Динамическая модель процесса экструзии в шнековых экструдерах
Моделирование зависимости температуры процесса экструзии в зоне плавки от состава исходного сырья и частоты вращения вала шнека. Увеличение температуры процесса экструзии с постепенно уменьшающейся скоростью при повышении частоты вращения вала шнека.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 12.01.2018 |
Размер файла | 106,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Волгоградский государственный технический университет
Волжский политехнический институт (филиал)
Динамическая модель процесса экструзии в шнековых экструдерах
А.А. Силаев, В.В. Силаев
Аннотация
Работа посвящена моделированию зависимости температуры процесса экструзии в зоне плавки от состава исходного сырья и частоты вращения вала шнека. Модель получена на основе экспериментальных данных из ряда альтернативных моделей. В качестве параметров использовалась частота вращения вала шнека. В качестве критерия качества модели используется сумма погрешностей теоретической модели от экспериментальных данных. С повышением частоты вращения вала шнека температура процесса экструзии увеличивается с постепенно уменьшающейся скоростью. Полученная модель процесса экструзии может быть использована в системах автоматического управления экструзией для управления качеством готовой продукции.
Ключевые слова: модель экструзии, шнековый экструдер, частота вращения вала шнека, экструзия, качество готовой продукции.
Технологический процесс переработки пластмасс посредством экструзии носит сложный характер и зависит от многих факторов. Качество готовой продукции зависит от исходного сырья и параметров протекания технологического процесса. А, это подразумевает, что можно обеспечить требуемое качество готовой продукции без применения дополнительных технических средств измерений, только за счёт стабилизации параметров технологического процесса. В работах [1, 2] приведено обоснование внедрения подобных систем управления.
Одним из важных параметров, влияющих на качество процесса экструзии, является температура в зоне плавления [3, 4]. Поэтому целью исследования является разработка математической модели процесса экструзии для определения зависимости температуры в зоне плавки от состава исходного сырья и частоты вращения вала шнека.
Для построения математической модели были использованы данные полученные в работе [5, 6]. В качестве варьируемых параметров использована частота вращения вала шнека. Экспериментальная зависимость температуры процесса экструзии в зоне плавки от частоты вращения вала шнека приведена на рис. 1.
Рис. 1. Зависимость температуры процесса экструзии от частоты вращения вала шнека.
Анализ экспериментальных данных показал, что с повышением частоты вращения вала шнека температура процесса экструзии увеличивается с постепенно уменьшающейся скоростью роста и носит нелинейный характер.
В работах [5, 6, 7] показано, что температура процесса экструзии определяется уравнением Рейнольдса и зависит от следующих параметров:
- эффективная вязкость, n - показатель аномалии вязкости, в - температурный коэффициент, N - частота вращения вала шнека.
При этом связь между параметрами носит нелинейный характер. Поэтому динамическую модель зависимости температуры процесса экструзии предлагается получить в виде альтернативных степенных рядов. В качестве критерия качества модели используется сумма погрешностей теоретической модели от экспериментальных данных.
В итоге динамическая модель процесса экструзии получена в виде:
(1)
где: T - текущая температура процесса экструзии, A - вектор неизвестных параметров модели, подлежащий идентификации, k - текущий момент времени.
Идентификация неизвестных параметров выполнена методом наименьших квадратов. В работах [8, 9] подробно описано выполнение подобной идентификации.
На рис. 2 приведены экспериментальные данные (линия) и данные найденные по модели (точки).
Из анализа графиков на рис. 2 следует, что значения, найденные по модели, повторяют экспериментальные данные. Сумма погрешностей составляет е=2.5.
Таким образом, полученная модель процесса экструзии является адекватной. Данная модель может быть использована в системах автоматического управления для регулирования температуры процесса экструзии. В работах [9,10] приведены решения подобных задач. Это позволит получить требуемую температуру процесса экструзии, а, следовательно, и нужное качество готовой продукции.
экструзия плавка вращение шнек
Рис. 2. Сравнение экспериментальных данных и данных полученных путём моделирования.
Литература
1. Крушель Е. Г., Белоус И. Г. Оценка не измеряемых показателей качества технологического процесса и входных возмущений по результатам автоматического контроля косвенных показателей // Известия ВолгГТУ: межвуз. сб. науч. ст. № 12(60) / ВолгГТУ. - Волгоград, 2009. - (Серия «Актуальные проблемы управления, вычислительной техники и информатики в технических системах»; вып. 7). С. 71-74.
2. Гуринов А.С., Дудник В.В., Гапонов В.Л., Калашников В.В. Измерение крутящего момента на вращающихся валах // Инженерный вестник Дона, 2012, №2, URL: ivdon.ru/ru/magazine/archive/n2y2012/798.
3. Вострокнутов Е. Г, Новиков М. И., Новиков В. И., Прозоровская Н. В. Переработка каучуков и резиновых смесей (реологические основы, технология, оборудование) // М.: Химия, 1980. - 280 с, ил.
4. Полосин А. Н, Чистякова Т. Б. Система моделирования процессов экструзии и формообразования полимерных материалов для управления качеством рукавных пленок // Компьютерные исследования и моделирование, 2014 Т. 6 №1, С. 137-158.
5. Терлыч А. Е, Труфанова Н. М., Савченко В. Г. Методика восстановления реологических характеристик перерабатываемого полимера в адаптивных системах автоматизированного управления процессом экструзии // Вестник пермского государственного технического университета. электротехника, информационные технологии, системы управления - Пермь, 2009. - Вып. №3, С.228-236.
6. Терлыч А. Е., Труфанова Н. М., Щербинин А. Г. Экспериментальное исследование и анализ процесса экструзии // Вестник ПНИПУ / ПНИПУ - Пермь, 2013. - (Серия «Электротехника, информационные технологии, системы управления»; вып. 7 с. 57-59).
7. Tzoganakis C., Karagiannis A. Three-Dimensional Finite Element Analysis of Polymer Rotational Extrusion. //Polymer Eng. and Science, 1996, v. 36, № 1, pp. 1796-1806.
8. Браганец С.А., Гольцов А.С., Савчиц А.В. Идентификация математической модели главного золотника для системы диагностики и адаптивного управления открытием направляющего аппарата // Инженерный вестник Дона, 2013, №4, URL: ivdon.ru/ru/magazine/archive/n4y2013/1906.
9. P. Bertsekas. Dynamic Programming and Optimal Control. - 2007. - 920 p.
10. Astrom K.J. Advanced PID control. -ISA. Triangle Park, 2006. 446 p.
Размещено на Allbest.ru
...Подобные документы
Методы переработки термопластичных полимеров. Характеристика полимеров, перерабатываемых методом экструзии. Основные параметры процесса экструзии. Режимы экструзии рукавных пленок. Раздув, вытяжка, охлаждение заготовки-рукава. Многослойная экструзия.
курсовая работа [1,4 M], добавлен 25.04.2012Изучение технологического процесса производства полипропиленовых труб методом экструзии. Контроль процесса по стадиям. Виды брака, пути его предотвращения. Материальный баланс производства. Расчет и выбор основного и вспомогательного оборудования.
дипломная работа [1,0 M], добавлен 08.09.2015Выбор электродвигателя и его обоснование. Определение частоты вращения приводного вала, общего передаточного числа и разбивка его по ступеням, мощности, частоты вращения и крутящего момента для каждого вала. Расчет червячных передач, подбор смазки.
курсовая работа [286,5 K], добавлен 22.09.2013Физико-химические основы экструзии. Конструктивные особенности используемого для экструзии полиэтиленовой пленки оборудования. Требования к готовой продукции. Выбор материала. Нахождение рабочей точки экструдера. Расчет производительности экструдера.
дипломная работа [2,7 M], добавлен 18.03.2012Выбор конструкции ротора; определение опорных реакций вала: расчет изгибающих моментов на отдельных участках и среднего, построение эпюры. Определение радиуса кривизны участка и момента инерции. Расчет критической скорости и частоты вращения вала.
контрольная работа [122,7 K], добавлен 24.05.2012Структурные схемы системы автоматического регулирования частоты (САРЧ) вращения коленчатого вала двигателя внутреннего сгорания (ДВС). Конструктивная и функциональная схемы САРЧ ДВС. Принципы регулирования, уравнение переходного процесса двигателя.
контрольная работа [531,1 K], добавлен 07.01.2013Определение потребляемой мощности привода, угловой скорости выходного вала, частоты вращения вала колеса промежуточной ступени двухступенчатого редуктора. Коэффициент регулировки натяжения цепи. Механические характеристики материалов зубчатой передачи.
курсовая работа [2,7 M], добавлен 01.12.2010Выбор частоты вращения, числа валов и цилиндров турбины. Миниатюризация блока контроля и управления скоростью вращения турбины. Описание схемы электрической структурной и принципиальной. Расчет стабилизатора напряжения. Алгоритм работы программы.
дипломная работа [514,0 K], добавлен 30.06.2012Кинематическая схема привода цепного конвейера. Определение мощности, крутящего момента и частоты вращения каждого вала привода. Проектный расчет зубчатых передач. Проверочный расчет наиболее нагруженного вала на усталостную прочность и жесткость.
курсовая работа [1,0 M], добавлен 26.01.2023Кинематический, силовой расчёты привода. Определение мощности на валу исполнительного механизма. Определение расчётной мощности вала электродвигателя. Определение частоты вращения вала исполнительного механизма. Расчет закрытых цилиндрических передач.
курсовая работа [440,9 K], добавлен 11.10.2008Рассмотрение принципа действия вентилятора. Определение частоты вращения рабочего колеса и его диаметра, мощности электродвигателя. Характеристика сети трубопроводов; вычисление частоты вращения рабочих колес насосов, отклонения фактического напора.
курсовая работа [451,7 K], добавлен 09.10.2014Определение параметров развертки спирали шнека с постоянным шагом. Построение спирали шнека с изменяемым шагом по геометрической прогрессии. Расчет развертки шнека с изменяемым шагом по геометрической прогрессии. Построение соответствующих графиков.
контрольная работа [1,6 M], добавлен 26.04.2014Структура технологического процесса по эскизам обработки вала: количество операций, установы, позиции, переходы и рабочие ходы. Расчёты для единичного и крупносерийного производства. Достижение точности обработки. Число установов заготовки в операции.
контрольная работа [77,1 K], добавлен 14.06.2013Построение номинальной и винтовой характеристики эффективной мощности дизельного двигателя. Определение фактора устойчивости дизеля, коэффициента усиления дизеля по подаче топлива. Описание системы автоматического регулирования угловой скорости вала.
курсовая работа [872,6 K], добавлен 17.09.2014Производственные операции, осуществляемые на экструзионном производстве. Характеристика и конструкция экструдера. Двухуровневая супервизорная система автоматизации на базе персонального компьютера, микроконтроллеров и средств локальной автоматики.
дипломная работа [806,4 K], добавлен 21.01.2012Исследование системы стабилизации частоты вращения двигателя без корректировки, а также с введённой корректирующей цепью. Передаточные функции отдельных звеньев. Исследование устойчивости системы с использованием алгебраического критерия Гурвица.
курсовая работа [522,2 K], добавлен 20.11.2013Назначение горизонтально-расточного станка 2А620Ф2-1-2, анализ конструкции привода главного движения. Определение частот вращения шпинделя. Построение структурной схемы привода со ступенчатым изменением частоты вращения. Расчет коробки скоростей.
курсовая работа [917,2 K], добавлен 17.01.2013Анализ энергетического и кинематического расчета привода. Обоснование выбора электродвигателя. Определение общего передаточного числа и разбивка его по ступеням. Расчет мощности на валах, частоты их вращения, быстроходного вала червяка, подбор муфты.
курсовая работа [284,1 K], добавлен 12.04.2010Термодинамический расчёт двухступенчатого компрессора. Выбор двигателя, определение размеров поршней и цилиндров, частоты вращения коленчатого вала, действующих сил и сил инерции от вращательных и поступательно движущихся масс и их уравновешивание.
курсовая работа [3,9 M], добавлен 16.10.2013Снижение трудоёмкости изготовления вала редуктора путём разработки технологического процесса. Служебное назначение детали, технологический контроль ее чертежа. Тип производства и форма организации технологического процесса. Метод получения заготовки.
контрольная работа [416,3 K], добавлен 07.04.2013