Культивирование метанообразующих бактерий для получения биогаза и биоудобрений на основе отходов сельского хозяйства

Обеспечение экологической безопасности и устойчивого развития Республики Казахстан. Усовершенствование конструкций биореакторов, работающих на основе сельскохозяйственных отходов. Использование полимерных композиций на основе производных полакрилонитрила.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 20.01.2018
Размер файла 255,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Культивирование метанообразующих бактерий для получения биогаза и биоудобрений на основе отходов сельского хозяйства

Муталиева Б.Ж., Сахова Г.,

Рысбаева Г.С., Есимова А.М.

Введение

В последнее время непрерывное развитие различных биогазовых технологий привело к необходимости усовершенствования конструкций биореакторов для увеличения выхода метана из расширяющихся ассортиментов сырья. Очевидным способом повышения производительности реакторов и снижения ВГУ является увеличение плотности, т.е. иммобилизация микроорганизмов.

Проведение исследований по оптимизации получения биогаза путем анаэробного сбраживания отходов производства поможет решить проблемы управления бытовыми и промышленными отходами в свете приоритетных направлений в Концепции экологической безопасности Республики Казахстан [1, 2].

Это позволит обеспечить экологическую безопасность и устойчивое развитие страны, и то, что по привычке называется отходами, при разумном использовании способно дать значительную прибыль и освободить занимаемые свалками земли. Приоритет утилизации отходов над их ликвидацией очевиден, и исследования в области повторного использования отходов перспективны и актуальны.

Материалы и методы

Известно, что применение анаэробного метода при переработке отходов животноводства имеет существенный эффект по сравнению со многими другими методами, что выражается в значительном снижении загрязнения почвы, воды, воздуха химическими веществами и патогенной микрофлорой. Эффективность анаэробного процесса в существенной мере зависит от правильной подготовки сырья к переработке и от конструкции биореактора. биореактор полимерный экологический казахстан

Большое значение для повышения эффективности работы биореакторов имеет использование методов иммобилизации микроорганизмов с тем, чтобы повысить выход биогаза при анаэробной переработке отходов. Основная задача таких биореакторов - интенсификация теплообмена и гомогенизация ферментационной среды, что способствует ускорению метаногенеза за счет закрепления метаногенной микрофлоры в аппарате. Поэтому в данной работе проводились исследования по изучению условий культивирования метанобразующих бактерий, а также различных полимерных композиций для обоснования их применения в качестве носителей для иммобилизации микроорганизмов, кроме того возможность использования отходов производства биогаза в виде биоудобрений.

Метанобразующие бактерии -- строгие анаэробы и имеют температурный оптимум для роста в области 30-40°, поэтому в данной научной работе используется температурный предел 30-500С, оптимальный pH в области 6,5-7,5 [3, 4].

В настоящей работе для получения микробной суспензии использовали около 10 г предварительно измельченного образца. Навеску образца переносили в колбу емкостью 250 мл с 90 мл стерильной водопроводной воды, взбалтывали в течение 10 минут на механической качалке и давали отстояться грубым частицам. Затем методом разведения готовили суспензии, содержащие разные количества отходов. Одновременно из пробы отбирали 20 г отходов для определения влажности, и проводили пересчет на 1 г абсолютно сухих отходов. Из полученных разведений проводили посевы микроорганизмов на плотные питательные элективные среды [3].

Питательная среда для метанобразующих бактерий включала основные растворы солей калия гидрофосфата, хлоридов калия, магния, кальция, натрия ацетата, дрожжи, витамины В1, В2, В6, В12 , С, РР, агар-агар. На питательную среду было помещёно небольшое количество разведённого дистиллированной водой навоза, в составе которого находились метаногенные бактерии. Колбу с питательной средой плотно закрыть пробкой, создав анаэробные условия и поместить в термостат при температуре 30°С на 2 недели. По истечению срока на питательной среде можно обнаружить колонии бактерий, природу которых проверяют окраской по Грамму [5].

Так как состав перерабатываемых отходов определяет течение метанового брожения, в настоящей работе анализу были подвергнуты различные смеси отходов, такие как птичий помет, коровий навоз, свиной навоз, а также соломы и травы, с целью выбора оптимальных вариантов прохождения процесса сбраживания, при этом были проведены расчет выхода биогаза с предварительным определением влажности сырья [4].

Таким образом, по результатам исследований наибольший выход биогаза наблюдался при использовании птичьего помета с влажностью 80% в качестве субстрата для экспериментов.

С целью выделения из окружающей природной среды биоценоза метанобразующих бактерий были взяты навоз в количестве 50 г, которые были загружены в конические колбы емкостью 200 мл. Контролировали объем выделившегося газа.

Газ - метан свидетельствовал об интенсивности процесса метанового брожения и, следовательно, о накоплении смешанной культуры метанобразующих бактерий. Полученные данные приведены на рисунках 2 и 3, из них видно, что выход газа увеличивается при использовании иммобилизованной культуры метанобразующих бактерий.

Таким образом, был проконтролирован объем выделившегося газа, которые свидетельствуют об интенсификации процесса метанового брожения и соответственно, о накоплении смешанной культуры метанобразующих бактерий.

Результаты представлены в таблице 1.

На рисунке 2 показана кинетика микробиологических процессов при созревании метанового биоценоза, происходящих в реакционной смеси без иммобилизации. Из полученных данных видно, что газ - метан, свидетельствующий о начале третьей, метанобразующей фазы начинает интенсивно образовываться на 14 - 16 сутки от начала процесса, а на 22 - 24 сутки наступает торможение процесса.

В процессе анаэробного сбраживания снижается количество метанобразующих бактерий. Как показано в работе [6], причиной, тормозящей процесс, является образование кислых продуктов бактериального гидролиза. Экспериментальные данные по измерению рН среды подтверждают это предположение. В ходе созревания метанового биоценоза рН изменилось от 7,5 в начале процесса до 5,7 в конце (Рисунок 3). Таким образом, рН среды в ферментере является чувствительным параметром, используемым для определения стабильности брожения.

Адсорбционные методы иммобилизации относятся к числу наиболее простых и "естественных". В природе почти всегда микроорганизмы и их ассоциаты существуют не в изолированной (свободной) форме, а в адсорбированном состоянии.

Примером этому являются микробные популяции почвы, кишечника, рубца, некоторые азотфиксирующие микроорганизмы растений и т.д.

В случае адсорбционной иммобилизации используется естественная способность многих микроорганизмов закрепляться на разнообразных твердых или гелеобразных носителях и продолжать свою жизнедеятельность в таком обездвиженном состоянии. [7].

Разнообразие свойств поверхности клеток и адсорбентов обусловливает различные механизмы адсорбционного взаимодействия и различные виды сил адгезии. Адгезия клеток на адсорбенте определяется следующими причинами:

· Образование химических связей между поверхностями клетки и адсорбента (хемосорбция);

· Ион - ионные взаимодействия, образование ионных пар и триплетов, например, NH3+.. .~ --ООС-- и --СОО--~... Са2+ ... ~ --ООС--;

· Электростатические (неионные) взаимодействия заряженных поверхностей клеток и адсорбента;

· Силы Ван-дер-Ваальса (взаимодействие диполь--диполь, диполь--наведенный диполь, ион -- диполь);

· Влияние электролитов, гидратационных эффектов, капиллярных свойств;

· Флокуляция и коагуляция;

· Гидрофобное взаимодействие;

При адсорбционной иммобилизации клеток, которая обусловлена электростатическими силами, одновременно реализуется несколько типов адгезионного взаимодействия, поэтому трудно выделить роль каждого из них по отдельности. Наибольшее влияние на связывание микроорганизма с носителем оказывают ковалентные и ионные взаимодействия [7].

Выводы

Полимерные композиции на основе производных полакрилонитрила вызывают интерес тем, что поверхность полимера является заряженной, что предполагает взаимодействие между поверхностью полимерного носителя и поверхностью микроорганизмов

Литература

1. Новый Казахстан в новом мире//Казахстанская Правда от 2 марта 2007 г. - С. 2-3

2. Концепция экологической безопасности республики Казахстан на 2004-2005 годы // Казахстанская правда от 10.12.2003. - С. 7-8.

3. Michael J. Franklin, William J. Wiebe, and William B. Whitman. 1988. Populations of Methanogenic Bacteria in Georgia Salt Marsh. Appl. Environ. Microbiol. 54:1151-1157.

4. Deublein D. Steinhauser A. Biogas from Waste and Renewable Resources. - Wiley, 2008, isbn: 3527318410, 472 р.

5. Bergey David H. Bergey's Manual of Determinative Bacteriology. -- 9th ed.. -- Lippincott Williams & Wilkins,

6. Панцхава Е.С., Давиденко Е.В. Метангенерация твердых органических отходов городов // Биотехнология, 1990, № 4. - С. 49 -52.

7. Alatriste-Mondragon, F., Samar, P., Cox, H.H.J., Ahring, B.K., Iranpour, R., Anaerobic codigestion of municipal, farm, and industrial organic wastes: A survey of recent literature. Water Environment Research, 78, 607-636.

Размещено на Allbest.ru

...

Подобные документы

  • Технология получения и области применения биогаза как нового источника получения энергии. Методы переработки отходов животноводства и птицеводства для получения биотоплива. Правила техники безопасности при работе в микробиологической лаборатории.

    курсовая работа [952,4 K], добавлен 06.10.2012

  • Линия по переработке бытовых полиэтиленовых и полипропиленовых отходов. Переработка использованных одноразовых шприцов с целью получения вторичного сырья из композиции на основе полиэтилена и полипропилена. Обеспечение безопасности и экологичности.

    дипломная работа [11,7 M], добавлен 25.02.2010

  • Нанокомпозиты на основе природных слоистых силикатов и на основе монтмориллонита. Анализ методов синтеза полимерных нанокомпозитов. Перспективы производства полимерных нанокомпозитов. Свойства нанокомпозитов кремния. Структура слоистого силиката.

    курсовая работа [847,7 K], добавлен 12.12.2013

  • Анализ материального баланса, норм расхода материалов и энергоресурсов, технологические потери, контроль производства и управления технологическим процессом производства полимерных труб. Особенности хранения и упаковки возвратных технологических отходов.

    контрольная работа [24,0 K], добавлен 09.10.2010

  • Производство легких композитов на фторангидритовом вяжущем. Характеристики и минералогический состав фторангидрита. Исследование физико-технических свойств, структуры полистиролбетона. Технология производства изделий на основе фторангидритовых композиций.

    дипломная работа [2,3 M], добавлен 14.02.2013

  • Общие сведения и характеристика технологии производства на предприятии ОАО "Химический завод им. Л.Я. Карпова". Описание образующихся химических отходов, их упаковка, транспортировка и распределение. Соблюдение правил экологической безопасности.

    курсовая работа [1,0 M], добавлен 10.06.2014

  • Обеззараживание и переработка медицинских отходов. Новая технология уничтожения медицинских отходов. Метод термического обезвреживания медицинских отходов в Москве. Классификация медицинских отходов по эпидемиологической и токсической опасности.

    курсовая работа [1,7 M], добавлен 03.03.2010

  • Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.

    курсовая работа [1,1 M], добавлен 02.06.2014

  • Подготовка стеклобоя до его поступления в стекловаренные печи, освобождение от металлических включений и обработка в моечном барабане. Использование бетонного лома, отходов цементных заводов. Применение стекол при иммобилизации радиоактивных отходов.

    курсовая работа [1,2 M], добавлен 15.10.2011

  • Полимолочная кислота - полиэфир на основе молочной кислоты, способный к биоразложению в условиях окружающей среды в течение короткого времени. Конкурентоспособность производства полилактида. Биоразлагаемые полимеры на основе полимолочной кислоты.

    курсовая работа [157,6 K], добавлен 18.02.2011

  • Синтетические композиционные биоразлагаемые пластики. Биоразлагаемые пластические массы на основе крахмала. Органолептические и физико-химические показатели модифицированного крахмала. Методика рентгеноструктурного анализа, биоразложение в почве.

    дипломная работа [6,1 M], добавлен 18.02.2011

  • Определение объемов реальных ресурсов древесных отходов на лесосеке. Выбор технологического процесса и оборудования по использованию отходов. Расчет годового и сменного объема работ по цеху переработки. Мероприятия по охране труда и безопасности проекта.

    курсовая работа [324,6 K], добавлен 27.02.2015

  • Отходы народного хозяйства в доменной плавке. Связь черной металлургии с использованием собственных отходов или отходов смежных отраслей. Отходы собственного производства в доменной плавке. Назначение доменной печи. Ромелт - способ переработки отходов.

    реферат [169,5 K], добавлен 09.12.2008

  • Основные виды обработки древесины, важнейшие полуфабрикаты из нее. Изучение процесса утилизации, рекуперации и переработки отходов деревообрабатывающего производства. Оценка класса опасности отходов с выявлением суммарного индекса опасности отходов.

    курсовая работа [890,3 K], добавлен 11.01.2016

  • Применение техногенных отходов различных химических и нефтехимических производств в технологии получения полимерных композиционных материалов. Получение низкомолекулярных сополимеров (олигомеров) из побочных продуктов производства бутадиенового каучука.

    автореферат [549,3 K], добавлен 28.06.2011

  • Виды и схемы переработки различных видов древесного сырья: отгонка эфирных масел, внесение отходов в почву без предварительной обработки. Технология переработки отходов фанерного производства: щепа, изготовление полимерных материалов; оборудование.

    курсовая работа [1,6 M], добавлен 13.12.2010

  • Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.

    дипломная работа [1,2 M], добавлен 04.08.2012

  • Разработка установки для переработки отходов слюдопластового производства на слюдяной фабрике в г. Колпино. Образование отходов при производстве слюдопластовой бумаги. Продукт переработки отходов - молотая слюда флогопит. Расчет топочного устройства.

    дипломная работа [7,8 M], добавлен 24.10.2010

  • График реализации проекта. Общая характеристика биогаза, применение и перспективы технологии. Описание производственного процесса и технологического оборудования. Анализ целевого рынка и маркетинговая стратегия проекта. Факторный анализ рисков проекта.

    бизнес-план [253,3 K], добавлен 17.10.2011

  • Определение и ликвидация отходов предприятий города Михайловка. Рациональное потребление отходов как вторичного сырья. Определение класса опасности по ФККО (федеральный каталог классификации отходов). Технологические карты градообразующих предприятий.

    отчет по практике [324,2 K], добавлен 31.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.