Исследование тепловых и силовых условий литья с кристаллизацией под давлением алюминиевых сплавов с целью производства высококачественных отливок ответственного назначения
Характеристика свойств отливок из бинарных и промышленных алюминиевых сплавов. Формирования структуры отливок в условиях одновременного воздействия давления и местного направленного затвердевания. Изменение коэффициента теплоотдачи во время затвердевания.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 03.02.2018 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Таблица 2. Относительное перемещение верхнего торца отливки в момент окончания затвердевания
Металл, сплав |
tзал, оС |
рн, МПа |
hз/H |
||
Расчет |
Опыт |
||||
A7 |
720 |
100 |
0,098 |
0,096 |
|
200 |
0,109 |
0,104 |
|||
300 |
0,111 |
0,106 |
|||
AK12 |
680 |
100 |
0,062 |
0,063 |
|
200 |
0,064 |
0,066 |
|||
300 |
0,065 |
0,068 |
Расплав заливали так, чтобы струя не смыла их. Разность между расстоянием каждого магнита от дна матрицы и расстоянием его от нижнего торца отливки после охлаждения последней до комнатной температуры соответствовала величине перемещения каждого магнита и соответствующего слоя отливки под воздействием давления.
Использование этой методики для алюминия и всех использованных промышленных сплавов позволило установить, что наибольшее перемещение слоев, следовательно, и лучшее уплотнение затвердевающей отливки имеет место в верхней зоне, прилегающей к пуансону и распространяющейся на расстояние 1/3 высоты отливки от него, тем самым подтверждены данные полученные ранее в МГОУ и НГТУ. По мере удаления от верхнего торца отливки (места приложения давления) перемещение слоев уменьшается по зависимости, близкой к параболической. Абсолютные значения величины перемещения каждого слоя зависит от давления прессования, объемной усадки и механических свойств сплава при высоких температурах.
Пуансонное прессование. Усилие Р в момент окончания затвердевания отливки, как и при поршневом прессовании, затрачивается на ее уплотнение (sF) и на преодоление сил трения между отливкой и вертикальными стенками матрицы (кDН), между отливкой и выступающей частью пуансона (кdh), между отливкой и торцовыми поверхностями пресс-формы (2кF):
Р = р F = s F + Ку [к ( DH + dh)+ 2кF] (14)
где р - прикладываемое давление, МПа; F - площадь торцовой поверхности отливки, м2; s - предел текучести сплава при высоких температурах, МПа;
к - контактные напряжения на поверхностях трения, МПа; D, d - наружный и внутренний диаметры отливки, м; H, h - высота отливки и глубина ее внутренней полости; Ку - коэффициент уплотнения, зависящий от коэффициента формообразования отливки Кф.
Проведен анализ коэффициента Кф для отливок типа стакана высотой 60 мм и толщиной стенки 5; 10; 15 и 20 мм, имеющих наружный диаметр 60…200 мм и высоту 60 мм, и установлено, что наибольшее значения Кф характерны для тонкостенных отливок, следовательно, для них меньшими будут значения Ку. При постоянной толщине стенки отливки значения Кф тем больше, чем глубже ее внутренняя полость. Значит, при увеличении отношения Хдн/Хот (здесь Хдн - толщина донной части отливки; Хот - толщина вертикальных стенок) для получения качественной отливки необходимо приложить большее давление прессования, что вполне совпадает с результатами собственных опытов и литературных данных.
Рассчитаны относительные потери давления на внешнее трение по формуле
р/р=Крs/р (1+ 2/ (15)
и показано, что они, как и при поршневом прессовании, зависят от предела текучести сплава при высоких температурах s, наружных и внутренних размеров отливки, а также от коэффициента уплотнения Ку..
ЛКД композиционных материалов. Исследовано затвердевание и охлаждение отливок из композиционных материалов с матрицей из алюминия и алюминиевых сплавов АК12 и Al-4,5%Cu. В качестве упрочняющих добавок использованы карбид титана, карбид кремния и оксид алюминия. Установлено, что характер зависимостей, полученный ранее для алюминия и сплавов на его основе, сохраняется, изменяются только численные значения.
Таблица 3. ЛКД алюминия, некоторых алюминиевых сплавов и КМ
Металл, сплав, КМ |
з, с |
Ткр, оС |
ро, МПа |
(h/H)з |
|
Алюминий А7 |
6,2 |
10 |
95 |
0,099 |
|
Al - 5%SiC |
10,2 |
5 |
55 |
0,043 |
|
Al - 10%TiC |
6,8 |
6 |
35 |
0,053 |
|
АК12 |
6,9 |
8 |
140 |
0,066 |
|
AK12 - 5%SiC |
7,1 |
4 |
100 |
0,045 |
|
AK12 - 5%TiC |
10,2 |
5 |
110 |
0,075 |
|
Al - 4,5%Cu |
9,2 |
11 |
50 |
0,120 |
|
Al - 4,5%Cu - 2%Al2O3 |
13 |
8 |
140 |
0,108 |
Примечание. з - время затвердевания; Ткр - повышении температуры кристаллизации (ликвидус) под воздействием давления; ро - давление, при котором начинается повышение температуры кристаллизации металла (сплава); (h/H)з - относительное перемещение верхнего торца отливки в момент окончания затвердевания
Следует отметить, что введение упрочняющих частиц в металлический расплав изменяет свойства сплавов и их склонность к уплотнению во время затвердевания (табл. 3). Отливки из композиционных материалов уплотняются в меньшей степени, чем отливки из традиционных алюминиевых сплавов.
В четвертой главе приведены результаты исследования структуры и свойств «корок» и отливок, изготовленных с использованием основных схем прессования.
Изучена макро- и микроструктура «корок» (из силуминов), растущих со стороны пуансона, и показано, что на поверхности отрыва «корки» от не затвердевшего остатка выявлены светлые и темные области, не имеющие принципиального отличия в строении. В этих областях обнаружены «веточки» эвтектического кремния (сплав АК12), растущие горизонтально - вдоль дендритов -твердого раствора. Количество выступающих дендритов, растущих быстрее эвтектики, - незначительно. В отдельных местах выявлены участки сферической формы, ограниченные светлой полосой, структура которых не отличается от структуры близлежащих участков и состоит из дендритов -твердого раствора и эвтектики. На отдельных участках поверхности «корки» выявлены элементы, имеющие форму удлиненной капли, по-видимому, образовавшиеся после отрыва «корки» от не затвердевшего остатка за счет вытеснения жидкой фазы из междендритных промежутков или за счет действия сил, возникших на границе «расплав - фронт затвердевания» при отрыве «корки».
Микроструктура «корок» в сечении имеет направленный характер (в соответствии с теплоотводом) - от пуансона к поверхности отрыва ее от не затвердевшего остатка. При этом переходе размер дендритной ячейки увеличивается прямо пропорционально расстоянию от наружной поверхности (по линейной зависимости).
Механические свойства «корок» следующие (литое состояние; ось разрывных образцов перпендикулярна приложенному усилию прессования):
в=175…180 МПа; =11,4…12,0 % (сплав АК12);
в=202…209 МПа; =14,2…18,0 % (сплав АК7ч).
При изучении структуры цилиндрических отливок подтверждены данные других исследователей, проводивших исследование структуры сплавов цветных металлов на разной основе, что в условиях ЛКД структура отливок измельчается. Этому способствуют повышенная скорость охлаждения и воздействие давления как на условия возникновения центров кристаллизации, так и на растущие кристаллы.
Полученные экспериментальные данные хорошо согласуются с известной теоретической зависимостью:
r= (16)
где r - радиус критического зародыша; - поверхностное натяжение на границе «зародыш-расплав»; Т - переохлаждение расплава; dT - изменение температуры кристаллизации сплава, обусловленное изменением давления на величину dp; V2, V1 - объемы жидкой и твердой фаз соответственно. Из выражения (16) видно, что уменьшение размера критического зародыша и измельчение структуры сплава в отливках при ЛКД происходит не только за счет увеличения переохлаждения, но и за счет повышения давления прессования.
Наиболее существенное измельчение структуры (в 2…3 раза) наблюдается в области давлений от атмосферного до 100 МПа; последующее повышение давления до 300…400 МПа также приводит к уменьшению размеров зерен, но в значительно меньшей степени, чем в первой области давлений.
Структура отливок из доэвтектических силуминов характеризуется наличием дендритов -твердого раствора и эвтектики (+Si). В структуре отливок из сплава Al-13%Si, затвердевших под атмосферным давлением, содержатся кристаллы первичного кремния (КПК) и эвтектика. При ЛКД размеры КПК уменьшаются с увеличением давления (рис. 10), уменьшается также и площадь, занятая ими, что указывает на сдвиг эвтектической точки вправо - к кремнию. В отливках из заэвтектического силумина (с 25%Si) с повышением давления при кристаллизации КПК также измельчаются (дробятся); если при литье в кокиль их размеры находились в пределах 70…75 мкм, то при рн=320 МПа - 20…23 мкм; конфигурация (форма) КПК при этом не изменяется (рис.9).
Смещение эвтектической точки вправо, измельчение эвтектики, увеличение растворимости кремния в алюминии и наблюдаемое устранение усадочной пористости в формирующихся при ЛКД отливках приводит к повышению их механических свойств. Одновременное повышение прочностных (в, НВ) и пластических () характеристик силуминов при ЛКД можно объяснить измельчением дендритов -твердого раствора, КПК и составляющих эвтектики, а также физическими свойствами последней.
а) б)
Рисунок 9. - Микроструктура отливок из сплава Al-25%Si, затвердевших под атмосферным давлением (а) и давлением 320 МПа (б)
Изучение микроструктуры силуминов с 13…25%Si показало, что КПК имеют разное строение и располагаются на фоне -твердого раствора, но это не отражается кардинально на изменении механических свойств; главное здесь - не строение КПК, а их размеры, изменяющиеся под воздействием давления на затвердевающую отливку. Давление приводит к измельчению КПК, но не оказывает существенного влияние на их конфигурацию (рис. 10).
Рисунок 10. - Форма кристаллов первичного кремния в отливках из сплава Al-17%Si, затвердевших под давлением 160…320 МПа
Применены методы планирования экспериментов с использованием планов Рехтшафнера (для двойных сплавов системы Al-Si) и Хартли (для высокопрочных сплавов системы Al-Si-Cu). Получены уравнения регрессии и графические зависимости, связывающие значения прочности и пластичности сплавов в отливках с основными параметрами ЛКД.
Микроструктура сплавов систем Al-Cu и Al-Mg при кристаллизации под давлением также претерпевает существенные изменения, приводящая к изменению параметров затвердевания, уплотнения и механических свойств отливок. Так, в сплавах системы Al-Cu при кристаллизации под давлением наблюдается резкое измельчение -твердого раствора и фазы Сu-Al2. У сплавов, близких к эвтектическому составу и кристаллизующихся в типично дендритной форме, выявлено заметное уменьшение размеров дендритных ячеек, по которым рассчитана скорость охлаждения, эквивалентная действующему давлению.
Повышение давления при кристаллизации приводит к измельчению структуры отливок из сплавов системы Al-Zn-Mg (например, сплава АЛ24П) как в литом состоянии, так и после термообработки по режиму Т6. Микроструктура отливок из них в литом состоянии характеризуется наличием дендритов -твердого раствора и различных фаз, число и объем которых заметно изменяется и по сечению, и по высоте заготовки. С увеличением давления расстояние между осями дендритов второго порядка уменьшается, а количество фазы MgZn2 увеличивается в верхней зоне. В средней зоне по высоте с увеличением давления не только уменьшается расстояние между осями дендритов второго порядка, но и наблюдается изменение в расположении фазы MgZn2 и T-фазы (Al2Mg3Zn3).
В литом состоянии при увеличении давления прочностные характеристики сплава непрерывно повышаются (в от 96,3 до 275,3 МПа), а после термообработки по режиму Т6 их «скачок» наблюдается только при переходе от атмосферного давления к механическому (в от 430 до 450 МПа, 0,2 от 360 до 375 МПа). Пластические характеристики повышаются как в литом состоянии - от 2,1 до 11,3 %, так и после термообработки по режиму Т6 - от 4,9 до 9,0 %).
Таким образом, с повышением давления механические свойства отливок из всех исследованных сплавов заметно возрастают, особенно пластические характеристики.
Формирование комбинированных структур в отливках. Исследовано формирование отливок в частично теплоизолированных формах при ЛКД алюминиевых сплавов. Деформируемый сплав, близкий по составу к чистому алюминию, заливали в матрицу пресс-формы, изолированную со стороны рабочей полости листовым асбестом толщиной 1…5 мм. В асбесте почти на всю высоту матрицы были выполнены прорези (щели) шириной 1…8 мм для контакта расплава непосредственно со стенками матрицы. Типичные макроструктуры поперечных сечений цилиндрических отливок (D=50 мм, Н100 мм) приведены на рис. 11.
а) б)
Рисунок 11. - Макроструктура цилиндрических отливок (диаметр 50 мм), изготовленных в условиях атмосферного давления (а) и ЛКД при рн=150 МПа (б)
Видно, что конфигурация зоны крупных кристаллов, растущих сто стороны неизолированных поверхностей матрицы, приближаются к окружности; при этом в отливках, затвердевших под атмосферным давлением, они намного меньше (рис. 10,а), чем в отливках, затвердевших под поршневым давлением (рис. 10,б). С увеличением ширины зоны контакта расплава с матрицей увеличиваются и размеры (ширина) зон крупных кристаллов. Наличие разных зон отражается на механических свойствах отливок (табл. 4).
Рассмотрено формирование зон крупных кристаллов от круговых прорезей в асбесте со стороны дна матрицы (реактивные силы) и торца пуансона
Таблица 4. Механические свойства отливок из сплава Б1Т (литое состояние)
Зона отливки |
рн, МПа |
0,2, МПа |
в, МПа |
,% |
|
Крупные кристаллы |
150 |
117 |
173 |
19 |
|
300 |
143 |
182 |
27 |
||
Мелкие кристаллы |
150 |
122 |
208 |
27 |
|
300 |
144 |
214 |
28 |
(активные силы) и показано, что глубина проникновения этих зон внутрь отливки со стороны верхнего торца больше, чем со стороны нижнего, несмотря на то, что рост крупных кристаллов со стороны верхнего торца начинался на 4..5 с позже (из-за вынужденной выдержки между окончанием заливки и началом приложения давления). Способ защищен авторским свидетельством № 1588497 (СССР).
Таким образом, получены данные, свидетельствующие о возможности получения комбинированных структурных зонах в отливках с различными значениями механических свойств путем регулирования давления прессования, толщины теплоизоляционного покрытия и условий охлаждения отдельных частей (или зон) заготовки.
Пуансонное прессование. Металлографические исследования показали, что макроструктура отливок из алюминия А7 состоит из столбчатых кристаллов, вытянутых в направлении теплового потока - к внешней и внутренней сторонам стенки «стакана», разграниченных тепловым центром. При этом ширина кристаллов увеличивается с увеличением толщины стенки отливки (при прочих равных условиях).
Макроструктура отливок с Хот=10 и 15 мм из сплава АК7ч также характеризуется наличием столбчатых кристаллов, вытянутых к внешней и внутренней сторонам стенки «стакана», как и у алюминия А7. Тепловой центр в отливках с Хот=15 мм смещается к внутренней поверхности. В отливках с Хот=10 мм у внутренней поверхности стенки макрозерна в 3…4 раза тоньше, чем у внешней. В отливках с Хот=5 и 20 мм на всей высоте стенки в основном мелкие округлые макрозерна. Только в нижней части у внешней стенки отливки с Хот=5 мм наблюдаются крупные кристаллы, вытянутые в сторону матрицы. Тепловой центр в них располагается на равном расстоянии от вертикальных поверхностей. Во всех отливках из сплава АК7ч макроструктура донной части состоит в основном из крупных макрокристаллов.
В макроструктуру отливок из сплава АК12 со стороны внешних поверхностей просматривается корка, образовавшаяся до момента внедрения пуансона в расплав. Наибольшее влияние на равномерность структуры по сечению отливки оказывают температурные (tзал, tм) и временные (д) параметры. Так, при tм50оС и д3 с со стороны боковой поверхности и дна матрицы образуется корка значительной толщины ещё до момента внедрения пуансона в расплав, которая частично размывается расплавом, вытесняемым пуансоном.
В отливках из сплава АК18Н в макроструктуре также наблюдается корка с внешних и внутренних сторон стенки, лишь в отливке с Хот=20 мм она выражена нечетко. Структура центральной зоны однородна и мелкодисперсна, как и структура донной части отливки.
Микроструктура отливок типа стакана из сплавов АК7ч и АК12 состоит из дендритов -фазы и эвтектики (+Si), из сплава АК18Н - из КПК и эвтектики. Она изменяется (для одного и того же сплава) при увеличении толщины стенки и по высоте стенки одной и той же толщины. Так, расстояние между осями дендритов второго порядка dП возрастает от 30 до 40 мкм (сплав АК7ч) и от 25 до 32 мкм (сплав АК12) при увеличении толщины стенки от 5 до 20 мм, при этом величина dП незначительно (на 5 мкм) уменьшается по толщине стенки (при переходе от наружной к внутренней поверхности). В верхних зонах стенки величина dП, как правило, меньше, чем в нижних; это различие достигает 10…15 мкм. Например, в верхних зонах отливок с толщиной стенки 5 мм величина dП=20 мкм и в нижних - 35 мкм (сплав АК7ч), с толщиной стенки 20 мм - соответственно 25 и 40 мкм. В отливках из сплава АК12 это различие меньше: 25 мкм (верхние зоны) и 30 мкм (нижние зоны) при толщине стенки 5 мм; 25 мкм (верхние зоны) и 35 мкм (нижние зоны) при толщине стенки 20 мм.
Твердость отливок находится в пределах: НВ 70…100 (сплав АК7ч), 70…120 (сплав АК12), 105…140 (сплав АК18Н), 111...121 (сплав АК8М3ч), 111…126 (сплав ВАЛ10).
Таблица 5. Механические свойства отливок типа стакана, изготовленных ЛКД при рн=150 (литое состояние)
Металл, сплав |
Хот, мм |
0,2, МПа |
в, МПа |
, % |
Место разрыва образца, мм |
|
А7 |
5 |
39,0 |
63,5 |
30,2 |
24 |
|
10 |
40,0 |
68,5 |
35,5 |
25 |
||
20 |
47,0 |
65,0 |
35,6 |
29 |
||
АК7ч |
5 |
106,5 |
217,5 |
7,5 |
25 |
|
10 |
53,5 |
210 |
2,0 |
28 |
||
15 |
86 |
200 |
2,6 |
25 |
||
20 |
63 |
180 |
2,8 |
43 |
||
ГОСТ 1583 |
- |
150 |
0,5 |
- |
||
АК12 |
5 |
54,0 |
197,8 |
2,95 |
28 |
|
10 |
102,5 |
215,0 |
5,0 |
28 |
||
15 |
65,5 |
220,0 |
9,0 |
26 |
||
20 |
111,0 |
213,0 |
7,3 |
27 |
||
ГОСТ 1583 |
- |
160 |
2,0 |
- |
||
АК18Н |
5 |
47,5 |
145,5 |
4,0 |
21 |
|
10 |
114,5 |
170 |
0,6 |
21 |
Прочностные и пластические характеристики отливок определяли на нестандартных образцах, вырезанных из вертикальных стенок, и сохранивших с двух сторон литую поверхность; их размеры следующие: длина 55…60 мм, толщина 9…10 мм. Результаты их испытаний приведены в табл. 5.
Проанализирована удаленность места разрушения (разрыва) разрывных образцов от нижнего торца отливки. Выше отмечалось, что при пуансонном прессовании возможно образование спаев, распространяющихся от наружной поверхности в глубь стенки по уровню заливки расплава в матрицу. В проведенных опытах для отливок с толщиной стенки 10 мм этот уровень
соответствовал 382 мм от дна матрицы (и, следовательно, от нижнего торца отливки), толщина дна была 103 мм. Разрыв образцов происходил на следующем расстоянии от нижнего торца отливки: 24…29 (алюминий А7), 25…48 мм (сплав АК7ч), 26…28 мм (сплав АК12) и 21 мм (сплав АК18Н). Видно, что разрыв происходил не по уровню заливки расплава в матрицу, а ниже, что косвенно свидетельствует об отсутствии в них спаев, указанных выше.
Изучена эффективность теплосилового и модифицирующего (фосфоросодержащей лигатурой) воздействия на затвердевание, структуру и свойства отливок типа стакана из заэвтектического силумина А390. Установлено, что размеры кристаллов первичного кремния (КПК), которые формируются при ЛКД не модифицированных и модифицированных заэвтектических силуминов, существенно различаются и соответственно находятся в пределах 50…90 и 10…12 мкм.
Влияние теплосилового воздействия на прочностные свойства модифицированного заэвтектического силумина А390 представлено в табл. 6.
Таблица 6. - Прочность сплава А390 в отливках «стакан» в зависимости от давления прессования и толщины стенки отливки
Хот, мм |
в, МПа, при рн, МПа |
|||
90 |
180 |
260 |
||
5 |
184 |
220 |
195 |
|
10 |
169 |
212 |
209 |
|
15 |
158 |
186 |
225 |
При повышении давления прессования с 90 до 260 МПа в возрастает со 158…184 до 195…225 МПа. Однако, если при давлениях до 180 МПа с увеличением толщины стенки отливки в снижается, то при давлении 260 МПа он, наоборот, повышается. Такой характер изменения в обусловлен, вероятно, тем, что при рн180 МПа проявляется эффект теплосилового воздействия на интенсивность затвердевания в большей степени, чем увеличение толщины стенки отливки. При рн=260 МПа влияние скорости затвердевания на структурные параметры достигает предельного уровня и полнее проявляется эффект «пропрессовывания» затвердевающей отливки с большей толщиной стенки; они получаются более плотными и более прочными.
Твердость отливок из сплава А390 слабо зависит от толщины стенки, но последовательно возрастает на 2 и 6% (до НВ 148) при увеличении давления с 90 до 180 и 260 МПа соответственно.
Таким образом, усиленное внешнее теплосиловое воздействие на жидкий и кристаллизующийся заэвтектический силумин является эффективным фактором измельчения структуры и повышения механических свойств. Высокий уровень показателей структуры и свойств заэвтектических силуминов достигается при комплексной обработке, которая включает, наряду с усиленным теплосиловым воздействием, модифицирование фосфором.
Изучена возможность получения тиксотропной (сфероидизированной) структуры в отливках типа стакана и показана ее зависимость от интенсивности движения расплава в полости пресс-формы, которая, в свою очередь, зависит от конфигурации и размеров отливки.
Пуасонно-поршневое прессование. ЛКД позволяет получать высококачественные отливки. Однако в некоторых из них (особенно в отливках сложной конфигурации) возникают местные дефекты, влияющие на свойства литых деталей. Исследовано качество отливок типа стакана с ребрами и выступами во внутренней полости, полученных в условиях пуансонного прессования (наружная стенка) и пуансонно-поршневого прессования (внутренняя полость с ребрами и приливами) из алюминиевого сплава АК7ч. Расплав при температуре 7005С заливали в матрицу пресс-формы, имеющую температуру 150…180С и установленную на столе гидравлического пресса модели Д2430Б. Остальные параметры ЛКД были следующими: время выдержки расплава в матрице до приложения давления составляло 3…4 с и формирующейся отливки под давлением - 60…80 с; давление - 150 и 200 МПа.
Анализ полученных данных показал, что имеет место разброс свойств образцов, вырезанных из различных зон приливов. Установлено, что в изломе образцов, имеющих низкую прочность, выявлены дефекты газоусадочного происхождения довольно крупных размеров. Эти дефекты были двух типов: с блестящей поверхностью и со светлой незначительно шероховатой поверхностью (последние дефекты встречались чаще). На поверхности дефектов первого типа, когда на темном фоне оксида алюминия выявлены светлые области, микрохимический анализ позволил выявить широкий спектр элементов, не содержащихся в сплаве. Этот дефект являлся газовой раковиной экзогенного характера, образовавшейся во время вытеснения не затвердевшего сплава прессующим пуансоном (в его рабочую полость) при окончательном формообразовании отливки, так как в пуансоне не были предусмотрены газоотводные каналы.
Шероховатость поверхностей дефектов второго типа может быть объяснена присутствием преждевременно обнаженных дендритов. Одна часть поверхности раковины состоит только из дендритов -твердого раствора, вторая - из дендритов -твердого раствора, между которыми находятся тонкие пластинки эвтектического кремния. По-видимому, дефект возник из-за недостатка жидкого сплава во время затвердевания этой зоны отливки.
На некоторых поверхностях изломов образцов обнаружены кристаллы первичного кремния, что нехарактерно для доэвтектических силуминов. Это очень хрупкая структурная составляющая, разрушающаяся расщеплением еще перед разрушением самого образца, в результате чего снижается прочность сплава. Возникновение кристаллов первичного кремния, по-видимому, связано с возникновением местных зон высокого давления, вызванного явлениями кавитации, что приводит к сдвигу эвтектической точки в сторону кремния.
Способ ЛКД, несмотря на целый ряд преимуществ перед другими специальными способами литья, требует тщательного анализа структуры и механических свойств отливок, и особенно в тех случаях, когда имеются заметные различия в показателях механических свойств одной и той же отливки в различных зонах. Это в большей степени относится к отливкам, формирование которых происходит в условиях пуансонного и пуансонно-поршневого прессования, когда имеет место перемещение значительных масс не затвердевшего сплава прессующим пуансоном. Газовые раковины, образовавшиеся после захвата воздуха перемещаемым сплавом, не выделяются из формирующейся отливки и остаются в ее стенках. Любые способы вентиляции пресс-форм не способствуют полному устранению таких раковин, но выполнение газоотводных каналов является обязательным (особенно при пуансонно-поршневом прессовании).
Подпитка отдельных элементов отливок при ЛКД осуществляется за счет механического давления. Поэтому наличие усадочных раковин и пор в отдельных зонах отливок свидетельствует о том, что в этих зонах давление было недостаточным или неэффективным. Это вызывает необходимость изменения конструкции отливки или использования другой схемы прессования.
При прочих равных условиях, чем больше давление прессования, тем выше механические свойства отливок, полученных при пуансоном и пуансонно-поршневом прессовании.
В пятой главе рассмотрены вопросы, относящиеся к наследственности алюминиевых сплавов при ЛКД и разработке технологических процессов ЛКД для конкретных литых заготовок из высокопрочных, антифрикционных и деформируемых алюминиевых сплавов.
Наследственность алюминиевых сплавов. Изучено влияние трех последовательных циклов «переплав - затвердевание под давлением» при ЛКД силуминов (отливки - цилиндрические заготовки D=50 мм, Н=60…70 мм). Установлено, что после первого цикла достигнуты следующие показатели механических свойств (литое состояние): в=254,1 МПа и =16% (сплав АК12, рн=150 МПа); после второго цикла обработки механические свойства незначительно снизились (в=242,3 МПа; =10%), а после третьего цикла достигли в=226,4 МПа; =9%. Следовательно, неоднократное использование трех последовательных циклов, шихты их 100%-ного лома и отсутствия внепечной обработки расплава приводит к некоторому снижению механических свойств заготовок, полученных ЛКД. Это может быть объяснено загрязнением расплава при неоднократном переплаве без внепечной обработки и, как следствие. Несмотря на это даже после третьего цикла обработки механические свойства отливок были выше требований ГОСТ 1583-93 (в 150 МПа; 2%). Освежение шихты на 50% сплавом, не подвергшимся ЛКД, практические не отражается на прочностных характеристиках (в=240,7…241,5 МПа), но приводит к снижению пластичности от 10,8 до 5,8%.
Применение трех последовательных циклов «переплав - затвердевание под давлением» при пуансоном прессовании отливок типа стакана (D=60 мм, Н=60 мм, Хот=15 мм, рн=150 МПа) показало, что при переходе от цикла I к циклу III механические свойства изменяются следующим образом (литое состояние): в от 206,7 до 211,7 МПа (сплав АК7ч); от 183,4 до 199,1 МПа (сплав АК12); от 165, до 153,3 МПа (сплав АК18Н); а соответственно по сплавам - от 8,6 до 5,4; от 4,5 до 7,1 и от 1,4 до 0,7%. Выявлено заметное измельчение кристаллов первичного кремния в отливках из сплава АК18Н после третьего цикла обработки, при этом число крупных кристаллов первичного кремния уменьшилось почти в 2 раза.
ЛКД высокопрочных алюминиевых сплавов. Разработана и исследована технология ЛКД высокопрочных алюминиевых сплавов АЛ24П и АЛ9М применительно к литым деталям специального назначения. Разработаны конструкции пресс-форм и отработана технология изготовления ЛКД тонкостенных отливок «Колпак» и «Поршень». Определены рациональные технологические режимы ЛКД. Отливки «Колпак» имели следующие механические свойства (после термообработки по режиму Т7): 0,2=265…295 МПа; в=310…410 МПа; =4,6…12,6%, а отливки «Поршень» - 0,2=300…318 МПа; в=390…435 МПа; =10,6…16,3%. Опытно-промышленная партия этих отливок, изготовленных ЛКД, успешно выдержала стендовые и полевые испытания.
ЛКД деформируемых сплавов. Исследованы закономерности формирования отливок при ЛКД деформируемого алюминиевого сплава, близкого по составу к чистому алюминию и содержащему небольшие добавки никеля, титана и железа и используемого для деталей, изготовляемых листовой штамповкой. В качестве опытных отливок были выбраны заготовки типа небольшого сплошного цилиндра и стакана. Для изготовления отливок была спроектирована и изготовлена пресс-форма с неразъемной матрицей, чаще всего используемая в производственных условиях. Отработаны технологические режимы ЛКД деформируемого низколегированного алюминиевого сплава, обеспечивающие получение равноосной мелкозернистой структуры отливок, используемых в дальнейшем для изготовления деталей методом холодного выдавливания.
ЛКД антифрикционных сплавов. Разработана и исследована технология ЛКД антифрикционных алюминиевых сплавов АО3-7 и АК6М7 (последний без добавок и с добавками 1…10%Pb), используемых для изготовления литых деталей шестеренных насосов. Вначале на цилиндрических отливках диаметром 50 мм и высотой 40…105 мм были исследованы тепловые и силовые условия ЛКД, обеспечивающие получение плотных отливок с высокими механическими и служебными свойствами, включая коэффициент трения скольжения в системе «вал - втулка».
Изучены ликвационные процессы в отливках и показано, что при ЛКД и олово, и свинец, содержащиеся в алюминиевых сплавах, склонны к обратной ликвации и к ликвации по плотности. Оптимизированы составы сплавов по содержанию свинца. Заливка расплава при температуре 750оС приводит к получению неравномерной структуры по высоте отливки. Поэтому при поршневом прессовании рекомендуется иметь tзал=720…740оС, а остальные режимы ЛКД поддерживать в следующих пределах: tм=200…220оС; рн=150…200 МПа; д=3.
ЛКД «втулок». Втулки шестеренного насоса типа НШ-32У изготовляются из антифрикционного алюминиевого сплава АО3-7 ГОСТ 14113-78. Этот сплав предназначен для монометаллических подшипников скольжения (втулки, вкладыши и др.), работающих на трение в условиях смазки. К сплаву АО3-7 предъявляются следующие требования по механическим свойствам: в170 МПа и НВ 75…117; при этом в определяют на специально отлитых образцах, а твердость - на широком торце втулки после термообработки по режиму Т1.
Разработаны чертежи отливок «Втулка» для ЛКД в одноместной и двухместной пресс-формах. Для исследования технологии ЛКД использованы пуансонно-поршневое и поршневое прессование. Отливки изготовляли при следующих режимах ЛКД: tзал=680…980оС; tм=100…220оС; рн=100…220 МПа; д=2…6 с; п=10…12 с.
При пуансонно-поршневом прессовании окончательное формообразование отливки при внедрении прессующего пуансона в расплав, когда часть незатвердевшего сплава вытесняется пуансоном выше уровня заливки в полость, образованную пуансоном и стержнем, выполняющим отверстие в отливке. В большинстве отливок, изготовленных с использованием этой схемы прессования, в той или иной степени развития обнаружены обратная ликвация неоднородность строения по сечению отливки. В тонкой части, оформляемой вытесненным при формообразовании отливки расплавом, выявлена зональная ликвация. Основной составляющей ликвата являлись оксидные плены типа Al2O3 и более сложного состава, а также олово. Изменение рн, tзал и tм в исследованных пределах не позволили добиться полного устранения неоднородности строения по высоте втулки, но дало возможность наметить пути локализации и снижения ликвации. Это снижение tзал и повышение tм.
При использовании поршневого прессования тонкая часть отливки «Втулка» располагалась внизу и могла затвердеть до начала приложение давления, поэтому стремились проводить опыты при д до 3…4 с. Опыты проводили при следующих режимах ЛКД: tзал=720…850оС; tм=120…220оС; рн=150…200 МПа; д=3…4 с; п=10…12 с.
Изучение макроструктуры отливок показало, что зональная ликвация отсутствовала, а структура отливок укрупнялась с повышением температуры заливки. Заливка расплава при температуре 750оС приводила к получению неравномерной структуры по высоте отливки. Поэтому при поршневом прессовании рекомендуется иметь tзал=720…740оС, а остальные режимы ЛКД поддерживать в следующих пределах: tм=200…220оС; рн=150…200 МПа; д=3…4 с; п=10 с. Процесс ЛКД внедрен в производство ОАО «Гидромаш» (Московская обл.)..
Сравнительные данные о расходе алюминиевого сплава АО3-7 на «Втулку» при литье в кокиль и ЛКД приведены в табл. 1. Ее анализ показывает, что переход с литья в кокиль на ЛКД позволяет уменьшить массу отливки (при ЛКД в одноместную пресс-форму) на 0,055 кг, полностью устранить литники и прибыли и сэкономить на одной заготовке еще 0,11 кг.
Таблица 7. Расход сплава АО3-7 на отливку «Втулка»
Масса, кг |
КИМ |
Способ литья |
|||
Детали |
отливки |
литников и прибылей |
|||
0,156 |
0,270 |
0,110 |
0,58 |
Литье в кокиль |
|
0,215 |
- |
0,73 |
ЛКД |
ЛКД «компенсаторов». Деталь «компенсатор» является составной частью шестеренного насоса. Она сопрягается плоской торцовой поверхностью с вращающимися стальными шестернями, а ее боковые поверхности с уплотнением прилегают к стенкам внутренней полости корпуса насоса. Отливка имеет форму «восьмерки» с двумя отверстиями. На плоской торцовой поверхности выполнены канавки, на противоположной стороне - буртик для фиксации резинового уплотнения. Боковая поверхность имеет сложную конфигурацию и механической обработке не подвергается; размеры этой поверхности имеют допуск, обеспечивающий сборку шестеренного насоса. Средняя толщина стенки 8 мм.
Опробованы три схемы прессования формирующихся отливок. В результате была выбрана схема пуансонно-поршневого прессования. Режимы ЛКД варьировали в следующих пределах: tзал=650…750оС; tф=80…270оС; усилие прессования 0,6…1 МН (60…100 тс); время выдержки формирующейся отливки под давлением 5…20 с; время от окончания заливки расплава в матрицу до начала приложения давления 3…12 с.
Изучены структура и механические свойства компенсаторов, изготовленных ЛКД из сплава следующего состава (в масс. %): Si 7,2; Cu 6,3;Мg 0,1; Mn 0,28; Fe 0,9; Zn 0,2; Ni 0,08; Al остальное. При этом механические свойства определяли на нестандартных образцах, вырезанных непосредственно из литых «компенсаторов» (перпендикулярно воздействию усилия прессования).
На рис. 12,а приведена микроструктура литого компенсатора, характеризующаяся наличием следующих структурных с оставляющих: алюминиевый твердый раствор (-фаза); -фаза - (FeMn)3Si2Al5 - светлая крупная сетка; фаза W - (Cu, Mn, Al, Si) - серые включения на белом; эвтектика Al-Si. Механические свойства этой отливки (литое состояние) следующие: в=180…187 МПа; =2,7…2,9; НВ 115.
Для сравнения на рис. 12,б приведена микроструктура отливки, полученной литьем под давлением из сплава следующего состава (в масс. %): Si 5,5; Cu 5,6; Mg 0,13; Mn 0,16; Fe 0,73; Zn 0,20; Ni 0,12; Pb 0,01; Al остальное. Микроструктура отливки характеризуется наличием тех же структурных составляющих, что и структура отливок, изготовленных ЛКД. Следует отметить, что выделения -фазы имеют форму светлых игл, что менее благоприятно и приводит к снижению механических свойств: в=164…172 МПа; =1,9…2,6; НВ 98.
а) б)
Рисунок 12. - Микроструктура литых «компенсаторов», изготовленных ЛКД (а) и литьем под давлением (б) из медистого силумина
Технология ЛКД заготовок «Втулка» и «Компенсатор» внедрена ОАО «Гидромаш» (п. Новый Быт Московской обл.). В течение последних 15 лет на этом предприятии способом ЛКД изготовлено более 300000 отливок «Втулка» и более 1 миллиона отливок «Компенсатор». Только на сплаве АО3-7 (при изготовлении отливок «Втулка») экономия сплава АО3-7 составила более 50 тонн, включая 2 тонны олова.
ОСНОВНЫЕ ВЫВОДЫ
1. На основе проведенных комплексных исследований тепловых и силовых условий ЛКД установлено, что независимо от конфигурации отливки основные закономерности их затвердевания и уплотнения при основных схемах прессования одинаковы.
2. Механическое давление, воздействующее при ЛКД, способствует устранению зазора между формирующейся отливкой и пресс-формой, в результате чего в 4…5 раз интенсифицируется процесс теплообмена на границе «отливка-форма». Это приводит к уменьшению в 3…4 раза времени затвердевания отливок из алюминиевых сплавов всех систем и перепада температур на границе раздела между отливкой и формой, к увеличению перепада температур по поперечному сечению и высоте формирующейся заготовки.
3. Продвижение фронта затвердевания в отливках во времени выражается параболическими зависимостями, показатель степени которых изменяется от 0,5 до 2 и зависит от конфигурации поверхности контакта между отливкой и формой и давления прессования. Схема прессования при ЛКД не оказывает заметного влияния на характер указанных параболических зависимостей.
4. Коэффициент затвердевания отливки при различных схемах прессования зависит от состава сплава и его теплофизических свойств, размеров (масштабного фактора) отливки и величины воздействующего давления. Его величина уменьшается при увеличении количества легирующих элементов в сплаве (степени легирования), увеличении толщины стенки (или приведенного размера отливки) и снижении давления прессования.
5. Давление способствует формированию в отливке плоского фронта затвердевания и переходу характер затвердевания от объемного к объемно-последовательному при использовании сплавов с широким интервалом кристаллизации. При этом сокращается время существования и ширина двухфазной зоны в отливке.
6. Уплотнение формирующейся под механическим давлением отливки зависит от характера затвердевания, прочностных характеристик образовавшейся корки и усадки сплава в соответствующие периоды - в жидком состоянии, при затвердевании и в твердом состоянии. При прочих равных условиях чем больше давление, тем на большую величину перемещается верхний торец отливки и тем лучше уплотняется сама затвердевающая отливка.
7. Эффективность уплотнения затвердевающей отливки при ЛКД зависит от потерь давления на внешнее трение, которые тем больше, чем меньше давление прессования, чем больше габаритные размеры отливки и предел текучести сплава при высоких температурах. При варьировании отношения высоты к диаметру отливки изменяется роль касательных напряжений на вертикальных и горизонтальных поверхностях в возникновении сил трения и относительных потерь давления прессования на их преодоление. Чем больше указанное отношение, тем больше роль касательных напряжений на вертикальных поверхностях отливки в снижении эффективности действия давления на затвердевающую отливку.
8. Наибольшее перемещение слоев затвердевающей отливки под давлением имеет место на расстоянии до 1/3 высоты от верхнего торца - места приложения давления. Его величина зависит от свойств сплава при высоких температурах и скорости затвердевания отливки. Неравномерность уплотнения формирующейся отливки по высоте при воздействии механического давления приводит к ее неоднородному строению, что отражается на структуре и физико-механических свойствах.
9. Давление свыше 100 МПа, воздействующее на кристаллизующийся сплав, приводит к измельчению структуры отливок. В доэвтектических силуминах измельчаются первичные кристаллы -твердого раствора в 2,0…2,5 раза, а в заэвтектических - первичные кристаллы кремния в 3…4 раза, а также составляющие эвтектики. Оно способствует увеличению количества -твердого раствора в структуре сплавов до- и эвтектического составов и, следовательно, приводит к сдвигу эвтектической точки в сторону кремния. При кристаллизации под давлением форма первичных кристаллов кремния в заэвтектических силуминах не изменяется.
10. Структура заэвтектектических силуминов, включая кристаллы первичного кремния, заметно изменяется при ЛКД (измельчается), но комплексное воздействие модифицирования расплава фосфорсодержащей лигатурой и механического давления на затвердевающую отливку является предпочтительным.
11. Измельчение структуры и устранение усадочной пористости способствует повышению механических свойств отливок, изготовленных ЛКД из исследованных сплавов. При этом между прочностными и пластическими показателями свойств наблюдается прямо пропорциональная линейная зависимость: с увеличением прочности повышается и пластичность сплавов.
12. Впервые показана возможность получения в отливках комбинированной структуры за счет создания зон с направленным затвердеванием и последующим воздействием механического давления на кристаллизующийся сплав, что предопределяет различные значения механических свойств в отдельных зонах литой заготовки. Установлены технологические пути регулирования такой структуры при ЛКД за счет изменения ширины зоны контакта, толщины теплоизоляционного покрытия матрицы пресс-формы и давления прессования.
13. Установлена возможность получения тиксостропной структуры отливок при пуансонном прессовании, зависящей от характера движения расплава, выдавливаемого прессующим пуансоном, величины его дозы, конструкции отливки, температурных режимов литья и прессования.
14. При использовании схемы пуансонно-поршневого прессования необходимо учитывать условия удаления газов из рабочей полости пуансона, смятия вертикальной корки, образовавшейся до приложения давления, и величину давления, определяющие получение качественных отливок.
15. Впервые установлено, что наследственность алюминиевых сплавов в отливках, изготовленных ЛКД, сохраняется после нескольких циклов «переплав - затвердевание под давлением». Поэтому в шихте при плавке можно использовать в широких пределах отходы собственного производства, а также отслужившие детали, отливки для которых были изготовлены способом ЛКД или литьем под давлением.
16. Разработана технология ЛКД высокопрочны алюминиевых сплавов применительно к деталям специального приборостроения: спроектированы отливки и пресс-формы, установлены рациональные режимы литья и прессования, определён достигаемый при ЛКД комплекс механических свойств как в литом состоянии, так и после термической обработки.
17. Разработана технология ЛКД антифрикционных алюминиевых сплавов для литых деталей гидронасосов высокого давления: выбраны рациональные схемы прессования, созданы конструкции отливок и пресс-форм, установлены режимы ЛКД. Технология ЛКД антифрикционных алюминиевых сплавов внедрена ОАО «Гидромаш», где в течение последних 15 лет изготовлено более 300 тысяч отливок «Втулка» и более 1 миллиона отливок «Компенсатор». Только на сплаве АО3-7 (при изготовлении отливок «Втулка») экономия составила более 50 тонн, включая 2 тонн олова.
ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОТРАЖЕНО В СЛЕДУЮЩИХ ПУБЛИКАЦИЯХ
1. Батышев А.И., Безпалько В.И., Любавин А.С., Батышев К.А. Литье с кристаллизацией под давлением: Обзор. информ. - М., 1989. - 56 с. (Машиностроительное производство. Серия «Технология и оборудование литейного производства» /ВНИИТЭМР. Вып. 1).
2. Батышев А.И., Батышев К.А. Отливки из композиционных материалов: Обзор. информ. - М., 1990. - 41 с. (Машиностроительное производство. Серия «Технология и оборудование литейного производства /ВНИИТЭМР. Вып. 4).
3. Батышев А.И., Батышев К.А. Формирование отливок в условиях внешних воздействий: Обзор. информ. - М., 1991. - 64 с. (Машиностроительное производство. Серия «Технология и оборудование литейного производства /ВНИИТЭМР. Вып. 1).
4. Батышев К.А., Батышев А.И. Отливки из алюминиевых сплавов: Обзор. информ. - М., 1992. - 54 с. (Машиностроительное производство. Серия «Технология и оборудование литейного производства /ВНИИТЭМР. Вып. 1).
5. Проектирование и производство заготовок: Учебник /А.И. Батышев, А.Г. Схиртладзе, К.А. Батышев и др. - М.: Изд-во «Глобус», 2005.-222 с.
6. Батышев К.А. Литье с кристаллизацией под давлением алюминиевых сплавов. - М., 2008. - 143 с.
7. Батышев К.А. Литье с кристаллизацией под давлением. - М.: Изд-во МГОУ, 2009. - 167 с.
8. Новые технологии и материалы в литейном производстве: Учебное пособие /А.И. Батышев, К.А. Батышев, В.Д. Белов и др. /под общей ред. А.И. Батышева. - М.: Изд-во МГОУ, 2009. - 181 с.
9. Любавин А.С., Батышев К.А., Безпалько В.И. Исследование затвердевания отливок при наложении механического давления /Прогрессивная технология и автоматизация литья под давлением: Материалы семинара. - М., МДНТП, 1991. - С. 142-143.
10. Batyshev K.A., Bespalko V.I., Lubavin A.S. Vplyv mechanickeho tlaku na process tuhnuta odliatku: Тezy referatu «Pokrok v rozvoji zlivarenskych materialov a technologii. - Kosice, 1992. - С. 17.
11. Батышев К.А., Самсонов В.И., Арефьев А.П. Микродуговое оксидирование деталей из алюминиевых сплавов //Литейное производство, 1992, № 5. - С. 19-21.
12. Batyshev K.A., Samsonov V.I., Arefev A.P. Microarc oxidation of aluminum alloy component //Soviet Casting Technology, 1992, № 5 - P. 30-32.
13. Батышев К.А., Батышев А.И., Любавин А.С., Шрамко Т.Я. Затвердевание отливок под поршневым давлением // Литейное производство, 1993, № 10. - С. 26-27.
14. Batyshev K.A., Batyshev A.I.,Lyubavin A.S., Shramko T.Ja. Solidification of aluminum alloys under pressure //Soviet Casting Technology, 1993, № 10. - Р. 41-44.
15. Батышев К.А., Батышев А.И., Любавин А.С., Безпалько В.И. Затвердевание отливок типа стакана при литье с кристаллизацией под давлением //Литейное производство, 1993, № 11. - С. 25-26.
16. Batyshev K.A., Batyshev A.I., Lyubavin A.S., Bezpal'ko V.I. Solidification under pressure of cup-shoped castings // Soviet Casting Technology, 1993, № 11. - Р. 34-36.
17. Батышев К.А. Затвердевание отливок типа стакана при пуансонном прессовании /«Technologia-95», 7 сентября 1995 г.- Bratislava, 1995. S. 169-170.
18. Батышев К.А. Затвердевание отливок из композиционных материалов с металлической матрицей //Литейное производство, 1994, № 4. - С. 22-23.
19. Батышев А.И., Батышев К.А., Григерова Т.М. Свойства заэвтектических силуминов, затвердевших под давлением //Литейное производство, 1995, № 6. - С. 15-16.
20. Batyshev A.I., Batyshev K.A., Grigerova T.M. Thе properties of hypereutectic silumins, solidified under pressure //Russian Castings Technology, 1995, № 6. - Р. 17-18.
21. Батышев А.И., Георгиевский Г.М., Савченко Е.Г., Батышев К.А., Литвинова Н.Н. Литье с кристаллизацией под давлением антифрикционных алюминиевых сплавов //Известия вузов. Цветная металлургия, 1997, № 1. - С. 21-24.
22. Батышев А.И., Георгиевский Г.М., Батышев К.А., Хорохорин Ф.П., Савченко Е.Г. Литье с кристаллизацией под давлением антифрикционных алюминиевых сплавов //Литейное производство, 1997, № 4. - С.31-32.
23. Батышев А.И., Георгиевский Г.М., Батышев К.А., Хорохорин Ф.П. Литье с кристаллизацией под давлением антифрикционных алюминиевых сплавов /«Теchnologia-97»: Zb. prednas. - Bratislava, 1997. - S. 256-258.
24. Батышев А.И., Станчек Л., Батышев К.А., Капуткин Е.Я., Космачева Н.П. Наследственность при литье с кристаллизацией под давлением //Генная инженерия в сплавах: Тезисы международ. научно-практ. конф., 18-21 мая 1998 г. Самара. - Самара. Россия, 1998. - С. 55-56.
25. Батышев А.И., Батышев К.А., Литвинова Н.Н. Затвердевание отливок при литье с кристаллизацией под давлением //Литейное производство, 1998, № 6. - С. 28-29.
26. Stancek L., Caplovic L., Batysev A.I., Batysev K.A. Morfologia eutektickeho kremika zliatiny Al-Si12 stuhnutej za ucinku vonkajsieho tlaku /«Strojne Inzinierstso'98».- Zb. referatov z medzinarodnej konferencie. П cast. - Strojnicka fakuta. STU v Bratislave, 1998. - S. 641-644.
27. Stancek L., Caplovic L., Batysev A.I., Batysev K.A. Vpуivi tlaku aplikovaneho pocas tuhnutia na morfologiu eutektickeho kremika siluminovych odliatkov pohakovitelo tvaru // CO-MAT-TECH'98.- 6 Medzi narodna vedicka konferencia.- Trnava, 22-23 oktober, 1998. - S. 186-191.
...Подобные документы
Расчет времени полного затвердевания отливок в песчано-глинистой форме по методике Гиршовича и Нехендзи. Закон затвердевания отливок по методике Хворинова и Вейника. Построение температурных полей в корочке отливки в моменты полного затвердевания отливки.
курсовая работа [964,0 K], добавлен 16.12.2014Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.
курсовая работа [62,1 K], добавлен 05.02.2007Проектирование современного цеха по производству отливок из сплавов черных металлов. Выбор оборудования и расчет производственной программы этого цеха. Особенности технологических процессов выплавки стали. Расчет площади складов для хранения материалов.
курсовая работа [125,6 K], добавлен 13.05.2011Исследование основных литейных свойств сплавов, изучение способа получения отливок без дефектов и описание технологии отлива детали под давлением. Изучение схемы прокатного стана и механизма его работы. Анализ свариваемости различных металлов и сплавов.
контрольная работа [317,4 K], добавлен 20.01.2012Характеристика технологии производства деталей из алюминиевых сплавов, которое ведется на литейных машинах модели 515М с горизонтальной камерой прессования Технические требования, предъявляемые к литой поверхности отливок. Обзор применяемого оборудования.
отчет по практике [22,2 K], добавлен 15.12.2010Развитие космического машиностроения в Японии, США и России. Технологические этапы вакуумно-пленочного процесса: производство форм по V-процессу; контроль затвердевания отливок; моделирование затвердевания; характеристики отливки заданной формы.
курсовая работа [28,7 K], добавлен 03.06.2014Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.
презентация [40,6 K], добавлен 29.09.2013Общая характеристика предприятия. Политика в области качества. Анализ документов, регламентирующих изготовление продукции. Технологический процесс производства отливок фасонного литья. Метрологическое обеспечение, контроль технологии, дефектация.
курсовая работа [528,8 K], добавлен 07.05.2014Основные сварочные материалы, применяемые при сварке распространенных алюминиевых сплавов. Оборудование для аргонно-дуговой сварки алюминиевых сплавов. Схема аргонно-дуговой сварки неплавящимся электродом. Электросварочные генераторы постоянного тока.
курсовая работа [1,2 M], добавлен 20.05.2015Изготовление отливок в песчано-глинистой форме. Заливка форм, выбивка, обрубка и очистка. Изготовление отливок из разных сплавов: содержащих в составе чугун, сталь, цветные металлы. Технологичность конструкции деталей. Виды брака и технический контроль.
контрольная работа [38,0 K], добавлен 03.07.2015Использование литья в промышленности. Преимущества технологии центробежного литья. Точность и шероховатость поверхности отливок. Схемы центробежного литья. Оборудование и инструменты. Процесс заливки фасонных деталей в металлические формы на машинах.
реферат [1,1 M], добавлен 21.05.2012Конструктивные уклоны отливок из цветных сплавов. Выбор литниковой системы для кокилей. Расчет площади поперечного сечения. Выбор толщины стенки кокиля. Конструирование знаков для установки и крепления стержней. Определение состава стержневой смеси.
курсовая работа [97,5 K], добавлен 30.10.2011Структура свойства алюминиевых сплавов. Способы производства слитков из них. Выбор и основные характеристики оборудования. Расчет себестоимость технологического процесса литья. Проектирование новая литейная установки - кристаллизатора с тепловой насадкой.
дипломная работа [5,1 M], добавлен 26.10.2014Особенности взаимодействия алюминия и его сплавов с газами окружающей атмосферы во время их плавления и разливки. Основные типы изменений в составе и состоянии расплава. Причины и факторы образования газообразных включений. Дегазация алюминиевых сплавов.
реферат [1,5 M], добавлен 28.04.2014Материал отливки и его свойства. Состав формовочной смеси для мелких отливок. Припуски на механическую обработку. Конструирование литейной оснастки. Конструирование элементов литниковой системы. Изготовление форм, стержней, финишная обработка отливок.
курсовая работа [65,2 K], добавлен 21.10.2013Анализ режимов лазерной сварки некоторых систем алюминиевых сплавов. Защита сварочного шва от окисления. Пороговый характер проплавления как отличительная особенность лазерной сварки алюминиевых сплавов. Макроструктура сварных соединений сплава.
презентация [1,7 M], добавлен 12.04.2016Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.
учебное пособие [7,6 M], добавлен 29.01.2011Технологические понятия в литейном производстве. Дефекты отливок, их получение в песчано-глинистых формах. Структура литниковой системы. Литье в оболочковые формы, в кокиль, по выплавляемым моделям. Основы центробежного литья. Литейные свойства сплавов.
контрольная работа [813,7 K], добавлен 20.08.2015Параметры, этапы проектирования, целесообразность и сущность типовой технологии литья в песчаные формы. Характеристика способов изготовления отливок и виды оборудования. Особенности термообработки отливок, определение их дефектов и способы устранения.
презентация [1,3 M], добавлен 18.10.2013Описание техники литья зубопротезных деталей по выплавляемым моделям из моделировочного воска в формах из огнеупорного материала по моделям. Борьба с усадкой сплавов и восковых композиций. Технология изготовления форм. Операции по обработке отливок.
презентация [747,6 K], добавлен 16.04.2016