Исследование влияния способов синтеза на свойства материалов, применяемых в LTCC-изделиях

Особенности и условия эффективного применения BST-паст с невысокой температурой обжига в процессе получения варакторов, что позволяет ее интегрировать в подложку из низкотемпературной совместно обжигаемой керамики. Их свойства и предъявляемые требования.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 11.01.2018
Размер файла 353,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Исследование влияния способов синтеза на свойства материалов, применяемых в LTCC-изделиях

Несмотря на более чем семидесятилетнюю историю использования в технике сегнетоэлектрической керамики титаната бария (BaTiO3) и его твердых растворов (ТР) [1], эти объекты остаются актуальными. Наиболее востребованными композициями бинарной системы являются титанат стронция SrTiO3 (BST). Спектр известных применений BST-материалов (на основе ТР системы Ba1-xSrxTiO3) в управляемых радиочастотных и микроволновых устройствах, где требуется большое число компактных варакторов с невысокими ёмкостями, радиоэлектронике (фазовращатели, линии задержки, резонаторы, фильтры) [2-5] заметно расширился за счет разработок устройств ускорительной техники [6]. Преимущества этих материалов заключаются как в быстродействии проектируемых элементов, так и в возможности использования обоих фронтов управляющего импульса в переключающих устройствах на основе BST в отличие от известных мощных полупроводниковых и плазменных переключателей и фазовращателей [6, 7].

С учетом известной зависимости свойств кислородно-октаэдрических соединений и их ТР, в том числе с участием титаната бария и других титанатов щелочноземельных металлов [8-10], от условий их получения необходимо проведение комплексных исследований, направленных на установление закономерностей формирования кристаллической и зеренной структур, диэлектрических и пьезоэлектрических свойств BST-керамик при вариациях технологических режимов. В качестве модельного объекта был выбран барий-стронций титанат Ba0.55Sr0.45TiO3 синтез которого, осуществлялся методом твердофазных реакций (МТФР) и золь-гель методом.

Синтез МТФР. Для получения Ba0.55Sr0.45TiO3 методом МТФР, в качестве исходных компонентов-прекурсоров использовались предварительно высушенные порошки необходимой квалификации с влажностью не более 0,2 масс.%: BaCO3, SrCO3, TiO2 марки «ЧДА». Качество прекурсоров контролировалось методами дифференциально-термического (ДТА) (Diamond TG\DTA) и рентгено-фазового анализов (РФА) (ARL'Xtra - Cu1 излучение Ni-в-фильтр). Смешение и помол порошков прекурсоров проводили в планетарной мельнице Planetary Mill Pulverisette 5 (Fritsch) с ускорением 29g, время помола составляло 4 часа.

Предварительный синтез фаз данной системы проводили в рамках двухстадийного технологического процесса при температурах Т1=900°С и Т2=1250°С соответственно. Фазовый состав синтезированного продукта контролировались с помощью РФА. Данные РФА показали недостаточную окристализованость фазы полученной методом МТФР, что послужило аргументом для дополнительной темообработки системы при температуре Т=1350°С. На рис. 1а представлены данные РФА прошедшего дополнительную термообработку (Т=1350°С) и свидетельствующие об образовании однофазного твердого раствора со структурой типа перовскита.

Рис. 1. РФА материалов, изготовленных в рамках а) МТФР и б) золь - гель метода

Золь-гель метод. Получение BST золь-гель методом осуществлялось по стандартной для данного метода схеме [11]. В качестве прекурсоров использовали тетраизопропилат титана IV марки «Ч», BaCO3 и SrCO3 марки «ЧДА», кислоту азотную марки «ХЧ». Гидролиз тетраизопропилата титана выполняли согласно [12] в химическом реакторе (Reactor-Ready) при температуре от 0°С до 3°С. В качестве продуктов гидролиза образовывались хлопья химически активного гидроксида титана. Карбонаты бария и стронция переводили в соответствующие нитраты путем их взаимодействия с азотной кислотой [13]. Азотнокислые растворы бария и стронция смешивали в химическом реакторе с полученным ранее гидроксидом титана при фиксированной температуре (не выше 6°С). После тщательного смешивания систему высушивали при температуре Т=100°С. Далее осуществляли синтез в по двух стадийному технологическому процессу при температурах Т1=700°С и Т2=1100°С соответственно. Фазовый состав материала, как и после МТФР, оценивали с помощью рентгенофазового и микроструктурного анализов (рис. 1б и 2б). Микроструктуру определяли по изображениям на растровом электронном микроскопе JCM-6390 (JEOL).

варактор керамика обжиг

Рис. 2. Микроструктура материалов, изготовленных в рамках а) МТФР и б) золь - гель методом

Как и следовало ожидать, золь-гель метод позволил получить барий-стронций титанат при более низких температурах. Однако, как видно из данных РФА и микроструктуры материала полученного данным методом (рисунок 1 и 2), зерна керамики имеют меньший размер и окристаллизованы не в полной мере. Важно отметить, что повышение температуры второй стадии синтеза выше 1100°С не привело к видимым изменениям микроструктуры материала.

Для оценки свойств из материалов, полученных этими методами, были изготовлены BST-пасты. Пасты интегрировали в LTCC подложки и формировали конденсаторы (рис. 3), на которых оценивали основные электрофизические параметры (ЭФП) синтезированных материалов.

Рис. 3. Структура сегнетокерамического конденсатора

Установлено, что критическая зависимость свойств BST-керамик от условий их получения определяется влиянием жидких фаз на процесс рекристаллизационного спекания. Как можно видеть из полученных значений ЭФП (табл. 1) паста, полученная из материала в рамках МТФР, показала более высокое качество конечного продукта, по сравнению с пастой, основой для которой был материал изготовленным золь-гель методом.

Электрофизические параметры материала Ba0,55Sr0,45TiO3.

Параметр

Способ синтеза

МТФР Т=1350°

Золь гель метод Т=1100°

Диэлектрическая проницаемость

300

400-500

Тангенс угла диэлектрических потерь

0,007

0,045

Управляемость n, %

10-12

5-8

В заключении можно сделать следующие выводы:

- одного факта образования фазы материала не всегда достаточно для наличия оптимальной совокупности свойств конечных продуктов;

- одним из основных параметров, влияющих на свойства конечных продуктов является степень совершенства кристаллической структуры;

- изготавливать пасты для LTCC структур на основе материала Ba0.55Sr0.45TiO3, целесообразно в рамках МТФР в виду оптимального сочетания его ЭФП.

Все, представленные в работе данные, получены в рамках современных инструментальных методов на аппаратуре ЦКП «Высокие технологии» ЮФУ.

Литература

1. Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика / Пер. с англ. - М.: Изд-во «Мир», 1974. - 288 с.

2. Tao Hu Ferroelectric LTCC for Multilayer Divice. Journal of the Ceramic of Japan, Supplement 112-1, 2004. pp 112-116.

3. Vamsi Krishna Palukuru, Jani Perantie, Jyri Jantti, Heli Jantunen Tunable Microwave Phase Shifters Using LTCC Technology with Integrated BST Thick Films/ Int. J. Appl. Ceram. Technol., 9 [1]. pp. 11-17 (2012)

4. П.А. Зеленчук, А.И. Евтушенко Разработка фазовращателей Ka-диапазона на основе гетероструктур MgO-BST с наноразмерными сегнетоэлектрическими пленками // Инженерный вестник Дона, 2010, №4 URL: ivdon.ru/ru/magazine/archive/n4y2010/290

5. Мухортов В.М., Юзюк Ю.И. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. - Ростов-на-Дону: Изд-во ЮНЦ РАН, 2008. - 222 с.

6. Дедык А.И., Канарейкин А.Д., Ненашева Е.А. и др. Вольт-амперные и вольт-фарадные характеристики керамических материалов на основе титаната бария-стронция // ЖТФ. 2006. Т. 76 (9). С. 59-64.

7. Kanareykin A., Nenasheva E., Karmanenko S., Yakov - lev V. New Low-Loss Ferroelectric Materials for Accelerator Applications // Proc. Advanced Accelerant Concepts Workshop. AIP Conf. Proc. 2004. V. 737. pp. 1016-1024.

8. Резниченко Л.А., Шилкина Л.А., Титов С.В. и др. Особенности дефектообразования в титанатах щелочноземельных металлов, кадмия и свинца // Неорганические материалы. 2005. Т. 41 (5). С. 573-584.

9. Нагаенко А.В., Панич А.Е., Свирская С.Н., Малыхин А.Ю., Скрылёв А.В. Управление свойствами пьезокерамического материала системы ЦТС, используемого в гидроакустических излучателях // Инженерный вестник Дона, 2016, №2 URL: ivdon.ru/ru/magazine/archive/n2y2016/3585.

10. Хасбулатов С.В., Садыков Х.А. Половинкин Б.С., Вербенко И.А., Шилкина Л.А., Дудкина С.И., Андрюшина И.Н., Резниченко Л.А., Нагаенко А.В. Оптимизация условий получения функциональных керамических материалов с участием титаната бария // Конструкции из композиционных материалов. 2016. №4. С. 27-34.

11. A.A. Nesterov, A.E. Panich, V.K. Dolya, A.A. Panich, E.V. Karukov. Chapter 4. Method of `Chemical Assembly' of Oxygen Octahedral Ferroelectric Phase Powders and Electrophysical Properties of Ceramics Processed on Their Base (P. II). pp. 145-183. In: Piezoelectric Materials and Devices, Ivan A. Parinov (Ed.). New York: Nova Science Publishers. - 326 p., 2011 г. ISBN 978-1-61728-307-9.

12. Нестеров А.А. Влияние способа осаждения гидроксида титана на его состав / А.А. Нестеров, Т.Г. Лупейко // Труды международной научно - практической конференции «Фундаментальные проблемы пьезоэлектрического приборостроения». - 1999. - С. 254-260.

13. Карюков Е.В., Швыдкова Е.А. Изготовление пьезоматериалов на основе фаз системы (1-x) BaTiO3 - (x) CaTiO3. Химия: достижения и перспективы: сборник научных статей / под ред. М.О. Горбуновой, Е.М. Баян. - Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2017. - С. 236-238.

Размещено на Allbest.ru

...

Подобные документы

  • Основные закономерности и процессы спекания оксидов. Влияние чистоты сырья и добавок на свойства Al2O3 керамики. Исследование влияния эффекта саморазогрева корундоциркониевой композиции в электромагнитном поле СВЧ на структуру и свойства материала.

    дипломная работа [190,3 K], добавлен 02.03.2012

  • Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.

    дипломная работа [1,2 M], добавлен 04.08.2012

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Процесс вулканизации резины, ее общая характеристика. Классификация каучука, особенности его применения в России. Специфические свойства резин. Технология получения, методы воздействия на их свойства. Описание и свойства готовых резинотехнических изделий.

    реферат [13,2 K], добавлен 28.12.2009

  • Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.

    контрольная работа [972,6 K], добавлен 29.03.2012

  • Технологический процесс получения отливок в литейном цехе, используемые формовочные материалы и приспособления. Свойства формовочных материалов и их применение в зависимости от требуемого результата. Отливочные модели и требования, предъявляемые к ним.

    реферат [37,7 K], добавлен 12.07.2009

  • Условия получения крупнозернистой структуры при самопроизвольно развивающейся кристаллизации. Диаграмма состояния системы свинец-олово. Линейные несовершенства кристаллического строения и их влияние на свойства металлов. Устранение остаточного аустенита.

    контрольная работа [2,0 M], добавлен 11.01.2011

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.

    дипломная работа [1,7 M], добавлен 21.11.2010

  • Исследование химического диспергирования алюминиевого сплава; влияние концентрации щелочи на структуру диспергированных порошков и физико-механические свойства керамических материалов. Разработка технологической схемы спекания; безопасность и экология.

    дипломная работа [2,9 M], добавлен 27.01.2013

  • Классификация и общая характеристика коллекции искусственного меха. Ассортимент платьевых шерстяных и полушерстяных тканей и требования, предъявляемые к ним. Свойства нетканых материалов в одежде различного назначения. Изготовление специальной одежды.

    контрольная работа [21,6 K], добавлен 15.01.2011

  • Условия эксплуатации пуансона. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к материалу. Технология термической обработки пуансона из чугуна ЧХ16М2 на ЗАО РЗ "СИТО". Проверочный расчёт оборудования.

    дипломная работа [2,5 M], добавлен 11.06.2013

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

  • Понятие и основные этапы вакуумной металлизации как процесса формирования покрытий путем испарения металлов в вакууме и конденсации их на поверхности полимеров. Главные условия эффективного применения данной методики. Свойства полимерных материалов.

    курсовая работа [178,2 K], добавлен 12.03.2016

  • Разработка составов огнеупорной композиции для производства керамического кирпича методом полусухого прессования. Особенности структурообразования масс в процессе обжига. Анализ влияния температуры обжига на изменение физико-механических свойств образцов.

    дипломная работа [1,8 M], добавлен 31.12.2015

  • Процессы изготовления керамических материалов. Методы получения порошков. Корундовые керамики модифицированные соединениями хрома. Содержание порошка в образцах керамики на основе глинозема, термограмма. Особенности измерения микротвердости образцов.

    курсовая работа [818,9 K], добавлен 30.05.2013

  • Теплопроводность материала. Теплоизоляция строительных конструкций. Изучение влияния влажности на свойства древесины. Возникновение коробления при механической обработке сухих пиломатериалов. Изготовление отделочных материалов на основе полимеров.

    контрольная работа [156,0 K], добавлен 16.03.2015

  • Теоретические основы дробления, измельчения. Свойства материалов подвергаемых измельчению. Требования предъявляемые к продуктам измельчения. Классификация методов машин для измельчения материалов. Щековые и молотковые дробилки, дробильное оборудование.

    контрольная работа [691,0 K], добавлен 09.11.2010

  • Характеристика высокопрочного и ковкого чугуна, специфические свойства, особенности строения и применение. Признаки классификации, маркировка, строение, свойства и область применения легированных сталей, требования для разных отраслей использования.

    контрольная работа [110,2 K], добавлен 17.08.2009

  • Условия эксплуатации матрицы. Оценка воздействия технологических факторов на свойства материалов. Требования, предъявляемые к стали для штампов горячего деформирования. Перечень марок сталей и сплавов для изготовления пуансона-матрицы. Режимы обработки.

    курсовая работа [7,3 M], добавлен 11.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.