 900 и 583%, соответственно 9 и 6 мультислоев). Одновременно прослеживается рассредоточение бифидобактерий по всему кишечному биотопу. УК слизистой оболочки слепых кишок при трехдневном введении препарата не превысил 1%, при этом бифидобактерий размещались дискретно в виде микроколоний. Введение мегадозы позволяет считать максимальным, для данной модели, насыщение сли- зистой поверхности не более 3,2-107 МК/мм2. Полостной микробиотоп слепых кишок, после освобождения от излишней бифидофлоры, содержал не более 1,5% от пристеночной концентрации [2].

Результаты экспериментов позволяют думать о возможности изменения подхода при искусственном формировании микробиоценоза по компоненту бифидобактерий. Так, введение увеличенных, по сравнению с рекомендуемыми, доз иммобилизированных бифидобактерий, за короткий промежуток времени, вероятно, позволит быстрее сформировать необходимый уровень этого ценобионта в кишечном микробиоценозе.

Пробиотики - живые микроорганизмы, которые транзитом поступают в ЖКТ и эффективно защищают организм от многих канцерогенов и токсинов, угнетают патогенную микрофлору, синтезируют некоторые витамины, улучшают утилизацию лактозы, абсорбцию кальция, адаптацию белков, а также выполняют ряд других функций в организме человека. Потребность в пробиотических кисломолочных продуктах для профилактики различных заболеваний у людей, проживающих в условиях неблагоприятной экологической среды, возрастающей стрессовой нагрузки, гиподинамии, с избыточной массой тела объективно возросла. Пробиотические свойства микроорганизмов зависят от их способности выживать и размножаться в условиях желудочно-кишечного тракта. Бактерии должны быть метаболически стабильными и активными не только в продуктах, но и оказывать благоприятный эффект на организм человека. Для обеспечения функциональных свойств минимальный уровень жизнеспособных клеток должен составлять 10 КОЕ/см продукта в течение всего срока годности, а терапевтическая доза - 106 жизнеспособных клеток в день. Но в настоящее время имеется тенденция к увеличению норм потребления пробиотических культур, и в некоторых странах Западной Европы минимальный уровень клеток повышен до 107 КОЕ/см.

Однако исследования показывают, что значительная часть пробиотических культур, обладающих такими важными свойствами, как антагонистическая и антиоксидантная активность, витаминосинтезирующая способность, проходя через желудочно-кишечный тракт, погибает. Количество клеток пробиотических культур в замороженных ферментированных молочных продуктах йогуртов и пудингов значительно уменьшается под действием кислотности, повреждений при замораживании, влиянием сахара и кислорода (количество клеток уменьшается на 5-6 1оg в течение 8-12 недель при -18°С). В этой связи большой интерес вызывают исследования по совершенствованию и разработке новых способов поддержания жизнеспособности клеток в неблагоприятных условиях [3]. Основные преимущества смешанных культур, по сравнению с монокультурами, следующие:

· способность утилизировать сложные, неоднородные по составу субстраты, зачастую непригодные для монокультур;

· способность к минерализации сложных органических соединений;

· повышенная способность к биотрансформации органических веществ;

· повышенная устойчивость к токсичным веществам, в том числе тяжелым металлам;

· повышенная устойчивость к воздействию окружающей среды;

· повышенная продуктивность;

· возможный обмен генетической информацией между видами сообщества.

Существует ряд подходов, увеличивающих жизнеспособность клеток, к которым относятся селекция кислотно- и желчерезистентных штаммов, использование непроницаемой упаковки, двухстадийная ферментация, стрессовая адаптация, введение микронутриентов (цистеин, сывороточный порошок, кислотный гидролизат казеина), бифидогенных факторов (лактулоза и олигосахариды). Такие подходы несколько увеличивают потенциальную выживаемость бифидокультур. Изменение в процессе производства молочного йогурта, приостановление ферментации при рН (5,0±0,1) может обеспечить выживаемость биокультур, но конечный продукт не будет обладать характерным вкусом и ароматом [3].

Для увеличения выживаемости клеток пробиотических микроорганизмов может использоваться гранулирование и капсулирование как в биотехнологических процессах, так и в организме человека. Технология гранулирования и капсулирования пробиотических клеток базируется на технологии иммобилизованных клеточных культур, используемой в биотехнологии. В этом направлении уже проводились исследования, показавшие успешное использование гранулирования и капсулирования микроорганизмов с помощью различных пищевых полимеров. Например, внешняя оболочка микрокапсулы представляет собой тонкую непроницаемую для клеток, но проницаемую для растворимых веществ (нутриентов и метаболитов для обеспечения роста капсулированных клеток), искусственную мембрану, что и позволяет отнести микрокапсулирование к методам иммобилизации клеток с использованием «мембранной технологии» [3].

Имеются данные применении для микрокапсулирования пробиотических микроорганизмов каппа - карагинана, гуммиарабика, желатина, альгината натрия, крахмала, эмульсии кунжутного масла и других веществ. Важным фактором, влияющим на выживаемость клеток бактерий, является состав веществ, применяемых для образования капсул, и их размер. Так, при капсулировании пробиотических культур с использованием альгината и хитозана (Syeu T Y Marshall R T) полученные капсулы эффективно защищали клетки микроорганизмов, тогда как популяции свободных клеток погибали при выдерживании в условиях повышенной кислотности в течение 1 ч. Hou R C W и Lin M Y показали, что жизнеспособность молочнокислых бактерий значительно увеличивается (более чем в 200 раз) при капсулировании клеток в эмульсию искусственного масла. Для формирования капсул или гранул с иммобилизованными клетками существует два основных подхода: диспергирование и гранулирование [1]. В первом случае водная суспензия клеток диспергируется в несмешивающейся с ней органической жидкости, а присутствующие в системе специальные добавки образуют на поверхности капелек водной фазы мембранную пленку. Размеры капсул регулируются скоростью агитации, могут быть очень разнообразными - от 25 мкм до 2 мм. Во втором случае водная суспензия клеток через особое дозирующее устройство (гранулятор) инжектируется порциями строго определенного объема также в несмешивающуюся с водой органическую жидкость, где на границе раздела фаз по поверхности водной капли происходит формирование микрогранулы. Размеры микрогранул при использовании данного метода достигают от 2 до 5 мм. И тот, и другой методы способствуют увеличению выживаемости пробиотических бактерий до 80-95%. Изучение кинетики кислотообразования капсулированных микроорганизмов в биотехнологических процессах показывает, что скорость образования кислоты ниже по сравнению с использованием свободных микроорганизмов.

Применение гранулирования и капсулирования для пробиотических и молочнокислых культур дает ряд преимуществ - защита клеток от бактериофагов, увеличение выживаемости в процессе сушки и замораживания, увеличение стабильности свойств стартовых культур и готовых продуктов питания в процессе хранения. Следовательно, капсулированные и гранулирование клетки пробиотических микроорганизмов целесообразно применять для получения обогащенных продуктов. Наибольший интерес представляют исследования по включению клеток пробиотических микроорганизмов в растительные и водорослевые полисахариды (пектин, альгинат, агар) и белковый продукт - желатин. Молекулы полисахаридов составлены из атомных группировок, резко различающихся по характеру взаимодействия с молекулами воды. Длинная макромолекула представляет собой распределение центров взаимодействия с молекулами воды, в результате чего создается гидратная оболочка макромолекулы.

Для скрининга проведен сравнительный анализ предполагаемых носителей. Агар - полисахарид сложного состава из морской водоросли анфельции, в сильной степени поперечносшитый. Образует студни после охлаждения до температуры 32-39 єС. Иммобилизацию в гели агара проводят с использованием термофильных культур микроорганизмов. Пектины являются основными представителями группы гетерогликанов высших растений. Основным представителем пектиновых веществ является полигалактуроновая кислота. Остатки галактуроновой кислоты, как правило, этерифицированы метанолом.

Образование гелевой структуры в растворах пектинов происходит в результате взаимодействия пектиновых молекул между собой и зависит от особенностей строения молекулы. Кроме этого, на процесс гелеобразования оказывают влияние температура, рН среды и содержание дегидратирующих веществ. Пектины являются природными ионообменниками, способными замещать водороды карбоксильных групп на катионы поливалентных металлов. Кроме того, использование пектина в качестве носителя при иммобилизации, обладающего способностью вывода из организма соли тяжелых металлов, позволяет решить проблему профилактического питания для групп населения, проживающего в промышленно развитых городах.

Желатин - белковый продукт, представляющий собой смесь полипептидов с различной молекулярной массой, не имеющий вкуса и запаха. Он растворяется в горячей воде, при охлаждении водные растворы образуют студень. Растворы желатина имеют низкую вязкость, которая зависит от рН. Условиями образования геля желатина являются его достаточно высокая концентрация и соответствующая температура, которая должна быть ниже точки затвердевания (30 єС) [2].

Данные исследования по иммобилизации пробиотических культур микроорганизмов методом включения их в гели агара, пектина и желатина методом гранулирования и капсулирования, также использованию иммобилизованных пробиотических культур микроорганизмов для ферментации и производства новых кисломолочных, молочно-растительных и десертных продуктов проводятся учеными кафедры «Прикладная биотехнология» в лабораториях «Микробиология и биотехнология» и «Экспертиза качества биосистем» Центра инновационных технологий Инновационного Евразийского университета.

Литература

1. Иммобилизованные клетки и ферменты: методы / Под ред. Дж. Вудворда. - МС.: Мир, 1988. - 215 с.

2. Влияние дозы иммобилизованных бифидобактерий на механизм колонизации кишечного биотопа // Пробиотические микрорганизмы -- современное состояние вопроса и перспективы использования: тез. докл. межд. науч.-практ. конф. памяти Г.И. Гончаровой. - М., 2002. - С. 28-29.

3. Гаврилова Н.Б. Биотехнология комбинированных молочных продуктов: Монография. - Омск: Сибирь, 2004. - 224 с.

Размещено на Allbest.ru

...

Подобные документы

  • Состояние проблемы по созданию функциональных продуктов питания с применением пробиотических культур и пищевых добавок. Исследование и обоснование технологии рубленых полуфабрикатов на основе мяса индейки с использованием пробиотических культур.

    дипломная работа [1,1 M], добавлен 01.10.2015

  • Исследование основных целей создания Автоматизированной системы управления технологическим процессом. Обзор этапов цикла работы адсорбера. Описание процесса осушки. Комплексная автоматизация объектов КС. Функциональные особенности погружного уровнемера.

    курсовая работа [46,6 K], добавлен 04.12.2012

  • Характеристика молочных консервов. Состояния, связанные с лактазной недостаточностью. Иммобилизованные ферменты и их применение. Характеристика, сырье, снабжение предприятия и технологическая схема производства вареного сгущенного молока "Семь гномов".

    дипломная работа [815,5 K], добавлен 16.10.2011

  • Производство ферментных препаратов. Технология производства глюкоамилазы, расчёт необходимого оборудования. Подбор оборудования и оптимального процесса стерилизации для проведения культивирования и выделения препарата из культур микроорганизмов.

    курсовая работа [1,5 M], добавлен 03.06.2015

  • Сущность и содержание, а также основные элементы теории марковских случайных процессов. Модели расчета надежности объектов. Порядок присвоения исходной информации. Сравнение результатов расчета, принципы и этапы построения математической модели.

    презентация [963,4 K], добавлен 17.04.2014

  • Анализ микрофлоры свеклы. Методы предупреждения появления нежелательных микроорганизмов в сахарном песке. Микробиологический контроль свеклосахарного производства. Санитарно-микробиологический контроль объектов окружающей среды и пищевых продуктов.

    контрольная работа [224,1 K], добавлен 14.01.2015

  • Описание и сферы применения устройства для обработки биологических тканей, основные части и их назначение, принцип действия. Расчет двигателя и коэффициентов для уравнений динамики. Проектирование пульта проверки короткозамкнутых витков катушки.

    дипломная работа [394,3 K], добавлен 11.11.2009

  • Понятие лиофилизации как способа высушивания пищевых или биологических продуктов, предварительно сильно замороженных и помещенных в вакуум. Описание технологического процесса лиофилизации. Характеристика вакуумных аппаратов лиофильного высушивания.

    презентация [6,8 M], добавлен 17.08.2015

  • Автоматизация как одно из направлений научно-технического прогресса, анализ основных преимуществ. Анализ способов автоматизации технологического процесса обработки детали в плане загрузки и разгрузки на станке, общая характеристика особенностей.

    дипломная работа [4,7 M], добавлен 24.06.2013

  • Условия и требования, которым должны удовлетворять параметры, относящиеся к критериям развития технических объектов. Характеристика, группы и формулы измерения функциональных, технологических, экономических и антропологических критериев развития ТО.

    реферат [35,5 K], добавлен 19.05.2017

  • Особенности безмашинного проектирования. Основы проектирования плавильных отделений литейных цехов. Автоматизированные системы проектирования смежных объектов. Методы и алгоритмы выбора и размещения объектов при проектировании; конфигурации соединений.

    курсовая работа [125,4 K], добавлен 20.05.2013

  • Задачи технического диагностирования объектов нефтяной и газовой промышленности. Обследование технических объектов. Применяемые методы контроля и ДТС. Устройство, принцип работы и техническая характеристика компрессора. Оценка показателей надежности.

    курсовая работа [645,7 K], добавлен 09.04.2015

  • Посевные площади и территориальная концентрация масличных культур в Краснодарском крае. Урожайность масличных культур и эффективность их выращивания в крае. Масложировая промышленность региона. Применение побочной продукции и отходов промышленности.

    дипломная работа [1,0 M], добавлен 03.02.2015

  • Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.

    реферат [3,1 M], добавлен 19.04.2010

  • Государственные стандарты по проблеме надежности энергетических объектов при эксплуатации. Изменение интенсивности отказов при увеличении наработки объекта. Вероятность безотказной работы. Показатели долговечности и модель гамма-процентного ресурса.

    презентация [900,4 K], добавлен 15.04.2014

  • Исследование и характеристика особенностей объектов теплоснабжения. Расчет и построение температурного графика сетевой воды. Определение и анализ аэродинамического сопротивления котла. Рассмотрение основных вопросов безопасности и экологичности проекта.

    дипломная работа [525,9 K], добавлен 22.03.2018

  • Выбор и обоснование математической модели. План эксперимента. Проверка нормальности распределения выходной величины. Определение параметров генеральной совокупности. Расчет числа параллельных опытов. Обработка и интерпретация результатов эксперимента.

    курсовая работа [333,0 K], добавлен 10.07.2014

  • Общепризнанный иерархический метод построения описания технических объектов и примеры его реализации. Описания, имеющие иерархическую соподчиненность, их свойства. Потребность объекта, техническая функция, функциональная структура, техническое решение.

    контрольная работа [430,4 K], добавлен 01.07.2013

  • Служебное назначение детали "Кольцо внутреннее" и общая характеристика объектов производства. Конструкторский контроль чертежа детали. Анализ маршрута технологического процесса механической обработки заготовки. Определение припусков и режимов резания.

    курсовая работа [634,0 K], добавлен 07.03.2015

  • Понятие и общая характеристика порошковой металлургии, используемые в ней методы и инструменты, оценка преимуществ и недостатков. Получение порошка исходного материала. Принцип действия вибрационной мельницы. Этапы и значение процесса прессования.

    презентация [330,4 K], добавлен 16.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.