Нестационарные процессы деградации в щелочных аккумуляторах, закономерности и технологические рекомендации

Исследование возникновения и роста дендритов через сепараторы и влияние их на основные параметры аккумуляторов. Формы существования водорода в электродах. Процесс запуска теплового разгона в щелочных аккумуляторах. Методы борьбы с образованием дендритов.

Рубрика Производство и технологии
Вид автореферат
Язык русский
Дата добавления 03.02.2018
Размер файла 143,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Автореферат

диссертации на соискание ученой степени доктора технических наук

Нестационарные процессы деградации в щелочных аккумуляторах, закономерности и технологические рекомендации

05.17.03 - «Технология электрохимических процессов и защита от коррозии»

На правах рукописи

Галушкин Дмитрий Николаевич

Новочеркасск - 2010

Работа выполнена в государственных образовательных учреждениях высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» и «Южно-Российский государственный университет экономики и сервиса» г. Шахты.

Научный консультант доктор технических наук, профессор Кукоз Федор Иванович.

Официальные оппоненты: доктор технических наук, профессор Плешаков Михаил Степанович;

доктор химических наук, профессор Гутерман Владимир Ефимович;

доктор химических наук, профессор Ольшанская Любовь Николаевна.

Ведущая организация ОАО «Завод автономных источников тока» г. Саратов

Защита состоится 2 марта 2010 года в 1100 часов на заседании диссертационного совета Д 212.304.05 при государственном образовательном учреждении высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)» в 107 ауд. главного корпуса по адресу: 346428, г. Новочеркасск, Ростовская область, ул. Просвещения, 132.

С диссертацией можно ознакомиться в библиотеке государственного образовательного учреждения высшего профессионального образования «Южно-Российский государственный технический университет (Новочеркасский политехнический институт)».

Автореферат разослан « » января 2010 года

Ученый секретарь диссертационного совета Жукова И.Ю.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Химические источники тока (ХИТ) являются основными источниками питания в автономных, переносных, резервных и т.д. электротехнических и радиоэлектронных устройствах как бытового, так и специального назначения. Однако до сих пор многие явления в ХИТ и вопросы их оптимальной эксплуатации изучены недостаточно. К ним, в первую очередь, можно отнести процессы деградации ХИТ, а именно:

-процессы накопления связанные с эксплуатацией щелочных аккумуляторов. Например: накопление дендритов в сепараторах, накопление водорода в электродах щелочных аккумуляторов, накопление неактивных фаз активного вещества и т.д.;

-тепловой разгон, саморазряд и старение аккумуляторов, которые тесно связаны с отмеченными выше процессами накопления.

Явление теплового разгона (ТР) довольно часто встречается в никель-кадмиевых (НК) батареях, стоящих в буферном режиме в современных самолетах, тем не менее, его природа до сих пор изучена недостаточно. В случае теплового разгона батарея может разогреться, закоротить систему электропитания, что, в свою очередь, часто приводит к выходу из строя различных блоков самолета. В связи с этим, тепловой разгон аккумуляторов в авиации создает аварийные ситуации различной степени сложности, а, по мнению многих специалистов, обслуживающих самолеты, является причиной ряда таинственных катастроф. Тем не менее, до сих пор не ясны причины и источники такого мощного выделения энергии в результате теплового разгона. Не очень ясны причины и условия, приводящие к тепловому разгону. Практически отсутствуют попытки математического моделирования этого процесса. Недостаточная изученность теплового разгона не позволяет надежно предсказать его возникновение, или, по крайней мере, оценить предрасположенность различных аккумуляторов к этому явлению, а, следовательно, в настоящее время невозможно эффективно предотвращать это опасное явление.

В настоящее время наиболее изученными надо считать процессы, связанные с саморазрядом и старением НК аккумуляторов. Однако связывать потерю емкости при старении только с образованием малоактивных форм гидроксидов не совсем верно. На потерю емкости аккумуляторов в процессе их эксплуатации оказывают влияние и другие процессы накопления такие как: накопление дендритов в сепараторах, накопление водорода в электродах и т.д. Именно эти процессы будут изучаться в данной работе.

В любом случае, несмотря на накопленный большой экспериментальный материал по процессам саморазряда, старения и релаксации, их теоретическое осмысление и моделирование еще далеки от завершения. Тем не менее, именно эти процессы во многом определяют эксплуатационные характеристики НК аккумуляторов и прежде всего их срок службы.

Изучение явлений, таких как тепловой разгон, накопление дендритов в сепараторах и водорода в электродах, а также других отрицательных свойств в НК аккумуляторах является актуальным для обеспечения безопасной и надежной работы ХИТ в различных электротехнических и радиоэлектронных устройствах.

Целью работы является выявление механизмов теплового разгона, накопления дендритов в сепараторах, накопления водорода в электродах, а также формы существования водорода в электродах щелочных аккумуляторов при различных режимах их эксплуатации, и на основании полученных результатов создание теоретических моделей и практических рекомендаций по элиминированию данных процессов и увеличению ресурса работы щелочных аккумуляторов.

Для достижения поставленной цели требовалось изучить:

-причины и условия, при которых НК аккумуляторы идут на тепловой разгон;

-изменение количества водорода в электродах щелочных аккумуляторов в зависимости от срока эксплуатации;

-динамику выделения газов из электродов щелочных аккумуляторов при различных температурах;

-изменения в активной массе и металлической матрице в процессе эксплуатации аккумулятора;

-процесс возникновения и роста дендритов в щелочных аккумуляторах;

Кроме того, выполнить:

-статистические исследования возникновения тепловых разгонов в щелочных аккумуляторах различных типов;

-анализ состава газовой смеси, накапливаемой в кадмиевом, оксидно-никелевом и железном электродах;

-визуальный анализ и оценку последствий теплового разгона.

-анализ полученных экспериментальных результатов с целью вскрытия: механизма запуска теплового разгона, механизма процесса теплового разгона, источников выделения энергии при тепловом разгоне.

Разработать математическую модель ТР щелочных аккумуляторов.

Научная новизна работы. Экспериментально доказано, что в процессе теплового разгона из различных типов НК аккумуляторов выделяется парогазовая смесь: количество пара в ней определяется количеством электролита в аккумуляторе; оставшийся газ на 85-95 % состоит из водорода, на 4-14 % из кислорода и менее 1 % прочих газов. Причем количество выделившегося водорода из негерметичных аккумуляторов больше, чем его содержится во всем электролите, если его разложить на водород и кислород.

Термическим разложением электродов НК аккумуляторов с длительным сроком эксплуатации показано, что выделившийся из них газ в среднем на 99 % состоит из водорода, 0,7 % кислорода и 0,3 % прочих газов. Таким образом, в НК аккумуляторах с длительным сроком эксплуатации содержится большое количество водорода. Например, в аккумуляторах НКБН-25-У3, используемых в авиации со сроком эксплуатации более 5 лет, содержится примерно 805 л водорода.

Показано, что водород накапливается в электродах НК аккумуляторов в процессе их эксплуатации. Причем в электродах новых аккумуляторов водород отсутствует.

Экспериментально доказано, что скорость выделения водорода, а также количество выделившегося газа при нагревании электродов, возрастает с ростом температуры. Это, согласно распределению Больцмана, свидетельствует о том, что водород находится внутри электродов в связанном состоянии (потенциальной яме).

Периодическим нагреванием электродов доказано существование релаксационных процессов газовыделения. Это свидетельствует о том, что водород находится внутри материала электродов по всему объему в связанном состоянии.

Показано, что водород накапливается внутри металлической никелевой матрицы оксидно-никелевого электрода в виде гидрида никеля.

С помощью анализа энергетического баланса теплового разгона доказано, что основным источником энергии, выделяемой в результате теплового разгона, является мощная экзотермическая реакция, а не внешнее зарядное устройство или электрическая энергия, накопленная в аккумуляторе.

Доказано, что процесс накопления водорода в электродах и процесс накопления дендритов в сепараторах постепенно подводят аккумулятор к тепловому разгону.

Экспериментально установлено, что причиной начала теплового разгона является локальный разогрев электродов в месте прорастания дендритов.

Теоретически и экспериментально доказано, что использование переменного асимметричного тока определенной формы позволяет добиться любого наперед заданного распределения количества прошедшего электричества по глубине пористого электрода, в том числе и равномерного. Таким образом, использование переменного ассиметричного тока при эксплуатации аккумуляторов позволяет полностью исключить накопление водорода в электродах аккумуляторов, а также возникновение и рост дендритов, и тем самым позволяет полностью исключить тепловой разгон.

Установлена и изучена экзотермическая реакция, являющаяся причиной теплового разгона. Показано, что на базе этой реакции можно объяснить все имеющиеся экспериментальные результаты.

Предложен возможный механизм теплового разгона, соответствующий всем полученным экспериментальным данным.

Представлена структурная модель теплового разгона, описывающая все полученные экспериментальные данные.

Практическая ценность работы. Экспериментальные исследования показали, что тепловой разгон приводит к двум опасным последствиям для любых устройств, содержащих аккумуляторы, а именно: к короткому замыканию электропроводки вследствие прогорания сепаратора и к выделению большого количества водорода, который может привести к образованию гремучей смеси и к взрыву. Это особенно опасно для самолетов и устройств, в которых аккумуляторные батареи находятся в замкнутых помещениях.

Предложены возможные конструктивные изменения в аккумуляторах, исключающие возможность возникновения теплового разгона, а также режимы заряда переменным асимметричным током, препятствующие накоплению водорода в пластинах НК аккумуляторов и процессу дендритообразования на кадмиевом электроде и тем самым исключающие причины возникновения теплового разгона.

Производственные испытания данных режимов в: ОАО «Аэрофлот-Дон» для аккумуляторов 20НКБН-25-У3, ОАО «Ростовуголь» и ЗАО УК «Гуковуголь» для аккумуляторов 3ШНКП-10М-0,5 показали, что газовыделение сокращается в среднем в 45-50 раз, срок службы увеличивается в 1,5-2 раза.

Экономический эффект от внедрения: 4,5 млн. руб. (в ценах 2001 г.), 5млн. руб. (в ценах 2001 г.) и 4,1 млн. руб. (в ценах 2008 г.) в год соответственно. На режимы заряда и на зарядное устройство получены в соавторстве патенты РФ (№ 2293402 и № 2296406).

Предложен способ анализа НК аккумуляторов на предрасположенность к тепловому разгону (патент РФ № 2310953).

На защиту выносятся:

- результаты измерения основных параметров различных типов НК аккумуляторов в процессе их теплового разгона, определение типов щелочных аккумуляторов склонных к тепловому разгону, а также результаты качественного, и количественного анализа парогазовой смеси, выделяющейся при тепловом разгоне;

-механизм накопления водорода в оксидно-никелевых, кадмиевых и железных электродах щелочных аккумуляторов;

-данные по исследованию состава газовой смеси, выделяющейся при термическом разложении электродов, зависимости газовыделения от температуры электродов для различных типов щелочных аккумуляторов, а также исследования релаксационных процессов газовыделения;

-результаты исследований по накоплению дендритов в щелочных аккумуляторах и искусственному запуску теплового разгона;

-результаты исследований по влиянию переменного ассиметричного тока на распределение электрохимического процесса по глубине пористого электрода, и влиянию этого распределения на рост дендритов, и на накопление водорода в электродах;

-экспериментальные доказательства формы существования водорода в электродах щелочных аккумуляторов и результаты анализа энергетического баланса теплового разгона;

- данные по исследованию экзотермической реакции, являющейся причиной теплового разгона;

-механизм и структурная модель теплового разгона в НК аккумуляторах, а также практические рекомендации по предотвращению этого явления в щелочных аккумуляторах.

Апробация работы. Материалы, содержащиеся в диссертационной работе, докладывались и обсуждались на следующих конференциях, совещаниях, симпозиумах и семинарах: VII Международной конференции «Фундаментальные проблемы электрохимической энергетики» и X Международной конференции «Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах» (СГУ, г.Саратов, 2008 г.); XX Международной научной конференции «Математические методы в технике и технологиях» ММТТ- 20 (ЯГТУ, г.Ярославль, 2007 г.); XII Международной научно-технической конференции «Радиоэлектроника, электротехника и энергетика» (МТУ (МЭИ), г.Москва, 2006 г.); XIX Международной научной конференции «Математические методы в технике и технологиях» ММТТ-19 (ВГТА, г.Воронеж, 2006 г.); VI Международной научно-практической конференции «Теория, методы и средства измерений, контроля и диагностики» (ЮРГТУ (НПИ), г.Новочеркасск, 2005 г.); XIII Всероссийской научно-технической конференции «Методы и средства измерений физических величин» (ННиИМЦ «Диалог», г.Нижний Новгород, 2005 г.); XVIII Международной научной конференции «Математические методы в технике и технологиях» ММТТ-18 (КГТУ, г.Казань, 2005 г.); XIII Всероссийской научно-технической конференции «Современные проблемы математики и естествознания» (ННиИМЦ «Диалог», г.Нижний Новгород, 2005 г.); IV Всероссийской научно-технической конференции «Современные промышленные технологии» (ННиИМЦ «Диалог», г.Нижний Новгород, 2005 г.); XVI Всероссийской научно-технической конференции «Информационные технологии в науке, проектировании и производстве» (ННиИМЦ «Диалог», г.Нижний Новгород, 2005 г.); Всероссийской научной конференции молодых ученых «Наука. Технологии. Инновации» (НГТУ, г.Новосибирск, 2005 г.); I Всероссийской научно-технической конференции «Современные промышленные технологии» (МВВО АТН РФ, г.Нижний Новгород, 2004 г.); Abstracts of 4-th International Scientific and Technical Conference: Interactive Systems: Problems of Persons and Computer Interaction (UISTU, Ulyanovsk, 2001); 3-й Международной научно-практической конференции «Новые технологии управления движением технических объектов» (ЮРГТУ (НПИ), г.Новочеркасск, 2000 г.); 5-й Всероссийской научной конференции «Техническая кибернетика, радиоэлектроника и системы управления» (ТРТУ, г.Таганрог, 2000 г.); Всероссийской конференции по анализу объектов окружающей среды «Экоаналитика-96» (КГУ, г. Краснодар, 1996 г.); Международной конференции «Природа и человек: взаимодействие и безопасность жизнедеятельности» (ТРТУ, г.Таганрог, 1996г.);

Публикации. Основное содержание диссертации опубликовано в 5 монографиях и 95 научных статьях и докладах, включая 23 статьи в журналах рекомендованных ВАК РФ для защиты докторских диссертаций, а также 3 патентах.

Объем работы. Диссертация состоит из пяти глав, общих выводов, списка литературы и приложений. Работа изложена на 343 стр. текста (без приложений); содержит 70 рисунков, 40 таблиц. Список литературы содержит 564 наименования. Приложены акты внедрения.

СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Литературный обзор состоит из четырех разделов, в которых рассматривается современное состояние вопроса по исследованию и моделированию нестационарных процессов деградации в щелочных аккумуляторах. Это, прежде всего: тепловой разгон; необратимые процессы накопления, приводящие к старению аккумуляторов в процессе их эксплуатации, такие как, накопление водорода в электродах аккумуляторов и накопление дендритов в сепараторе.

Наиболее малоизученным нестационарным процессом в щелочных аккумуляторах является тепловой разгон. Аналитический обзор литературы за последние 20 лет показывает, что работ по исследованию этого явления в аккумуляторах крайне мало. В зарубежной литературе значительно больше работ по изучению теплового разгона. Однако и там основная масса работ выполнена менеджерами по продажам аккумуляторов и имеет статистический или описательный характер, а не научно-исследовательский.

Такое незначительное внимание к явлению теплового разгона малооправданно, так как данный процесс является причиной более половины аварийных ситуаций, связанных с эксплуатацией аккумуляторов.

Подобное невнимание к этому негативному явлению, как нам кажется, можно объяснить двумя причинами. Во-первых, данное явление редкое не представляет ежедневную угрозу для работы приборов и систем, поэтому производители аккумуляторов не вкладывают значительных средств на изучение этой проблемы. Во-вторых, многим кажется очевидным механизм теплового разгона, в то время как до сих пор нет прямых экспериментальных подтверждений данного механизма и его искусственного воспроизведения. Так же нет детального анализа, как в отечественных, так и в зарубежных публикациях, продуктов, получаемых в результате теплового разгона (кроме литиевых аккумуляторов).

Практически все, что указывается о ТР можно свести к следующим утверждениям:

-тепловой разгон, встречается в НК, никель-металлогидридных, никель-водородных, свинцово-кислотных, литиевых, литий-ионных и литий-полимерных аккумуляторах;

-это явление наблюдается в аккумуляторах с длительным сроком эксплуатации;

-тепловой разгон ? редкое явление в аккумуляторах;

-сложно создать условия, при которых процесс теплового разгона наступит однозначно, т.е. это спонтанное многофакторное явление.

Содержание обзора распределено по разделам следующим образом.

В первом разделе дана общая характеристика теплового разгона в аккумуляторах разных типов. Однако из анализа работ, не ясно является ли механизм теплового разгона одним и тем же в аккумуляторах различных систем. Из обзора, по крайней мере, очевидно, что в литий-ионных аккумуляторах механизм теплового разгона во многом отличается.

Тем не менее, по современным представлениям механизм теплового разгона в аккумуляторах любых электрохимических систем, в общем, подобен. Даже в случае различия механизмов теплового разгона в различных аккумуляторах между ними бесспорно много общего, это видно хотя бы по внешним признакам. Поэтому в работе дан обзор всех исследований по тепловому разгону, независимо от типа аккумуляторов, тем более их не так много.

В подразделах один - четыре первого раздела дан обзор работ по исследованию теплового разгона в НК, никель-металлогидридных, никель-водородных, свинцово-кислотных, литиевых, литий-ионных и литий-полимерных аккумуляторах. Отмечено, что в целом тепловой разгон является малоизученным процессом, хотя это явление в литиевых аккумуляторах изучено значительно лучше, чем в аккумуляторах других систем.

В данной работе показано, что в процессе эксплуатации НК аккумуляторов в их электродах накапливается очень большое количество водорода, что ведет к деградации электродов. Накопление водорода в электродах приводит к тепловому разгону, а также в целом ухудшает эксплуатационные характеристики аккумуляторов. Поэтому во втором разделе сделан обзор веществ, способных поглощать водород. В подразделах один - два второго раздела дан обзор работ по исследованию таких веществ. В частности дана классификация и общая характеристика накопителей водорода. Рассмотрены исследования процесса накопления водорода в металлогидридах, в углеродных материалах (графит, сажа), которые являются наполнителями в ламельных, намазных и прессованных электродах щелочных аккумуляторов.

В третьем разделе дан обзор работ по исследованию возникновения и роста дендритов через сепараторы и влиянию их на основные параметры аккумуляторов, а также методов борьбы с образованием дендритов в аккумуляторах. Процесс накопления дендритов в сепараторах является одним из исследуемых в данной работе процессов деградации аккумуляторов. Накопление дендритов в сепараторах приводит к тепловому разгону аккумуляторов, а также в целом ухудшает их эксплуатационные характеристики. Так как накопление дендритов в щелочных аккумуляторах является одной из причин ТР, то методы борьбы с образованием дендритов будут одновременно и методами борьбы с ТР. Обычно для борьбы с образованием дендритов используют методы:

-модификация состава или конструкции электродов;

-покрытие электродов пленкой;

-введение, в электролит различных добавок, включая поверхностно активные;

-создание новых сепараторов, включая комбинированные;

-использование новых переменноточных режимов заряда.

В четвертом разделе дан обзор работ по моделированию различных процессов в аккумуляторах и приведена классификация используемых моделей.

При описании процессов в аккумуляторах обычно используют следующие модели: статистические, динамические, конструктивные, структурные.

При статистическом моделировании, на основании экспериментальных данных строится функция регрессии. Такое моделирование используется на начальных этапах исследования какого-либо объекта, когда о нем ничего не известно. При конструктивном моделировании, модель явления или процесса, конструируется на основании разумных предположений, экспериментальных фактов, а также с применением тех или иных физических или химических законов, т.е. данные модели с самого начала строго не опираются на фундаментальные динамические законы природы. При динамическом моделировании, модель строится с самого начала, опираясь на фундаментальные законы природы. Как правило, моделирование выполняется или в рамках макрооднородной модели пористого электрода, или в рамках модели отдельной поры.

Особую группу моделей составляют структурные модели электрохимических явлений. Структурный подход впервые был применен при моделировании процессов в теории импеданса. В настоящее время он с успехом применяется при моделировании явлений в аккумуляторах, причем в сугубо нелинейных областях в отличие от теории импеданса.

Вторая глава состоит из десяти разделов и посвящена исследованию процесса теплового разгона в щелочных аккумуляторах.

В первом разделе на основании анализа литературных источников намечен план экспериментальных исследований. Во втором разделе описана методика циклирования щелочных аккумуляторов с целью обнаружения теплового разгона. Все аккумуляторы заряжались последовательно при постоянных напряжениях: 1,45; 1,67; 1,87; 2,2 В. Нижнее значение исследуемого диапазона зарядных напряжений соответствует буферному напряжению работы аккумуляторов. В третьем разделе описана установка для циклирования аккумуляторов и сбора выделяющегося в результате теплового разгона газа и пара.

В четвертом разделе дана классификация всех существующих аккумуляторов по типу электродов, плотности их упаковки, герметичности и т.д. В результате все аккумуляторы для дальнейших исследований были разбиты на четыре группы: не герметичные аккумуляторы с металлокерамическими оксидно-никелевыми электродами, в этой же группе рассматривались и аккумуляторы с прессованными и намазными оксидно-никелевыми электродами; не герметичные аккумуляторы с ламельными электродами; герметичные призматические аккумуляторы; герметичные цилиндрические и дисковые аккумуляторы.

В пятом разделе описаны результаты циклирования аккумуляторов с металлокерамическими, прессованными и намазными оксидно-никелевыми электродами (с металлокерамическими электродами (НКБН-25-У3, НКБН-40-У3, 2НКБ-32, 2НКБ-15, НКБН-6, НКБН-3.5), с намазными электродами (НКБН-3,5), с прессованными электродами (2КНП-24, 2КНП-20, 3ШНКП-10М-0,5, 2КНБ-2) (по 10 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы (для исключения эффектов памяти при смене режимов заряда) ? в соответствии с инструкцией по эксплуатации конкретных батарей.

На основании проведенных экспериментальных исследований установлено, что ТР довольно редкое явление. Из 640 выполненных зарядно-разрядных циклов для каждого типа аккумуляторов, ТР наблюдался только в двух случаях для аккумуляторов НКБН-25-У3, в двух случаях для НКБН-40-У3 и по одному случаю для аккумуляторов 2НКБ-32 и 2НКБ-15.

Вероятность появления ТР увеличивается с ростом срока эксплуатации аккумуляторов, так как во всех случаях, когда наблюдался ТР, аккумуляторы имели сроки эксплуатации, как правило, больше пяти лет при гарантийном сроке службы в три года. При малых сроках эксплуатации аккумуляторов, ТР никогда не наблюдался.

Вероятность возникновения ТР повышается с ростом напряжения заряда аккумуляторов, так как во всех случаях когда наблюдался ТР, заряд аккумуляторов выполнялся при напряжениях 1,87 В и 2,2 В, что значительно превышает среднее напряжение эксплуатации данных аккумуляторов на объекте в буферном режиме (1,35-1,5 В).

В аккумуляторах с намазными (НКБН-3.5), и прессованными электродами (2КНП-24, 2КНП-20, 3ШНКП-10М-0,5, 2КНБ-2) тепловой разгон не наблюдался. Это может быть связано как с типом электродов, так и с типом используемых сепараторов. В данных аккумуляторах используются сепараторы из толстых тканей. Так как процесс прорастания дендритов кадмия сильно зависит от толщины сепаратора, структуры и диаметра пор, то с увеличением толщины сепаратора и уменьшением диаметра пор процесс существенно замедляется, а дендриты получаются не достаточно надежными для разогрева электродов и запуска теплового разгона.

В экспериментах не пошли на ТР аккумуляторы малой емкости с металлокерамическими электродами (НКБН-6, НКБН-3,5 (керамика)), намазными (НКБН-3,5) и прессованными (2КНБ-2). По всей вероятности для начала ТР важна общая масса аккумуляторов и общий ток заряда.

В подразделах один - пять, пятого раздела выполнены также экспериментальные исследования по измерению параметров аккумуляторов НКБН-25-У3, НКБН-40-У3, 2НКБ-32 и 2НКБ-15 в процессе ТР. Определялись изменение следующих параметров: зарядного тока, напряжения на клеммах аккумуляторов, температуры электродов аккумуляторов, динамики газовыделения.

Исследования показали, что в процессе теплового разгона ток заряда резко возрастает до очень больших значений 6-14Q (Q - номинальная емкость аккумулятора), а затем, резко падает, вследствие выкипания электролита и резкого соответствующего возрастания внутреннего сопротивления аккумуляторов.

Процесс ТР может возникать неоднократно и спонтанно в течение одного заряда (рис. 1), при этом ток заряда то возрастает, то убывает. Возникновение и затухание процесса ТР в каком-либо месте электрода приведет сначала к резкому росту тока заряда, а затем к такому же резкому падению тока вследствие испарения электролита и образования газовой пробки в прогоревшем участке сепаратора. Это, в свою очередь, приведет к увеличению плотности тока в других местах электродов, что является причиной запуска ТР в другом месте, возможно, между другой парой электродов и т.д.

После ТР ток в аккумуляторе может стать или очень маленьким, это можно объяснить резким возрастанием внутреннего сопротивления аккумулятора вследствие выкипания электролита и образования газовых пробок между электродами, или очень большим, вследствие закорачивания электродов в местах сильного прогорания сепараторов рис.1.

аккумулятор сепаратор щелочный дендрит

Рис. 1. Изменения параметров аккумулятора НКБН-25-У3 во время теплового разгона: I ? ток заряда аккумулятора; Ua ? напряжение на клеммах аккумулятора; Т ? температура положительной клеммы аккумулятора

В процессе ТР напряжение на клеммах аккумулятора резко падает примерно до 0,5 В. Данное падение напряжения нельзя объяснить только уменьшением внутреннего сопротивления аккумулятора. Единственным объяснением может быть, только предположение, что тепловой разгон связан с протеканием мощной электрохимической реакции, идущей при более низкой разности потенциалов электродов, чем реакция заряда аккумуляторов.

Температура электродов в процессе ТР резко возрастает до очень больших значений (больше 250 0С). При этом однажды полиамидный корпуса аккумулятора НКБН-25-У3 полностью расплавился и загорелся, в других случаях корпус только оплавлялся.

В результате ТР из аккумулятора в течении 2-4 минут выделяется большое количество парогазовой смеси состоявшей на 70-77 % из газа, на 23-30 % из водяного пара. Состав, парогазовой смеси представлен в табл. 1.

Выделившийся в результате теплового разгона газ имел состав: водорода 85-95 %, кислорода 4-14 %, прочих газов менее 1 %. Если предположить, что в результате теплового разгона происходит разложение воды, то в газовой смеси должно быть 33,3 % кислорода и 66,7 % водорода. Экспериментальные результаты показали, что водорода намного больше. Это можно объяснить, только предположив, что водород уже присутствовал в электродах в какой-то форме еще до теплового разгона, а в результате теплового разгона, возможно из-за высокой температуры, он выделился в больших количествах.

Таблица 1

Состав газовой смеси, выделившейся в результате теплового разгона

Тип аккумулятора

Номер аккумулятора

Общее количество газовой смеси, выделившейся в результате ТР, л

Количество выделившегося пара, л

Оставшийся газ, л

НКБН-25-У3

1

351

63

288

2

342

60

282

НКБН-40-У3

1

490

107

383

2

506

112

394

НКБ-32

1

410

70

340

НКБ-15

1

205

31

174

В шестом разделе описаны результаты циклирования аккумуляторов с ламельными электродами (3ШНК-10-0,5, КН-10, НК-13, НК-28, НК-55, НК-80, НК-125, КН-150Р, НКЛБ-70, ТНК-350-Т5) (по 10 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы _ в соответствии с инструкцией по эксплуатации конкретных батарей. У всех аккумуляторов срок службы превышал гарантийный в полтора-два раза. Несмотря на это, из 320 зарядно-разрядных циклов, выполненных для каждого типа аккумуляторов, тепловой разгон не наблюдался ни в одном случае. Результаты проведенных экспериментальных исследований свидетельствуют о маловероятности или невозможности теплового разгона в НК аккумуляторах данной конструкции.

В седьмом разделе описаны результаты циклирования герметичных призматических НК аккумуляторов (НКГК-3С, НКГК-4СК, НКГ-8К, KCSL 11, KCSL 13, НКГ-10Д, НКГ-30СА, НКГК-33СА, НКГ-50СА, НКГ-100СА) (по 5-10 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы ? в соответствии с инструкцией по эксплуатации конкретных батарей.

На основании проведенных экспериментальных исследований установлено, что тепловой разгон довольно редкое явление в герметичных НК аккумуляторах, так как из 320 выполненных зарядно-разрядных циклов для каждого типа аккумуляторов при больших напряжениях заряда, тепловой разгон наблюдался только в двух случаях для аккумуляторов НКГ-50СА, и по одному случаю для аккумуляторов НКГ-100СА, НКГК-33СА, НКГ-8К.

В экспериментах не пошли на тепловой разгон аккумуляторы малой емкости НКГК-4СК, НКГК-3С. По всей вероятности это общее явление для всех НК аккумуляторов малой емкости.

Вероятность появления теплового разгона увеличивается с ростом срока эксплуатации аккумуляторов и напряжения заряда, та как во всех случаях теплового разгона аккумуляторы имели сроки эксплуатации, примерно в два раза, больше чем их гарантийный срок.

Качественно графики для изменения: тока, напряжения на клеммах аккумуляторов, температуры положительной клеммы аккумулятора и выделившегося газа при тепловом разгоне в герметичных НК аккумуляторах такое же, как и в не герметичных.

Процесс теплового разгона в герметичных аккумуляторах проходит менее интенсивно и с меньшим выделением тепла, чем в не герметичных аккумуляторах той же емкости. Объем выделившейся парогазовой смеси примерно в 8 раз меньше чем из не герметичных аккумуляторов той же емкости. Процентный состав выделившейся парогазовой смеси примерно такой же, как и в не герметичных аккумуляторах.

В восьмом разделе описаны результаты циклирования герметичных цилиндрических и дисковых НК аккумуляторов (Д-0,02С, Д-0,06Д, Д-0,09С, Д-0,26С, Д-0,26Д, Д-0,4С, НКГЦ-0,9, НКГЦ-1,3-2, НКГЦ-1,8-2, НКГЦ-3,5-2) (по 10 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы ? в соответствии с инструкцией по эксплуатации конкретных батарей. Несмотря на длительный срок эксплуатации данных аккумуляторов и выполненные 320 зарядно-разрядных циклов для каждого типа, ни один из исследуемых аккумуляторов не пошел на тепловой разгон. По всей вероятности отсутствие теплового разгона в аккумуляторах малой емкости это общее явления для всех НК аккумуляторов малой емкости.

В девятом разделе описаны результаты никель-железных (НЖ) аккумуляторов (ТЖН-250-У2, ВНЖ-250П-У2, ТНЖ-350-У5, ТНЖШ-400-У5, ТНЖШ-500-У5) (по 5 штук каждого типа). Заряд производился при постоянных напряжениях, отмеченных выше, а разряд и контрольно-тренировочные циклы ? в соответствии с инструкцией по эксплуатации конкретных батарей. Несмотря на длительный срок эксплуатации данных аккумуляторов и выполненные 160 зарядно-разрядных циклов для каждого типа, ни один из исследуемых аккумуляторов не пошел на тепловой разгон. Следовательно, в НЖ аккумуляторах с ламельными электродами тепловой разгон или вообще невозможен или крайне вероятен.

В десятом разделе выполнен визуальный анализ последствий теплового разгона и было установлено, что тепловой разгон является локальным явлением, поскольку в результате этого процесса сепаратор прогорает только в определенных местах, а не на всей поверхности электрода.

Круги прогорания сепаратора расположены на различных электродах в совершенно различных местах. Следовательно, можно сделать вывод, что тепловой разгон имеет случайный характер и возникает в случайных местах.

Места прогорания сепаратора имеют форму правильных кругов, причем совершенно различного радиуса. Следовательно, можно предположить, что тепловой разгон начинается из точки и, подобно процессу горения, равномерно распространяется по радиусу от данной точки.

Третья глава состоит из восьми разделов и посвящена исследованию накопления газов в электродах щелочных аккумуляторов, как одного из процессов деградации аккумуляторов.

В первом разделе описана методика эксперимента и экспериментальная установка для исследования процесса выделения газов из электродов аккумуляторов путем их термического разложения. Во втором разделе описана методика анализа состава газовой смеси (водород, кислород) взрывным методом.

В третьем разделе, в предварительных опытах, были найдены параметры для ведения процесса термического разложения электродов. Разложение каждого электрода производилось при температуре 800 0С. Данная температура была выбрана на основании следующих соображений. В предварительных опытах было установлено, что начало заметного выделения газа начинается: для кадмиевого электрода с 340 0С, а для оксидно-никелевого с 660 0С. Существенное выделение газа начинается для оксидно-никелевого и кадмиевого электродов при температурах более 740 0С. Скорость выделения газа увеличивается с ростом температуры, однако, после 800 0С этот рост уже замедляется. Таким образом, температура 800 0С была выбрана как оптимальная для термического разложения как кадмиевого, так оксидно-никелевого электродов.

Разложение каждого электрода происходило в среднем: для кадмиевого электрода за 7 дней, а для оксидно-никелевого за 13 дней, по 11 часов в сутки (для аккумуляторов с металлокерамическими оксидно-никелевыми электродами) и за 7 дней для обоих электродов для аккумуляторов с прессованными, намазными и ламельными электродами. В день из электрода выделялось газа: для кадмиевого электрода от 175 мл/г (миллилитров газа на один грамм веса электрода) в первые дни, до 4 мл/г ? в последние; для оксидно-никелевого ? от 250 мл/г, до 4 мл/г. Процесс термического разложения прекращался, когда суточное выделение газа оставалось менее 4 мл/г.

В четвертом разделе описаны результаты определения количества газа, выделившегося при термическом разложении оксидно-никелевых и кадмиевых электродов, взятых по три электрода из аккумуляторов следующих типов НКБН-25-У3, НКБН-40-У3, НКБН-6, НКБН-3.5(с металлокерамическими электродами), НКБН-3.5 (с намазными электродами), 2НКБ-32, 2НКБ-15, 2КНП-24, 2КНП-20, 3ШНКП-10М-0,5, 2КНБ-2. На основании результатов экспериментов сделаны обобщения:

-Действительно в электродах НК аккумуляторов с длительным сроком эксплуатации, еще до теплового разгона присутствует очень большое количество водорода. Например, в целом, в авиационной батарее 20НКБН-25-У3 содержится около 805*20=16100 л водорода. Это очень большой объем. Выход такого объема водорода во время теплового разгона из аккумуляторов в салон самолета может привести к взрыву очень большой мощности. Последствия такого взрыва могут быть самыми катастрофическими. Таким образом, аккумулятор НКБН-25-У3 представляет собой источник повышенной опасности.

-В целом в аккумуляторах с прессованными электродами содержится меньше водорода, чем в аккумуляторах с металлокерамическими электродами, при той же емкости аккумулятора. Это может быть связано как с меньшим сроком эксплуатации исследованных аккумуляторов по сравнению с аккумуляторами с металлокерамическими электродами, так и с особенностями эксплуатации данных аккумуляторов.

-В газовой смеси, выделяющейся в результате термического разложения как кадмиевого, так и оксидно-никелевого электродов находится, в среднем, 99 % водорода, 0,7 % кислорода и 0,3 % прочих газов. Подробный состав прочих газов нами не анализировался, так как они не могут оказать какого-либо влияния на процесс ТР, хотя бы из-за их малого количества. К тому же, их количество находится в пределах абсолютной ошибки измерения 0,5 %.

Во втором и третьем подразделах четвертого раздела исследуется зависимость скорости газовыделения из электродов данных аккумуляторов в зависимости от температуры разложения. Оксидно-никелевые электроды разлагались при температурах: 700; 900; 1000; 1100 0С, а кадмиевые ? при температурах: 500; 700; 900; 1100 0С. Скорость газовыделения определялась по объему выделившегося газа в течение пяти минут.

Установлено, что скорость газовыделения уменьшается экспоненциально во времени. С ростом температуры разложения, скорость газовыделения и количество выделившегося газа возрастают. То есть чем выше температура, тем больше можно извлечь водорода из электродов. Это можно объяснить, предположив, что водород в электродах находится за некоторым потенциальным барьером (в связанном состоянии). Тогда, чем выше температура, тем большее число молекул водорода, согласно распределению Больцмана, способно преодолеть этот барьер. Данный факт очень важен для понимания формы, в которой водород находится в электродах НК аккумуляторов.

В целом зависимость газовыделения от температуры сильней у металлокерамических оксидно-никелевых электродов, чем у прессованных.

Процесс термического разложения электродов проходил по 9-13 часов в день. На ночь процесс прерывался на 11-15 часов и на следующий день возобновлялся снова. При этом в момент запуска установки на следующий день в первые полчаса, скорость газовыделения всегда была значительно выше скорости газовыделения в момент отключения установки, то есть наблюдался процесс релаксации газовыделения. Данный характер газовыделения свидетельствует о том, что водород находится внутри самого электрода, причем в связанном состоянии. Тогда при термическом разложении, во внешних слоях электрода концентрация водорода постепенно уменьшается и скорость газовыделения падает. Во время отдыха, из-за неравномерности распределения концентрации водорода по глубине электрода, с помощью диффузионных процессов происходит выравнивание концентрации. Тогда на следующий день, в момент включения установки, концентрация в поверхностных слоях электрода будет выше, чем в момент отключения установки. Этим как раз и можно объяснить значительное возрастание скорости газовыделения в момент включения установки. Хочется подчеркнуть, что для наблюдения релаксации газовыделения, водород должен находиться в связанном состоянии. Только этим можно объяснить низкую скорость диффузии водорода к поверхности электрода и, следовательно, обеднение поверхностных слоев в процессе газовыделения. Следствием этих эффектов будут полученные релаксационные кривые. В общем релаксационные процессы в металлокерамических электродах более сильные, чем в прессованных. Это свидетельствует о том, что водород крепче связан в металлокерамических электродах и, следовательно, скорость диффузии его меньше, чем в прессованных электродах.

В четвертом подразделе четвертого раздела описаны результаты термического разложения электродов аккумуляторов с различным сроком эксплуатации. Показано, что чем больше срок эксплуатации аккумуляторов, тем больше водорода содержится в его электродах. Причем в электродах новых аккумуляторов водород полностью отсутствует. Однако, как правило, после трех лет эксплуатации количество водорода в электродах уже не увеличивается, то есть существует предел насыщения электродов водородом. Полученные результаты свидетельствуют о том, что водород накапливается в электродах щелочных аккумуляторов по мере их эксплуатации. Рассмотрим подробно ситуацию с зарядом аккумулятора КНП-20. При его заряде происходит перезаряд на 11-14 А*ч, так как все аккумуляторы перезаряжаются в 1,5-2 раза по сравнению с их номинальной емкостью. Такой перезаряд необходим, так как ток заряда распределяется экспоненциально по глубине пористого электрода поэтому, когда поверхностные слои электрода будут уже заряжены, и на них будет разлагаться электролит, внутренние слои будут продолжать еще заряжаться. Таким образом, данный перезаряд необходим, чтобы полностью зарядить электроды по всей их глубине. Однако при таком перезаряде из аккумулятора выделяется около 5 литров водорода и 2,5 литров кислорода. При длительной эксплуатации, аккумулятор КНП-20 накапливает около 380 литров водорода. Следовательно, теоретически такое количество водорода он мог бы накопить за 380/5=76 зарядно-разрядных циклов. Так как эти аккумуляторы выдерживают до 1000 зарядно-разрядных циклов, то данное количество водорода он вполне мог накопить в процессе эксплуатации.

В пятом разделе описаны результаты определения количества газа, выделившегося при термическом разложении оксидно-никелевых и кадмиевых ламельных электродов, взятых по три электрода из аккумуляторов следующих типов ТНК-350-Т5, НКЛБ-70, КН-150Р, НК-125, НК-80, НК-55, НК-28, НК-13, КН-10, 3ШНК-10-05.

Проведенные исследования показали, что в ламельных электродах НК аккумуляторов, еще до теплового разгона присутствует очень большое количество водорода, как и в аккумуляторах с металлокерамическими и прессованными электродами. Состав газовой смеси такой же, как и в предыдущих аккумуляторах.

В целом графики зависимости скорости газовыделения от температуры для ламельных электродов более близки к аналогичным графикам для прессованных электродов.

Релаксационные процессы газовыделения в прессованных и ламельных электродах подобны. Это свидетельствует о том, что химическая связь водорода в этих электродах подобна.

В шестом разделе описаны результаты определения количества газа, выделившегося при термическом разложении оксидно-никелевых и кадмиевых электродов, взятых по три электрода из герметичных призматических НК аккумуляторов следующих типов НКГК-3С, НКГК-4СК, НКГ-8К, KCSL 11, KCSL 13, НКГ-10Д, НКГ-30СА, НКГК-33СА, НКГ-50СА, НКГ-100СА.

На основании проведенных экспериментальных исследований установлено, что объем водорода в электродах герметичных аккумуляторов примерно в восемь раз меньше, чем в электродах не герметичных аккумуляторов той же емкости и с тем же типом электродов. Данный экспериментальный факт логически следует из герметичности рассматриваемых аккумуляторов. Водород накапливается в электродах НК аккумуляторов в процессе их эксплуатации, за счет разложения электролита на водород и кислород. Однако в герметичных аккумуляторах количество электролита ограничено, так как он не доливается при технологической профилактике аккумуляторов, как это делается в случае не герметичных аккумуляторов. Поэтому водорода в электродах герметичных аккумуляторов может быть накоплено не больше, чем его содержится во всем электролите аккумулятора. Рассмотрим для примера аккумулятор НКГ-50СА. В герметичных аккумуляторах содержится от 2 до 4 см3/(А*ч) электролита, то есть для данного аккумулятора от 100 до 200 мл. По нашим данным в этом аккумуляторе 150-160 мл электролита. Следовательно, при разложении всего электролита можно получить не более 200 литров водорода. Так как в исследованных нами аккумуляторах электролит был, и они работали, следовательно, не весь электролит разложился на водород и кислород. Поэтому в электродах аккумулятора НКГ-50СА могло накопиться водорода только значительно меньше, чем 200 литров, в экспериментах обнаружено примерно 130 л.

В остальном герметичные аккумуляторы подобны не герметичным с тем же типом электродов.

В седьмом разделе исследовалось газовыделение при термическом разложении электродов дисковых и цилиндрических аккумуляторов следующих типов Д-0,02С, Д-0,06Д, Д-0,09С, Д-0,26С, Д-0,26Д, Д-0,4С, НКГЦ-0,9, НКГЦ-1,3-2, НКГЦ-1,8-2, НКГЦ-3,5-2. Полученные результаты подобны результатам для герметичных аккумуляторов с учетом емкости данных аккумуляторов.

В восьмом разделе исследовалось газовыделение при термическом разложении электродов НЖ аккумуляторов следующих типов ТЖН-250-У2, ВНЖ-250П-У2, ТНЖ-350-У5, ТНЖШ-400-У5, ТНЖШ-500-У5. Полученные результаты подобны результатам для НК аккумуляторов с ламельными электродами.

Четвертая глава состоит из тринадцати разделов и посвящена исследованию процесса дендритообразования, как одного из процессов деградации щелочных аккумуляторов.

В первом разделе на основании анализа литературных источников и экспериментальных данных, полученных в предыдущих разделах, намечен план экспериментальных исследований.

Во втором разделе разработан метод искусственного запуска теплового разгона в щелочных аккумуляторах. На основании проведенных исследований, можно утверждать, что точкой запуска теплового разгона является проросший через сепаратор дендрит. В предложенной установке роль дендрита выполняла стальная игла, которая с помощью микровинта максимально близко приближалась к оксидно-никелевому электроду через отверстие сбоку в корпусе аккумулятора и в кадмиевом электроде. Аккумулятор заряжался при постоянном напряжении 1,87 В в течении 8 часов. Когда ток заряда падал до предельно малого значения (примерно 100-150 мА) и не изменялся в течение получаса, включался ключ и подавалось напряжение 2,2; 2,4; 2,8 В между оксидно-никелевыми электродами и стальной иглой. При этом в месте расположения иглы создавалась значительно большая плотность тока, чем в среднем по электроду. Это достигалось как за счет более близкого расположения иглы, так и за счет более высокого напряжения, что способствовало началу теплового разгона. На основании данных экспериментальных исследований можно сделать следующие заключения:

-Тепловой разгон можно вызывать искусственно, что создает большие возможности для изучения этого опасного явления. С помощью предложенной установки с вероятностью около 80 % удавалось запустить аккумулятор на искусственный тепловой разгон.

-Эксперименты на физической модели дендрита однозначно показывают, что причиной начала возникновения теплового разгона является дендрит, проросший от кадмиевого электрода к оксидно-никелевому в процессе эксплуатации аккумуляторов. Проросший дендрит локально разогревает оксидно-никелевый и кадмиевый электроды, что способствует возникновению мощной экзотермической реакции, которая как будет показано в главе 5 и является причиной процесса теплового разгона.

Так как физическая модель дендрита находилась ровно в центре кругов прогорания сепаратора, то можно утверждать, что экзотермическая реакция начинается в месте расположения дендрита, а потом подобно процессу горения распространяется по радиусу от центра.

В третьем разделе анализируются методы борьбы с дендритообразованием в аккумуляторах, а именно: модификация состава или конструкции электродов; покрытие электродов проводящей пленкой; создание новых сепараторов, включая комбинированные; введение в электролит различных добавок включаю поверхностноактивные; использование новых переменноточных режимов заряда. Как мне кажется, наиболее перспективным является пятый метод. Он применим к серийно выпускаемым аккумуляторам, без каких либо их изменений.

В четвертом разделе на основании макрооднородной модели пористого электрода формулируется система уравнений для теоретического анализа распределения тока по глубине пористого электрода при поляризации электрода переменным асимметричным током.

В пятом разделе предлагаются методы для экспериментального нахождения поляризационной функции исследуемого электрода с целью дальнейшего их использования в сформулированной ранее макрооднородной модели пористого электрода.

В шестом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода постоянным током для линейной и квадратичной поляризационных функций. Из решения следует, что при увеличении внешнего поляризующего тока глубина проникновения электрохимического процесса в глубь пористого электрода уменьшается. Таким образом, в случае заряда аккумуляторов при постоянном токе единственным способом улучшения распределение тока по глубине пористого электрода является уменьшение самого поляризующего тока. Это действительно приводит к улучшению распределения тока по глубине пористого электрода и к уменьшению необходимого перезаряда, а, следовательно, и к уменьшению газовыделения при заряде. Однако, это приводит также и к значительному увеличению времени заряда, что не всегда приемлемо на практике.

В седьмом разделе анализируются наиболее перспективные формы тока для заряда аккумуляторов переменным асимметричным током.

В восьмом разделе решается сформулированная модель пористого электрода в активационно-омическом режиме, при поляризации электрода переменным асимметричным током для линейной, но не симметричной поляризационной функции. В девятом разделе решается та же модель, но с учетом процессов миграции и диффузии, т.е. система уравнений вида:

при граничных условиях

j(u,c1) - поляризационная функция исследуемого электрода, c1, c2 - концентрации ионов участвующих и не участвующих в электрохимической реакции заряда аккумулятора, J - внешний поляризующий ток, u - поляризация по глубине пористого электрода, ? половина толщины пористого электрода.

...

Подобные документы

  • Предмет и средства труда. Основные виды, формы и методы организации технологических процессов. Процессы основного производства. Маршрутно-операционные и операционные технологические карты. Основные типы производств: единичное, серийное и массовое.

    реферат [26,3 K], добавлен 19.01.2015

  • Доменная печь как один из уникальных агрегатов. Влияние щелочных соединений на доменный процесс. Анализ среднемесячных балансов щелочей. Шлаковый, тепловой и газодинамический режим плавки. Доменная плавка цинкосодержащих шихт: преимущества и недостатки.

    контрольная работа [58,1 K], добавлен 02.12.2010

  • Физические и химические свойства никеля, распространение в природе. Методы получения: селективное обогащение руды; технология извлечения из штейна, выщелачивание. Применение никеля в сплавах, в аккумуляторах, в радиационных технологиях, в медицине.

    реферат [58,6 K], добавлен 17.01.2013

  • Дефекты и структура сталей и макроструктурный метод. Строение и дефекты стального слитка. Выявление расположения и размеров кристаллов дендритов в центре и на периферии при травлении продольного и поперечного сечения слитка. Виды усадочных раковин.

    лабораторная работа [782,3 K], добавлен 30.03.2009

  • Исследование кинетики процесса термообработки фосфоритов солями щелочных металлов (карбоната и сульфата натрия и калия) при температурном режиме. Определение технологических параметров и разработка технологической схемы получения термощелочных фосфатов.

    курсовая работа [789,0 K], добавлен 23.03.2012

  • Взаимосвязь технологических и организационно-управленческих структур. Понятие о химико-технологических процессах, принципы классификации. Перспективы развития и особенности экономической оценки химико-технологических процессов. Специальные методы литья.

    контрольная работа [50,0 K], добавлен 10.07.2010

  • Конструкция трактора "Беларус-1025.4". Методы и приборы, позволяющие экспериментально определить величину угловых скоростей отдельных частей трансмиссии трактора. Существенные параметры разгона трактора с учетом системы топливоподачи CommonRail.

    курсовая работа [1,2 M], добавлен 08.05.2016

  • Основные классификации резьб, их основные параметры и признаки. Особенности процесса резания и формирования поверхностного слоя. Влияние состава и структуры стеклопластиков на их обрабатываемость. Технологические операции и параметры процесса нарезания.

    курсовая работа [2,3 M], добавлен 13.03.2011

  • Задачи обработки воды и типология примесей. Методы, технологические процессы и сооружения для очистки воды, классификация основных технологических схем. Основные критерии для выбора технологической схемы и состава сооружений для подготовки питьевой воды.

    реферат [1,2 M], добавлен 09.03.2011

  • Технология восстановления коленчатого вала методом хромирования. Показатели качества покрытия при хромировании. Механическая обработка. Составы щелочных растворов для химического обезжиривания. Установка для электролитического осаждения металлов.

    курсовая работа [1,5 M], добавлен 21.01.2014

  • Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

    реферат [25,4 K], добавлен 25.10.2014

  • Свинец как металл, который многократно включаются в сферу материального производства, так как мало теряется в процессе промышленного использования, его роль в производстве аккумуляторов, влияние на организм человека. Принципы переработки свинцового лома.

    реферат [20,4 K], добавлен 11.08.2014

  • Основные технологические процессы ООО "Равиоли". Организация труда и осуществление технологического контроля. Обзор ассортимента выпускаемой продукции, технологические процессы, используемые при приготовлении блюд. Структурные подразделения завода.

    отчет по практике [7,1 M], добавлен 11.05.2014

  • Основные закономерности и процессы спекания оксидов. Влияние чистоты сырья и добавок на свойства Al2O3 керамики. Исследование влияния эффекта саморазогрева корундоциркониевой композиции в электромагнитном поле СВЧ на структуру и свойства материала.

    дипломная работа [190,3 K], добавлен 02.03.2012

  • Параметры, определяющие гидромеханические процессы в активаторных стиральных машинах. Конструктивные факторы, влияющие на процесс стирки белья. Основные конструктивные и режимные параметры стиральных машин барабанного и воздушно-пузырькового типов.

    курсовая работа [2,7 M], добавлен 25.03.2011

  • Условия пассивности стали в нейтральных и щелочных средах. Механизм защитного действия бетона, существующие виды антикоррозионных покрытий. Механизм, этапы технологии приготовления и нанесения порошковых покрытий и ее технико-экономический эффект.

    диссертация [517,7 K], добавлен 31.12.2015

  • Кривая разгона. Динамические параметры и математическое описание кривой разгона. Алгоритм управления. Выбор переходного процесса и настройки параметров алгоритмов управления АСУ. Регулирование в программе SIMULINC. Оптимизация переходного процесса.

    контрольная работа [2,1 M], добавлен 02.08.2008

  • Обоснование дополнительных исходных данных к выполнению теплового расчета. Параметры окружающей среды. Подогрев заряда в процессе впуска. Параметры процесса выпуска отработавших и остаточных газов. Расчет параметров рабочего цикла теплового двигателя.

    курсовая работа [378,2 K], добавлен 13.12.2014

  • Применение синтетического высококонцентрированного хлористого водорода в процессе гидрохлорирования. Технологическая схема синтеза хлористого винила из ацетилена и хлористого водорода. Баланс, технологические и технико-экономические показатели процесса.

    реферат [354,0 K], добавлен 25.08.2010

  • История возникновения легких бетонов. Их классификация в зависимости от структуры, вида вяжущего и пористости заполнителей и области применения. Сырьевые материалы для изготовления легкого бетона. Основные технологические процессы и оборудование.

    реферат [725,3 K], добавлен 13.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.