Исследование и создание композиций на основе порошков металлов, их оксидов и углерода для получения фасонных заготовок с заданными свойствами
Разработка технологии получения металлозаготовок из композиций, содержащих высокодисперсные порошки металлов, их оксидов и углерода, термореактивных фенол-формальдегидных смол для изготовления фасонных сложных металлоизделий с заданными свойствами.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 08.02.2018 |
Размер файла | 959,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора технических наук
Исследование и создание композиций на основе порошков металлов, их оксидов и углерода для получения фасонных заготовок с заданными свойствами
Специальность: 05.02.01 - Материаловедение (металлургия)
Довыденков Владислав Андреевич
Москва 2009
1. Общая характеристика работы
Актуальность проблемы. Совершенствование технологии получения металлозаготовок, обеспечивающей сложную геометрическую форму и высокую размерную точность, заданные эксплутационные свойства материала, приемлемую стоимость, всегда являлось одним из важнейших факторов технического прогресса. Наряду с развитием традиционных способов получения заготовок (ковкой, литьем, штамповкой, резкой, сваркой), в последние десятилетия интенсивно развиваются технологии, основанные на том, что исходные вещества применяются в высокодисперсном состоянии и консолидируются в заготовках определенной формы путем воздействия давления, температуры, электрических и магнитных импульсов, ультразвука и т.д.
К таким технологиям относятся многочисленные методы порошковой металлургии, газотермические и плазменные методы нанесения вещества на уделяемые модели, электрофоретические методы, СВС и другие. В настоящее время имеет место тенденция повышения дисперсности используемых порошков. Это связано, с одной стороны, с миниатюризацией технических устройств и необходимостью иметь технологии получения микродеталей сложной формы и, с другой стороны, с новыми возможностями формировать структуры материалов, используя высокодисперсные компоненты, а также создавая высокодисперсные фазы на различных стадиях технологического передела. Примерами таких технологий является МИМ-технология (инжекционное формование) и реакционный размол (механическое легирование), использование которых позволяет по-новому решать проблемы формообразования и формирования высокодисперсной структуры.
Однако значительные затраты на используемые высокодисперсные металлические порошки, многофункциональное и сложное дорогостоящее оборудование потребовали применения более современных технологий, в которых в качестве исходных материалов служат высокодисперсные композиции на основе порошков металлов, их оксидов и углерода. Такой подход позволяет достигнуть значительного удешевления производства и получения высококачественных изделий с применением стандартного оборудования, с одновременным расширением возможностей управления структурой и свойствами материалов. В связи с наибольшей распространенностью в технике сплавов на основе железа и меди представляются наиболее актуальными разработки с использованием в качестве основы материалов и заготовок именно этих элементов.
Цель работы. Разработка научного обоснования технологии получения металлозаготовок из композиций, содержащих высокодисперсные порошки металлов, их оксидов и углерода для получения фасонных сложных металлоизделий с заданными свойствами.
Задачи исследований:
- установить тенденции развития технологий получения заготовок путем формования композиций из высокодисперсных порошков и связующего с их последующим спеканием и обработкой давлением;
- обосновать и разработать критерии выбора и методики расчета состава компонентов композиций, предназначенных для изготовления стальных и чугунных заготовок, а также заготовок на основе медных сплавов;
- исследовать возможность и разработать технологические режимы внутреннего низкотемпературного восстановления оксидов твердым высокодисперсным углеродом, образующимся при деструкции связующего, а также полученным в результате реакционного размола;
- исследовать влияние технологических режимов на дисперсность материалов, полученных реакционным размолом;
- исследовать особенности спекания заготовок, полученных из композиций различного состава, влияние технологии спекания на механические свойства материалов;
- разработать научно обоснованные требования к исходному составу и режимам обработки давлением композиций для обеспечения заданных физико-механических свойств материалов заготовок;
- разработать аналитические методы расчета отклонений размеров заготовок и исследовать влияние на размерную точность параметров исходных материалов и режимов получения заготовок.
Методы исследования обусловлены системными и физическими особенностями объекта исследований - композиций «металлы - оксиды металлов - углерод» на всех стадиях технологического передела - от дозировки исходных компонентов до определения физико-механических свойств материалов заготовок различного назначения и включают в себя:
- физическое и математическое моделирование с аналитическим анализом параметров изменения вязкости композиций; параметров, определяющих химический состав конечного продукта и его физико-механические свойства; параметров, определяющих размерную точность заготовок;
- измерение геометрических параметров заготовок и их плотности стандартными методами;
- определение химического состава композиций и заготовок на различных стадиях технологического передела;
- определение фазового состава и структуры заготовок с применением металлографии, рентгеновского структурного анализа, растровой электронной микроскопии, зондовой микроскопии;
- определение механических свойств стандартными методами;
- определение электропроводности зондовым методом;
- методы испытаний эксплуатационных свойств материалов в соответствии с методиками предприятий-потребителей.
Достоверность полученных результатов, научных положений, выводов и рекомендаций подтверждается использованием современных методов исследований, практическим внедрением разработанных на основе исследований инженерных решений, непротиворечивостью полученных результатов с фундаментальными физическими законами, широкой апробацией полученных результатов на научно-технических семинарах и конференциях различного уровня.
Научная новизна:
1. На основе материаловедческого анализа, физического и математического моделирования, экспериментальных исследований, промышленного внедрения для производства фасонных металлозаготовок с заданными свойствами и субмикрокристаллической структурой создан новый тип композиций, защищенных приоритетными патентами и состоящих из порошков металлов, их оксидов, углерода и термореактивной фенолформальдегидной смолы.
2. Разработаны математические модели для установления фазового состава композиций «металл - оксид металла - фенолформальдегидная смола», обеспечивающего заданные реологические свойства и необходимое количество углерода как восстановителя оксидов.
3. На основе установленных закономерностей эволюции фазового, химического состава и структуры композиций обоснована и разработана двухстадийная технология термической обработки сформованных заготовок, обеспечивающая сплошность восстановленного металла и полное восстановление оксидов аморфным углеродом - продуктом термического разложения связующего с обеспечением субмикрокристаллической структуры материала заготовок. Первая стадия проводится при атмосферном давлении без доступа воздуха в интервале температур 700…800 єС, а вторая стадия - в форвакууме при температуре 800…900 єС. Установлена величина удельного расхода углерода для полного восстановления единицы массы связанного в оксидах кислорода, которая при оптимальных режимах значительно меньше (в2,5 - 3 раза) аналогичной величины в традиционных процессах получения губчатого железа.
4. Установлены физические закономерности двухстадийной кинетики процесса изменения дисперсности продуктов реакционного размола композиций отличающейся скоростью роста гранул, размер которых линейно зависит от времени на каждой из стадий, что позволяет на основе разработанной физической модели, во-первых, определять размеры гранул в зависимости от времени реакционного размола и, во-вторых, в зависимости от особенностей протекания режима реакционного размола и термической обработки композиций формировать высокодисперсные фазы с учетом особенности влияния углерода как восстановителя оксидов матричного металла и регулятора размеров гранул.
5. Для композиционных материалов на основе дисперсно-упрочненных гранул и металлических порошков разработана аналитическая методика выбора концентрации составляющих композита в зависимости от заданных физико-механических свойств (предела прочности, твердости, электропроводности, теплопроводности) и их различных сочетаний.
6. Установлены аналитические зависимости для определения деформационных и энергосиловых параметров процессов обработки давлением композиций с целью оптимизации технологических режимов компактирования, последующего формоизменения и обеспечения заданной прочности, термостойкости и сплошности изделий.
7. Разработаны аналитические зависимости для расчета размерной точности заготовок, получаемых спеканием, и проведен анализ влияния на размерные отклонения вариаций характеристик исходных материалов, технологических режимов спекания и условий обеспечения заданного поля допусков размеров заготовок из материалов различного состава.
Практическая ценность работы и ее реализация в промышленности:
1. На основе представленных в работе научных результатов и рекомендаций для практического применения предложены и внедрены два типа композиций. Для получения фасонных заготовок разработаны композиции «порошки металлов - порошки оксидов - фенолформальдегидная смола», изготавливаемые механическим смешиванием, а для получения жаропрочных дисперсно-упрочненных материалов - композиции (гранулы) из порошков металлов, порошков оксидов и углерода, изготавливаемые реакционным размолом. Первый тип композиций (Патенты РФ №2310542, №2345152, №2332430) рекомендуется для широкого применения при производстве фасонных стальных, чугунных, медных заготовок путем формования композиций, термообработки и последующего спекания или обработки давлением. Второй тип композиций рекомендуется для получения заготовок и профилей из жаропрочных материалов (Патенты РФ №2355797, №2345152). Кроме того, горячей обработкой давлением композиций, сформованных из смесей гранул, полученных реакционным размолом, медных и железных порошков, возможно получение материалов со значительным расширением диапазона свойств и, соответственно, областей их применения.
2. Разработаны технологические регламенты на изготовление композиций и изделий из них, нормативно-техническая документация на изделия (чертежи, технические условия), а также технические требования к оборудованию, проведены испытания изделий, изготовленных из композиций более чем на 10 предприятиях.
3. В ООО «Наномет» (г. Йошкар-Ола) создано опытно-промышлен-ное производство композиций на основе порошков металлов - оксидов - фенолформальдегидной смолы и заготовок из указанных композиций по патентам РФ №2310542, №2332430, №2345152. Производственная мощность по количеству формовок - 700 тыс.шт./год. Продукция поставляется на ОАО «Завод им. Г. И. Петровского» (г. Нижний Новгород) и другие предприятия. Таким образом, в промышленности внедрен новый вид материалов для получения металлозаготовок и готовых изделий сложной формы с высокими эксплуатационными свойствами и обеспечением ресурсосбережения.
4. На ООО «Завод «Купол» создано опытно-промышленное производство гранул, поковок и прутков из дисперсно-упрочненных материалов на основе меди. На производстве реализованы процессы реакционного размола и отжига гранулята, разработанные в соответствии с рекомендациями настоящей работы, выпускается продукция в соответствии с патентом РФ №2345152. Мощность производства составляет 100 тонн в год. Продукция поставляется десяткам предприятий России, а также в Германию, Китай, США, Южную Корею.
5. Разработан, изготовлен и внедрен в ООО «Наномет» (г. Йошкар-Ола) опытный образец печи толкательной с муфелем из карбида кремния для спекания заготовок.
6. На основе результатов опытно-промышленной эксплуатации созданных производств разработана конструкторская документация на механизированную линию для выпуска гранулята из дисперсно-упрочненных материалов производительностью 500 тонн/год.
7. Основные научные положения и практические рекомендации используются в учебных курсах материаловедческих специальностей Марийского государственного университета, Марийского государственного технического университета, Московского государственного вечернего металлургического института.
Апробация работы. Основные положения и результаты работы докладывались, обсуждались и получили положительную оценку на Всемирных конгрессах по порошковой металлургии (Гранада, 1998, Вена, 2004), европейских конференциях по порошковой металлургии (Мюнхен, 1997; Ницца, 2001; Планзее, 2001; Тулуза, 2007; Мангейм, 2008), международных конференциях, симпозиумах и семинарах по порошковой металлургии и новым материалам, прошедших в России (Ростов-на-Дону, 2001, 2003, 2004, 2006, 2007; Йошкар-Ола, 2005, 2008; Новочеркасск, 2004; Москва, 2006-2009; Свердловск, 2008; Пенза, 2009), в Украине (Киев, 1997, 2003; Кацивели, 2000, 2002, 2004), в Белоруссии (Минск, 2006-2008).
Публикации. Основное содержание диссертации изложено в 48 печатных работах, получено 6 патентов на изобретение.
2. Содержание работы
Во введении обоснована актуальность темы, определены цели и задачи исследований, дана характеристика результатов работы.
В первой главе приводится анализ литературных данных по новейшим методам получения заготовок из высокодисперных порошков металлов и сплавов, методам создания высокодисперсных структур. К таким методам относятся МИМ-технология, реакционный размол, процессы внутреннего окисления и восстановления. Анализ развития МИМ-технологии показывает существенное увеличение практического применения этой технологии в последние два десятилетия (на 10 - 15% в год). Значительно расширена номенклатура высокодисперсных порошков, предлагаемых их производителями. В настоящее время выпускаются сотни наименований порошков: порошки железа и его сплавов с углеродом, никелем, хромом, медью, молибденом и т.д., порошки прецизионных сплавов на основе железа, никеля и его сплавов, меди и медных сплавов. Перед формованием порошки смешивают со связующим. Эта смесь называется МИМ-фидстоком. В последние годы наблюдается тенденция использования в качестве связующих термопластов и их смесей с насыщенными углеводородами (воском, парафином). Важнейшим показателем связующего является возможность его достаточно быстрого удаления, осуществляемого либо термодеструкцией, либо растворением, либо каталитическим разрушением. Длительность цикла удаления связующего является одним из главных факторов, определяющих стоимость изделий и их конструкцию.
Спекание сформованных изделий осуществляется, как правило, в водороде, азоте или вакууме, в печах специальной конструкции, обеспечивающих точность поддержания температуры , отсутствие градиента температур по объему печи, обеспечивающих автоматически заданный режим нагрева и изотермической выдержки при температурах в интервале 0,8…0,9 от температуры плавления.
При всех достоинствах МИМ-технологии, вопросы ее совершенствования остаются актуальными. Высокая стоимость исходных порошков и их смесей со связующим, длительные циклы удаления связующего, сложное прецизионное оборудование для спекания - все это в совокупности приводит к высокой стоимости МИМ-деталей (на порядок больше стоимости точного стального литья). В результате анализа путей решения этой проблемы предложено в качестве твердофазной основы формуемых смесей применять порошки металлов и их оксидов, а в качестве восстановителя оксидов использовать углерод, образующийся при термическом разложении связующего. Такая технологическая схема до сих пор не применялась.
Предполагается, что в данном случае, в противоположность газовому восстановлению, взаимодействие оксидов с равномерно распределенным углеродом не будет приводить к различным объемным изменениям в наружных и внутренних областях заготовок, что позволит избежать их растрескивания. Анализ публикаций Джонса В.Д., Кипарисова С.С., Лопатина В.Ю., Либенсона Г.А., Любимова В.Д., Манукяна Н.В., Радомысельского И.Д., Самсонова Г.В., Уваровой И.В. и др., посвященных углеродному восстановлению высокодисперсных оксидов железа и меди, показывает, что до сих пор исследовались процессы применительно к получению губчатых металлов и порошков. Особенности восстановления оксидов, сформованных в заготовки, продуктом разложения связующего мало изучены. Не разработаны критерии и методы определения фазового состава композиций «металлы - оксиды - связующее» с учетом его влияния на реологические свойства композиций и, соответственно, на их формуемость.
Анализ показал, что для получения перерабатываемых в заготовки композиций «металлы - оксиды - углерод» может стать эффективным применение реакционного размола, поскольку в данном случае возможно использование исходных материалов невысокой дисперсности, а, следовательно, невысокой стоимости. Кроме того, открываются новые возможности создания дисперсно-упрочненных структур получаемых материалов, как это показано в работах Витязя П.А., Левинского Ю.В., Ловшенко Г.Ф., Ловшенко Ф.Г., Матросова В.Л., Шалунова Е.П. и других ученых. В этом плане большую актуальность приобретает изучение эволюции свойств материалов, полученных из композиций «металлы - оксиды - углерод» с применением реакционного размола и последующей термической обработки в связи с изменением дисперсности продуктов реакционного размола таких систем (гранул), поскольку от размеров гранул зависит степень деформационного воздействия на материал и, следовательно, интенсивность прохождения окислительно-восстановительных процессов, инициированных деформацией.
Большой интерес представляет разработка процессов компактирования и формообразования композиционных материалов, полученных из смесей дисперсно-упрочненных гранул и металлических порошков, поскольку в данном случае открываются новые возможности получения заданных физико-механических свойств материалов и снижения их стоимости. Основы этих процессов заложены в работах Бальшина М.Ю., Григорьева А.К., Дмитриева А.Н., Дорофеева Ю.Г., Друянова Б.А, Лаптева А.Н., Кохана Л.С., Романа О.В., Скорохода В.В. и др.
На рис. 1 представлена новая обобщенная технологическая схема, с применением которой композиции из металлов, их оксидов и углерода могут быть переработаны в фасонные заготовки и профили. Имеющиеся технические данные и теоретические оценки показывают возможность реализации этой схемы. Вместе с тем, для того чтобы разработать промышленную технологию, необходимы комплексные исследования основных операций этой схемы, что определило цель работы и задачи исследований.
Рис. 1. Обобщенная технологическая схема получения заготовок и полуфабрикатов с восстановлением оксидов углеродом
Во второй главе изложены результаты теоретических исследований и экспериментов, на основе которых разрабатывались методики определения количественного фазового состава композиций «порошки металлов - порошки оксидов - термореактивная фенолформальдегидная смола (ФФС)» для получения фасонных заготовок и композиций «порошки металлов - порошки оксидов - углерод» для получения жаропрочных дисперсно-упрочненных материалов с применением реакционного размола.
Состав первых композиций для получения фасонных заготовок определяется особенностями его влияния на вязкость композиций и одновременно необходимостью обеспечения полного восстановления оксида углеродом, образующимся при термическом разложении связующего.
Исходя из разработанной нами модели и анализа экспериментальных результатов по определению вязкости композиций, относительная вязкость композиции, содержащей один наполнитель и связующее, может быть рассчитана по уравнению:
, (1)
где и - вязкости композиции и связующего;
A - коэффициент, различный для разных видов твердофазного наполнителя и определяемый экспериментально, например, для наполнителя - порошка стали 316L;
- объемное содержание твердой фазы;
- критическое объемное содержание твердой фазы, при котором композиция теряет текучесть.
Уравнение (1) с точностью 5 - 7% согласуется с экспериментальными данными в интервале изменения величины от 0,1 до 0,9 от величины.
Для композиций, в которых твердая фаза состоит из двух компонентов (металлический порошок + оксид) при условии, что размеры частиц оксида значительно (на порядок) меньше размеров частиц металла, относительная вязкость может быть рассчитана согласно нашим аналитическим исследованиям по зависимости (2). В этом случае смесь «оксид - связующее» играет роль нового связующего для металлической фазы.
, (2)
где - объемное содержание металлического порошка в композиции в целом;
- объемное содержание оксида в системе «оксид - связующее»;
и - критические объемные содержания металлического порошка и оксида, соответственно.
Другие обозначения аналогичны обозначениям уравнения (1).
Общее объемное содержание в композиции твердой фазы () будет составлять
.
Особое внимание уделялось определению возможных значений величин ,и . С этой целью аналитически и экспериментально исследовались зависимости изменения величины от вариаций величин , и (рис. 2). Значения величин и приняты 0,605 и 0,55, соответственно, на основе анализа наших исследований и имеющихся опубликованных экспериментальных данных.
Отметим, что ход кривых на рис. 2 согласуется с известным положением о том, что вязкость МИМ-фидстоков и, соответственно, критическая величина общего объемного содержания твердой фазы могут регулироваться за счет помещения в промежутках между частицами крупной фракции более дисперсных частиц.
Анализ характера зависимости от (рис. 2) показывает, что при величине объемного содержания твердой фазы в узких пределах 0,5ч0,6 существует достаточно широкая область изменения величины , в которой вязкость имеет минимальные значения, изменяясь незначительно с изменением . При выходе за указанную верхнюю границу объемного содержания твердой фазы вязкость возрастает во много раз, характер ее зависимости от резко изменяется. Для обеспечения стабильных реологических свойств композиций при формовании необходимо выдерживать объемное содержание твердой фазы в пределах 0,5ч0,6.
Рис. 2. Зависимость величины от при различной степени наполнения
Наконец, окончательный переход от относительных величин к массе компонентов в единичном объеме осуществляется с помощью системы уравнений:
(3)
где и - масса и плотность связующего;
и - масса и плотность оксида;
и - масса и плотность порошка металла.
Система (3) должна удовлетворять следующему физическому равенству:
(4)
Дополняющим условием, уточняющим фазовый состав композиций, является необходимость соблюдения баланса по углероду, количество которого должно быть достаточным для восстановления оксидов и остаточного содержания в сплаве. Исходя из проведенных нами исследований, на восстановление 1 кг оксида требуется 0,169 кг углерода. Обозначая коксовое число связующего через k, устанавливаем соотношение между массой оксида и массой связующего:
(5)
Совместное решение уравнения (4) и неравенства (5) определяет величину максимальных значений и от массы и остаточного содержания углерода в сплаве. Наложение результатов этих расчетов на область возможных изменений величин и , полученную из исследований вязкости, определяет область возможного существования композиций. В данной главе разработаны математические модели, по которым получены табличные результаты расчетов и составлены аналитические зависимости для оптимизации фазового состава композиций на примере железа и меди.
Анализ литературных данных, результаты предварительных экспериментов и расчетов позволили сделать вывод, что реакционный размол как метод получения высокодисперсной твердой фазы в композициях, предназначенных для получения фасонных заготовок, целесообразно применять для материалов на основе железа и нецелесообразно для материалов на основе меди, поскольку при реакционном размоле меди преобладают процессы консолидации частиц, а при реакционном размоле железа - процессы деконсолидации.
Методы расчетов фазового состава композиций, состоящих из размолотого порошка железа, его оксида и ФФС, аналогичны изложенным ранее с учетом необходимости внесения поправок на изменение количества углерода и кислорода при реакционном размоле.
Принципы определения фазового состава дисперсно-упрочненных материалов, получаемых с применением реакционного размола, изучались на примере композиций Cu - CuO - Al - C. Известно, что одним из важнейших параметров, характеризующих процесс реакционного размола, является кинетика изменения размеров продукта реакционного размола - гранул. Установлено, что зависимость размера гранул от количества углерода имеет максимум при содержании углерода в композициях около 0,05% весовых. При увеличении содержания углерода до 0,25% размеры гранул уменьшаются в 4 - 5 раз, а при дальнейшем увеличении количества углерода зависимость имеет более пологий характер, что важно для получения стабильного размера гранул. Многофакторный анализ гранулометрического состава композиций показал, что процесс гранулообразования имеет две стадии, причем в пределах каждой из стадий имеет место линейная зависимость среднего размера гранул от времени реакционного размола.
Длительность первой стадии увеличивается при уменьшении удельной энергии обработки. Моделирование процессов, происходящих при реакционном размоле в аттриторе, и анализ экспериментальных результатов показывают, что на первой стадии, при наличии большой доли мелкой фракции исходного медного порошка, энергии соударения шаров достаточно для консолидации частиц и скорость роста гранул высока. На второй стадии уменьшается количество частиц, для которых энергии соударения шаров достаточно для их консолидации и скорость роста гранул уменьшается.
При определении количества углерода, вводимого в композиции, подвергаемых реакционному размолу, необходимо учитывать двоякую роль, которую играет углерод в рассматриваемой технологии. С одной стороны, углерод является регулятором размеров гранул, тем самым воздействуя на энергетические параметры деформации гранул, интенсивность пластической деформации гранул и инициированные деформацией твердофазные взаимодействия. С другой стороны, углерод является восстановителем избыточных оксидов, остающихся после полного окисления алюминия. Количество алюминия выбирается из заданного объемного содержания фазы , количество оксида меди берется с избытком для полного окисления алюминия по реакции . В дальнейшем, для исследований, использовались композиции, состав которых приведен в табл. 1.
Таблица 1 Исходный состав композиций для реакционного размола
№ состава |
Содержание компонентов, % масс. |
||||
порошок меди ПМС-1 |
порошок алюминия ПП-1 |
порошок оксида (II) меди |
порошок графита ГК-3 |
||
1 |
96,45 |
0,5 |
2,80 |
0,25 |
|
2 |
99,25 |
0,5 |
- |
0,25 |
В третьей главе приведены результаты исследований технологических параметров термической обработки исследуемых композиций и эволюции их фазового состава. Эти параметры имеют специфику в зависимости от назначения композиций. Для композиций, предназначенных для получения фасонных заготовок, в процессе термической обработки осуществляется разложение связующего и восстановление оксидов высокодисперсным углеродом. Если композиции предназначены для получения дисперсно-упрочненных материалов с применением реакционного размола, термическая обработка должна обеспечить завершение окисления алюминия и восстановление оксида меди углеродом.
Исследования по удалению связующего (ФФС) осуществлялись путем нагрева образцов в виде шайб с наружным, внутренним диаметром и высотой 31х15х4,5мм. В качестве металлического наполнителя использовался порошок карбонильного железа со средним размером частиц 4-6 мкм, а в качестве оксидной фазы - оксид железа (Fe2O3) со средним размером частиц в пределах 0,3 - 0,4мкм, что соответствует установленным во второй главе требованиям по соотношению дисперсности металлической и оксидной фаз. При нагреве в интервале температур 700…800 оС в результате деструкции связующего в межчастичном пространстве выделяется углерод, количество которого равно коксовому числу смолы. Установлено, что допустимые скорости нагрева, не приводящие к образованию трещин и других дефектов, примерно на порядок выше, чем для МИМ-фидстоков на основе термопластов. При нагреве образцов на воздухе имеют место большие потери углерода, а также плохо контролируемое окисление образцов. В последующем этот технологический вариант не применялся и нагрев производился без доступа воздуха.
Кроме разложения смолы в интервале температур 700…800 оС, имеет место частичное восстановление оксида железа, а также увеличение плотности за счет интенсивной объемной усадки, составляющей в этом интервале температур 13%, 18% и 24% при температурах 700 єС, 750 єС и 800 єС, соответственно. Степень восстановления, определяемая как отношение количества удаленного кислорода к его первоначальному содержанию, при этих же температурах нагрева для прессовок из композиции №4 (табл. 2) составляет 0,19; 0,4 и 0,87. Дальнейшими экспериментами установлено, что при нагреве до 900 єС и выше, вплоть до температуры 1100 єС, достигнуть полного восстановления не удается в связи с интенсивным спеканием, сопровождаемым зональным обособлением усадки с образованием закрытых пор, из которых затруднено удаление газовых продуктов реакции восстановления.
Таблица 2 Степень восстановления оксидов в вакууме при температуре 800 єС
Номер композиции |
1 |
2 |
3 |
4 |
|
Величина отношения Ск/Св |
1,025 |
1,09 |
1,36 |
1,5 |
|
Степень восстановления после времени нагрева (мин) |
|||||
60 |
0,38 |
0,58 |
0,81 |
0,99 |
|
120 |
0,84 |
0,85 |
0,95 |
1,0 |
|
180 |
0,84 |
0,86 |
0,95 |
1,0 |
Анализ показал, что эффективным вариантом решения этой проблемы является осуществление процесса восстановления в вакууме, поскольку суммарная реакция при удалении должна сдвигаться вправо и процесс восстановления будет ускоряться (его можно осуществлять при более низкой температуре, когда спекание еще не приводит к образованию закрытых пор и агломерации).
Изучение вакуумного восстановления осуществлялось на композициях с различной величиной отношения Ск/Св (см. табл. 2), где Ск - количество кокса, выделяемого при деструкции связующего; Св - стехиометрическое расчетное количество углерода, необходимое для восстановления оксида в композиции данного состава по суммарной реакции .
Результаты по определению степени восстановления, приведенные в табл. 2, показывают, что рецептура композиций оказывает существенное влияние на эту величину. Увеличение степени восстановления при увеличении отношения Ск/Св связано с тем, что выдержка образцов в форвакууме приводит к обезуглероживанию, в связи с чем углерод расходуется не только на восстановление, но и на окисление остаточным кислородом. Как следует из табл. 2, для полного восстановления отношение Ск/Св должно быть около 1,5. В итоге полное восстановление достигается при отношении количества углерода к количеству кислорода, равном 0,56. Эта величина значительно меньше рекомендуемой при получении железного порошка восстановлением углеродом оксидов невысокой дисперсности (отношение масс углерода и кислорода - 3:2, Джонс В.Д.). Наряду со снижением температуры восстановления этот факт является особенностью вакуумного восстановления высокодисперсных оксидов, находящихся в металлической матрице. Механизм этого процесса требует дополнительного изучения.
Эволюцию фазового состава при двухстадийном отжиге на примере композиции №4 (см. табл. 2) иллюстрируют данные табл.3, а также результаты металлографических исследований (рис. 3 и 4).
Таблица 3 Изменение фазового состава композиций при двухстадийном отжиге
Фазы |
Содержание фаз, %масс |
|||
в прессовке |
отжиг 750єС без доступа воздуха, 2 часа |
отжиг 800єС, вакуум, 2 часа |
||
|
46,88 |
63,0 |
99,9 |
|
оксиды железа |
39,04 () |
32,3 (,) |
--- |
|
|
14,08 |
--- |
--- |
|
углерод |
--- |
4,7 |
0,1 |
|
Итог |
100 |
100 |
100 |
а) б)
Рис. 3. Структура композиции №4 после прессования (а) и отжигапри 750 єС (б), х300. Светлые точки и скопления - восстановленное железо
а) б)
Рис. 4. Морфология структуры губчатого железа, восстановленного в вакууме, полученная на зондовом микроскопе при площади сканирования: а) 100х100 мкм; б) 3х3 мкм
Продуктом восстановления могут быть как пористые фасонные заготовки, которые в последующем могут подвергаться спеканию, холодной и горячей штамповке, изостатическому прессованию, так и губчатое железо с субмикрокристаллической структурой, которое подлежит переделу в поковки, прутки или профили, а также в порошки.
Исследование технологических параметров термической обработки композиций, полученных реакционным размолом, осуществлялось на примере состава №1, приведенного в табл. 1. После реакционного размола полученный гранулят отжигался в камерных печах в контейнерах специальной конструкции. Для исключения доступа воздуха использовался плавкий затвор. Гранулят состава №2 не отжигался.
После отжига гранулят состава №1 и гранулят состава №2 компактировались в брикеты, которые подвергались горячему прессованию с величиной вытяжки до 10. На полученных прутках определялись электропроводность, механические свойства, температура рекристаллизации, исследовалась структура с применением металлографии, рентгеновского фазового анализа, электронной микроскопии. Для определения влияния времени реакционного размола на структуру и свойства материалов отжигу и последующему компактированию подвергался гранулят, полученный при различном времени реакционного размола (рис. 5).
Рис. 5. Твердость и электропроводность образцов при различном времени реакционного размола: 1-2 - твердость; 3-4 - электропроводность; 1-3 - состав №1; 2-4 - состав №2
Установлено, что изменение массы, потери массы при дополнительном отжиге в водороде, содержание углерода стабилизируются после 240 минут отжига. При этой же длительности отжига достигают асимптотических значений электропроводность и твердость материалов.
Результаты измерения электропроводности и химического состава образцов свидетельствуют о том, что в композиции №1, содержащей внутренний окислитель () и прошедшей термическую обработку, медная матрица содержит минимальное количество растворенного алюминия и, следовательно, весь алюминий окислен и присутствует в виде оксида . Это подтверждается данными табл. 4.
Таблица 4 Изменение фазового состава композиции №1
Фазы |
Содержание фаз, % масс. |
|||
исходная рецептура |
гранулы после РР |
гранулы после отжига |
||
|
96,45 |
95,88 |
98,68 |
|
|
2,8 |
3,24 |
0,25 |
|
(своб.) |
0,5 |
--- |
--- |
|
(в тв.растворе) |
--- |
0,3 |
0,04 |
|
|
--- |
0,38 |
0,95 |
|
С |
0,25 |
0,20 |
0,08 |
|
Итого |
100 |
100 |
100 |
В композиции №2, не содержащей внутреннего окислителя и не прошедшей термическую обработку, количество растворенного алюминия в процессе реакционного размола увеличивается и это приводит к снижению электропроводности.
Исследования, выполненные с применением просвечивающей электронной микроскопии (рис. 6), показали, что структура материала, полученного из композиции №1, представляет собой зерна матричного металла, размерами 150 - 300 нм, с расположенными по границам зерен включениями , размерами 30 - 60 нм. Обнаружено также незначительное количество промежуточной фазы .
Рис. 6. Типичная структура материала, полученного из состава №1 (х100000)
Таким образом, установлено, что при использовании в качестве окислителя кислорода, образующегося в результате деформационного растворения при реакционном размоле оксида меди, а в качестве восстановителя - образующегося при реакционном размоле высокодисперсного углерода и при применении отжига композиций после реакционного размола в течение определенного времени, обеспечивается получение материала на основе меди с «чистой» матрицей с субмикрокристаллической структурой и дисперсно-упрочненной наноразмерными частицами , что гарантирует высокий уровень физико-механических свойств материалов металлоизделий.
В четвертой главе изложены результаты исследований свойств материалов, полученных из восстановленных композиций «металлы - оксиды - углерод» спеканием и горячим прессованием.
Для выявления основных закономерностей спекания была выбрана низколегированная углеродистая сталь, содержащая 2% никеля и 0,2% углерода (аналог MIM - ). С целью определения влияния содержания оксида железа на спекаемость было изготовлено несколько композиций, содержащих железо и оксид железа в различном соотношении. После удаления ФФС и вакуумного отжига образцы в виде шайб с наружным, внутренним диаметром и высотой 31х15х4,5 мм спекались в интервале температур 1050…1350 оС. Зависимость относительной плотности спеченного материала от массовой доли оксида в твердой фазе исходных композиций имеет сложный характер. Так, до значения величины отношения наблюдается примерное постоянство плотности.
Дальнейшее увеличение содержания оксида приводит к уменьшению плотности, при этом эффект уменьшения плотности при увеличении доли оксида проявляется тем больше, чем ниже температура спекания, и почти не проявляется при высоких температурах спекания (1250…1350 оС), которые обычно применяются при спекании МИМ-фидстоков с твердой фазой в виде стального порошка. Установленные закономерности имеют методический характер и применяются при выборе температур спекания и рецептуры композиций в зависимости от назначения изделий и технологической схемы их получения. Так, для получения пористых заготовок для фильтрующих элементов или заготовок, подвергаемых в дальнейшем пропитке, рекомендуется применять композиции с большим содержанием оксидов и спекаемые при низких температурах. Из таких заготовок могут быть получены и высокоплотные изделия с применением их обработки давлением.
Изделия с относительной плотностью 0,95 - 0,97, полученные спеканием при высоких температурах (1250…1350 оС), могут изготавливаться из композиций, в которых содержание оксида ограничено только требованиями по реологическим свойствам и достаточности углерода, рассмотренными в главе 2. Металлографическим, рентгеновским методами и химическим анализом оксиды в материалах, спеченных по оптимальным режимам, не обнаружены. Предел прочности на растяжение и относительное удлинение стали, спеченной по оптимальным режимам, составляют , , что не уступает аналогичным показателям, рекламируемым зарубежными фирмами.
В главе 3 показано, что реакционный размол в совокупности с отжигом композиций приводит к образованию дисперсно-упрочненных структур . Эти материалы не могут быть скомпактированы спеканием. Для этих целей нами применялись горячее прессование и закрытая осадка. Так, композиция №1, исходный состав которой приведен в табл. 1, после реакционного размола и отжига была получена в виде гранул средним размером 200-300 мкм. Гранулы прессовались в брикеты массой 5 кг. Затем эти брикеты нагревались без доступа воздуха и прессовались в прутки, диаметром от 16 до 40 мм, на гидравлическом прессе в блоке с удаляемым прессостатком. Кроме того, брикеты подвергались закрытой осадке при давлении 800 МПа.
Исследования механических свойств показали, что при практически неизменной величине прочности на растяжение изменение степени вытяжки приводит к существенному изменению относительного удлинения. Так, для композиции состава № 1 увеличение степени вытяжки с 5 до 15 повышает относительное удлинение с 8% до 15%. В табл. 5 приведены физико-механические свойства материала, полученного при оптимальных режимах, в сравнении с хромциркониевой бронзой, которую разработанный материал успешно заменяет при изготовлении сварочных электродов и электрических контактов.
...Подобные документы
Изучение промышленных способов получения металлов. Электрометаллургия - под действием электрического тока. Гидрометаллургия - на основе химических реакций в растворах. Пирометаллургия - при высоких температурах. Металлотермия - выделение из оксидов.
презентация [3,8 M], добавлен 31.01.2012Требования к детали "Крышка шатуна" с заданными механическими свойствами. Выбор материала. Получение заготовки литьем в песчано–глинистые формы. Разработка чертежа отливки с припусками, допусками. Технология термической и механической обработки.
курсовая работа [1,4 M], добавлен 16.11.2012Основные свойства материала, методы получения монокристалла. Расшифровка марки материала, описание его свойств и методов получения. Вывод распределения примеси. Выбор технологических режимов и размеров установки. Алгоритм расчета легирования кристалла.
курсовая работа [917,6 K], добавлен 30.01.2014Анализ свариваемости трубы из углеродистой стали. Выбор вида автоматической сварки для изготовления шва с заданными свойствами. Разработка технологического процесса согласно расчетам и операциям по ЕСТД. Выбор оборудования и методов оптимизации сварки.
дипломная работа [936,9 K], добавлен 27.11.2014Роль реакции взаимодействия твердого углерода с кислородсодержащей газовой фазой в металлургических процессах. Восстановление оксидов железа оксидом углерода и водородом. Определение активности компонентов расплава. Раскисление металлических расплавов.
контрольная работа [427,4 K], добавлен 25.09.2013Определение содержания элементов в шихте с учетом угара, их описание. Балансовое уравнение по углероду. Обеспечение получения жидкого чугуна с заданными механическими свойствами. Химический состав шихтовых материалов и технические условия на отливку.
практическая работа [24,9 K], добавлен 30.01.2010Комплексная автоматизация технологической схемы процесса получения углеродогазовой смеси. Выполнение чертежа общего вида реактора и теплообменника с плавающей головкой. Расчет основных технико-экономических показателей производства технического углерода.
дипломная работа [431,0 K], добавлен 25.06.2015Гидрометаллургические способы получения цветных металлов в металлургической промышленности. Процесс получения металла высокой чистоты с помощью растворов. Сведения об алюминии, сырьё для глинозёма, получение алюминатно-щелочного раствора из бокситов.
реферат [34,7 K], добавлен 14.09.2012Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.
презентация [2,4 M], добавлен 19.02.2015Технология и химические реакции стадии производства аммиака. Исходное сырье, продукт синтеза. Анализ технологии очистки конвертированного газа от диоксида углерода, существующие проблемы и разработка способов решения выявленных проблем производства.
курсовая работа [539,8 K], добавлен 23.12.2013Строение полупроводникового материала группы АIIIВV – GaAs, сравнение свойств арсенида галлия со свойствами кремния, способы получения, использование в качестве деталей транзисторов. Перспективы развития технологии изготовления приборов на его основе.
курсовая работа [2,6 M], добавлен 04.12.2012Способы получения алюминиево-кремниевых сплавов. Процесс углетермического восстановления оксидов кремния и алюминия. Механизм и кинетика процесса восстановления алюмосиликатных шихт в диапазоне составов силикоалюминия с использованием восстановителя.
автореферат [439,3 K], добавлен 16.06.2009Сущность процессов спекания изделий из порошков. Особенности получения отливок из медных сплавов. Технологический процесс ковки, ее основные операции. Производство стали в дуговых электрических печах. Способы электрической контактной сварки металлов.
контрольная работа [208,1 K], добавлен 23.05.2013Определение понятия металлов как простых веществ, обладающих характерными свойствами: высокой электро- и теплопроводностью, отрицательным температурным коэффициентом, способностью отражать электромагнитные волны, высокой прочностью и пластичностью.
контрольная работа [428,6 K], добавлен 26.10.2011Представление о направлениях и тенденциях химизации в мире. Проблемы энергетики и направления использования традиционного топлива и перспективных источников энергии. Создание материалов с заданными свойствами. Достижения химии в сельском хозяйстве.
лекция [95,1 K], добавлен 09.10.2009Рассмотрение электролитического и металлотермического методов получения лантаноидов. Метод восстановления окислов в вакууме с одновременной дистилляцией металлов. Металлургический расчет процесса восстановления фторидов редкоземельных металлов кальцием.
курсовая работа [282,6 K], добавлен 30.01.2011Современные способы повышения качества металлов и сплавов. Подготовка руд к доменной плавке. Устройство и работа доменной печи. Сущность технологического процесса изготовления деталей и заготовок порошковой металлургией. Производство цветных металлов.
дипломная работа [6,3 M], добавлен 16.11.2011Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Антиадгезионные покрытия, применяемые в пищевой промышленности. Светопропускание оксидов металла. Метод распыления пульверизатором из спиртовых растворов. Методика измерения оптической плотности и мутности пластин и пленок из полимерных материалов.
курсовая работа [548,2 K], добавлен 11.06.2017Исследование основ порошковой металлургии. Изучение основных способов получения и технологических свойств порошков. Изготовление металлокерамических деталей. Приготовление смеси, спекание и окончательная обработка заготовок. Формообразование деталей.
курсовая работа [538,0 K], добавлен 11.10.2013