Научные основы и технологические способы обработки гетерофазных сплавов с высоким уровнем конструктивной прочности
Изучение закономерностей формирования структуры и фазовых превращений при ускоренном охлаждении малоуглеродистых низколегированных сталей при различных интервалах температур и ступенчатой закалки. Технологические способы обработки гетерофазных сплавов.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 08.02.2018 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Экспериментальное исследование деформационного упрочнения проводилось на образцах, предварительно деформированных при комнатной температуре интенсивным растяжением. Для стандартных механических испытаний использовались пятикратные образцы диаметром 6 мм, скорость растяжения составляла 5·10-4с-1, диаграммы записывались в масштабе 100:1. На каждый вариант обработки испытывали по три образца.
Найдено, что наиболее сильное влияние на изменение механических свойств оказывают начальные несколько процентов предварительной деформации. Так, первые три процента пластической деформации стали 05Г2С2 приводят к повышению предела текучести на 360 МПа, в то время как последующие семь процентов - только на 100 МПа. Влияние предварительной пластической деформации с высокими степенями на временное сопротивление более слабое, чем на предел текучести, что приводит с ростом еп к увеличению 0,2 В за счет постепенного исчерпания пластичности (снижения р, ).
Переход от феррито-мартенситной к феррито-бейнитной структуре и далее феррито-перлитной заметно уменьшает интенсивность деформационного упрочнения. При этом с ростом степени предварительной деформации пластические характеристики закономерно снижаются. Такое поведение механических характеристик обусловлено структурными изменениями, происходящими в металле при холодной деформации, которые были изучены электронно-микроскопически.
Для изучения взаимодействия примесных атомов с дислокациями использовались методики амплитудной и температурной зависимостей внутреннего трения (АЗВТ и ТЗВТ, соответственно).
Установка для измерения параметров АЗВТ и ТЗВТ представляла собой прямой крутильный маятник с резонансной частотой 20 Гц. Применялись цилиндрические образцы с диаметром рабочей части 4 мм и длиной 36 мм. Оценивался логарифмический декремент затухания и амплитуда колебаний образца.
Данные электронно-микроскопического анализа совместно с результатами, полученными методом внутреннего трения, позволили дать следующую интерпретацию закономерностей деформационного упрочнения ДФМС. На начальных этапах пластического течения (е меньше или порядка 5 %) происходит снятие остаточных сжимающих напряжений в феррите, возникших при мартенситном превращении, и значительное увеличение плотности дислокаций в результате стесненной деформации феррита вокруг мартенситных участков. Эти факторы приводят к высокой скорости деформационного упрочнения. При дальнейшей деформации, когда происходит образование дислокационной ячеистой структуры, напряжение течения зависит не от общей плотности дислокаций, а от размера дислокационных ячеек, который очень слабо уменьшается с повышением степени деформации. Кроме того, с ростом деформирующего напряжения в пластическое течение начинает вовлекаться и мартенсит, что приводит к снижению интенсивности деформационного упрочнения.
На основе результатов исследования характеристик деформационного упрочнения ДФМС построены диаграммы упрочнения сталей, испытавших предварительную деформацию после различных режимов охлаждения. С помощью этих диаграмм, задавая степень деформации, необходимую для изготовления детали или требуемых эксплуатационных характеристик, выбирается либо структура, получаемая в данной стали при определенной скорости охлаждения, либо марка стали, обеспечивающая при заданном режиме термической обработки необходимый комплекс прочностных и пластических характеристик готового изделия.
В главе шестой анализируются результаты исследований влияния напряженного состояния на пластичность ДФМС.
В промышленных условиях изготовления деталей методами холодного деформирования используются различные схемы напряженного состояния. В данной работе на примере сталей 10кп и 05Г2С2 рассмотрено влияние типа микроструктуры (феррито-перлитной и феррито-мартенситной) на пластичность Лр при различных значениях показателя напряженного состояния S/T (S - среднее нормальное напряжение, Т - интенсивность касательных напряжений) и параметра Лоде мS, характеризующего схему приложения главных напряжений.
Использовались две схемы нагружения - одноосное растяжение и кручение, осуществляемые под гидростатическим давлением. В первом случае s = -1, во втором s = 0. Примененная методика позволила изменять показатель напряженного состояния S/T в диапазоне, соответствующем различным видам холодного формоизменения, при этом параметр Лоде не зависел от давления Р и оставался неизменным в процессе испытания. Так, при s = - 1 значения S/T = -1 0,5 соответствуют волочению проволоки, значения S/T = -2 -1 - высадке через матрицу и гидропрессованию.
Испытания на растяжение и кручение проводили на универсальной установке УВД-10, изготовленной на базе испытательной машины ZDMI-30t, на образцах с рабочим диаметром 4 мм и длиной 20 мм. При растяжении пластичность р определяли по формуле:
, (6)
где d о - диаметр образца в исходном состоянии; dр - диаметр образца в момент разрушения.
При кручении для определения р использовалось уравнение:
р = tg p - tg o , (7)
где o и p - углы наклона риски, напечатанной типографским способом на поверхности образца, к образующей до испытания и в момент разрушения.
Установлено, что при жесткой схеме нагружения, соответствующей, например, растяжению без наложения гидростатического давления, величина пластичности р сталей 10кп и 05Г2С2 с феррито-перлитной и феррито-мартенситной структурой примерно равна. В то же время при мягких схемах нагружения в области сжимающих напряжений, когда S/T<0, отчетливо видны преимущества в деформируемости ДФМС. При S/T<0 и s = - 1, что соответствует таким широко применяемым операциям холодного формоизменения как высадка, волочение, прессование и т.д., обе стали в одинаковом структурном состоянии имеют близкую пластичность р при разных значениях показателя напряженного состояния S/T. Следовательно, при данной схеме нагружения (s = -1) обе стали обладают одинаковой деформируемостью, хотя в обоих структурных состояниях временное сопротивление стали 05Г2С2 в 1,3-1,4 раза выше, чем стали 10кп.
Для конструкционных материалов необходимо определенное сочетание прочностных и пластических свойств. Исходя из этого, в работе изучалось также влияние показателя напряженного состояния S/T на величину удельной работы деформации образца до разрушения Ар, интегрально учитывающей его прочностные и пластические характеристики:
, (8)
где S - сопротивление деформации.
Кривую упрочнения двухфазной стали аппроксимировали уравнением Холломона
S = Сn
а феррито-перлитной стали - уравнением Людвига
(S = Sт + m
В результате получили следующие приближенные выражения для удельной работы деформации до разрушения, соответственно, для стали с феррито-мартенситной и феррито-перлитной структурой:
и , (9)
здесь - сопротивление деформации в момент разрушения; Sт - предел текучести; m - коэффициент в уравнении Людвига. Значение коэффициентов m и n находили по кривым деформационного упрочнения изучаемых сталей.
Построение зависимости
Ар = f(S/T)
показала, что стали с феррито-мартенситной структурой обладают значительно более высоким Ар по сравнению со сталями феррито-перлитной структурой во всем диапазоне показателя напряженного состояния S/T. В одинаковом структурном состоянии и равном значении S/T сталь 05Г2С2 имеет гораздо более высокий уровень Ар , чем сталь 10кп. Такая же картина сохраняется при кручении с наложением гидростатического давления (s = 0), соответствующем прокатке, особенно, при S/T - 1.
В главе седьмой приводятся результаты исследования деформационного упрочнения гетерофазных материалов на микроуровне.
Автором диссертации совместно с профессором Смирновым С.В. разработана методика определения свойств микрообъектов (МОСМ), позволяющая строить диаграммы упрочнения отдельных структурных составляющих многофазной системы при пластической деформации. Для тестирования прочностных свойств и деформационного поведения структурных составляющих использован метод микротвердости с инденторами в виде конусов с углами при вершине ц = 90, 120, 140 и 160о.
Исходной информацией для расчетов явились наборы значений глубины вдавливания индентора hi (на практике удобнее замерять диаметр отпечатка
di = 2 hi / ctg (ц/2)
при нагрузке Pi при определенном ц, по которым рассчитывались зависимости Рц(h).
На исследуемую поверхность образца наносится координатная сетка, ячейки которой являются поперечным сечением элементов объема ДVkl. Полученные данные di - Pi при ц = const приводятся к одним базовым значениям, усредняются и формируются в массивы Мц(Д). Используя Мц(Д) и зависимость Рц(h), с помощью созданного программного комплекса “ITOG” решаются системы уравнений, описывающих работу, которая затрачивается на деформацию материала при внедрении индентора, и строится диаграмма упрочнения.
Проверка работоспособности предлагаемой методики на образцах стали 10 с феррито-перлитной структурой показала, что диаграмму упрочнения можно описать уравнением уS = 595·Л0,22 (МПа) и удовлетворительное совпадение с диаграммой растяжения цилиндрических образцов из того же материала.
Возможности МОСМ для исследования микрообъектов на примере феррита в армко-Fe (0,01 мас.% С; 0,017 мас.% Mn; 0,02 мас.% Si) и в стали 10 (0,09 мас.% С; 0,15 мас.% Mn; 0,17 мас.% Si) и перлита в стали 10. Применялись специальные конические микроиндентеры из сплава на основе карбида вольфрама. В качестве инвариантной характеристики пластичности использовался параметр Л - степень деформации сдвига; тогда первая производная сопротивления деформации по её степени dу/dЛ является характеристикой деформационного упрочнения.
Построение с помощью программного комплекса “ITOG” диаграммы упрочнения показывают, что на первых стадиях деформирования скорость упрочнения перлита существенно выше, чем феррита. По мере увеличения Л скорости деформационного упрочнения обеих структурных составляющих постепенно сравниваются.
Полученные закономерности деформационного упрочнения феррита и перлита были использованы для прогнозирования макроскопмческой зависимости у -Л для стали 10 с учетом правила смесей и зернограничного упрочнения. Средние размеры зерен феррита и перлита после каждой степени деформации определялись металлографически на поперечных шлифах.
Установлено, что до Л ? 0,3 перлит слабо участвует в пластической деформации стали. Полное выравнивание степеней деформации феррита и перлита происходит при Л > 1,4.
Сравнение рассчитанной макроскопической диаграммы упрочнения стали 10 с экспериментальной диаграммой растяжения цилиндрических пятикратных образцов показало удовлетворительное совпадение, что свидетельствовало о применимости разработанной методики оценки механических свойств отдельных микроструктурных составляющих многокомпонентных материалов.
Детальный анализ процессов, протекающих при различных операциях термообработки, позволил сформулировать основные моменты, ответственные за создание двухфазных феррито-мартенситных сталей:
- прецизионное использование фазовых превращений по схеме:
Ф + П (нагрев) А (охлаждение) Ф + М (Б) ;
- дозированное формирование при нагреве в отдельных микрообъемах аустенита с повышенным содержанием углерода;
- дальнейшее обогащение в ходе выделения избыточного феррита нераспавшегося аустенита.
Таким образом, основным условием создания ДФМС, регулирования их структуры и механических свойств является целенаправленное образование аустенита, обогащенного до заданного уровня углеродом, что обеспечивает при охлаждении с необходимой скоростью формирование оптимального количества мартенсита (бейнита) с определенным содержанием углерода (твердостью).
На примере собственных разработок рассмотрена технология производства изделий, где используется высокая пластичность сталей с гетерофазной феррито-мартенситной структурой в сочетании с большой скоростью деформационного упрочнения.
На “Турбомоторном заводе” совместно с автомобильным заводом (“Москвич”), машиностроительным заводом (г. Екатеринбург) изучена возможность изготовления деталей крепежа, в том числе гаек М6-М12 методом холодной высадки. Заготовкой служила проволока из стали 10кп, в которой феррито-мартенситная структура формировалась закалкой в масле после нагрева на 760оС с выдержкой 30 мин. Отмечено удовлетворительное формообразование (хорошо сформированные грани и ребра гаек), усилие среза резьбы на уровне соответствующем гайкам, изготовленным из стали 45 методом точения, достаточная пластичность, вязкость металла и хладостойкость. В результате достигается снижение трудоемкости изготовления гаек и экономия проката.
На Ревдинском метизно-металлургическом заводе при изготовлении проволоки из сталей 10кп, 10сп и 08Г2С показана возможность повышения производительности отжигового отделения на 20% при использовании ускоренного охлаждения из межкритического интервала температур в зоне длительного рекристаллизационного отжига. Достигнуто оптимальное сочетание прочностных и пластических характеристик при использовании нагрева в бунтах до 780оС с выдержкой 1 час и последующего спрейерного охлаждения для проволоки из сталей 10кп и 10сп, и нагрева в бунтах до 760оС и охлаждения обдувом вентилятором или сжатым воздухом.
На Уральском электромеханическом заводе ускоренное охлаждение из МКИ листовых заготовок обеспечило повышение технологической пластичности металла при изготовлении холодной штамповкой деталей сложной формы. Это способствовало также улучшению жесткости конструкционных элементов и снижению их материалоемкости.
На основе результатов собственных исследований и разработок трубного производства, в первую очередь Синарского трубного завода, показана перспективность совмещения термомеханической обработки с закалкой из межкритического интервала температур.
Обобщением рассматриваемых в диссертации научно-технических разработок явилась формулировка основных качеств низколегированных доэвтектоидных сталей с феррито-мартенситной структурой, делающих их материалом, перспективным для использования в двух направлениях:
- для изделий, получаемых холодным формоизменением, - это уникальный комплекс механических свойств, где высокая пластичность сочетается с большой скоростью деформационного упрочнения;
- для изделий, изготавливаемых горячей деформацией, - высокая конструктивная прочность, включающая максимально высокий уровень одновременно прочностных и вязко-пластических характеристик.
Результаты диссертационной работы широко внедрены в учебный процесс при подготовке инженеров по специальностям: 150501 - “Материаловедение в машиностроении”, 150105 - “Металловедение и термическая обработка”, 150702 - “Физика металлов”, 150106 - “Обработка металлов давлением”, а также бакалавров и магистров тех же направлений. Ряд теоретических и экспериментальных положений, касающихся изменений структуры и механических свойств при деформации и термомеханической обработке сталей, пластического течения и разрушения гетерофазных сплавов, состоящих из нескольких структурных составляющих с различными свойствами, и др., нашли свое отражение в главах 15, 16 учебника “Физическое металловедение”, допущенного Министерством образования Российской Федерации для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированных специалистов 615300 “Металлургия”.
ОСНОВНЫЕ ВЫВОДЫ
1. Построение термокинетических диаграмм (ТКД) распада аустенита в сталях 10кп, 09Г2, 10С1, 05Г2С2, 10Г2Р, 05Г2Р, нагретых в межкритический интервал температур (МКИ), анализ устойчивости переохлажденного аустенита и температуры начала мартенситного превращения (Мн) показал, что вне зависимости от содержания углерода в стали, количество углерода в аустените после небольшого перегрева над Ас1 (Т 40оС) достигает 0,41-0,46%, в результате чего устойчивость переохлажденного аустенита и Мн соответствуют уровню, характерному для сталей с таким общим содержанием углерода. Легирование сталей Mn (1,6%), Si (1,18-1,84%) и B (0,003%) усиливает данный эффект, что способствует при ускоренном охлаждении из МКИ образованию низкотемпературных продуктов распада аустенита (мартенсита, бейнита) и отсутствию перлита.
Подбором композиции сталей, температуры нагрева в МКИ и скорости последующего охлаждения удается регулировать не только структуру и фазовый состав сталей, но и содержание углерода и легирующих элементов в отдельных фазах, что расширяет спектр механических свойств сталей.
2. Выявлены особенности морфологии структурных составляющих, формирующихся после нагрева малоуглеродистых сталей в МКИ и охлаждения с различными скоростями: мартенсита (бейнита), исходного феррита, существовавшего до нагрева, нового феррита, зарождающегося при распаде аустенита эпитаксиально на исходном феррите. Установлено, что новый феррит при отпуске вплоть до 400оС имеет меньшую на 400 МПа твердость, чем исходный феррит, и содержание легирующих элементов, характерное для аустенита, сформировавшегося в МКИ.
Наилучшее сочетание прочностных и пластических свойств (уВ = 650-700 МПа, у0,2 ? 350 МПа, д ? 30 %, др ? 15 %) исследованных ДФМС достигается при наличие 15-25% мартенсита, 20-35 % нового феррита и, соответственно, 40-65% исходного феррита при нагреве на оптимальную, для стали определенной композиции, температуру и ускоренном охлаждении.
Рациональным легированием марганцем, бором, кремнием даже при снижении до 0,05 % содержания углерода удается повысить на 30-40 % прочностные свойства. При этом уровень ударной вязкости и температура вязко-хрупкого перехода весьма низкие, что требует последующего низкотемпературного отпуска.
3. Разработан новый режим термообработки для формирования двухфазной феррито-мартенситной структуры, включающий низкотемператур-ную аустенитизацию (на ~ 10оС выше Ас3 ) и ступенчатую закалку в воду с оптимальной выдержкой при температуре Аr1 - (30-40оС). На примере сталей 20 и 09Г2 промышленных плавок показано, что структура и уровень механических свойств после термообработки по новому режиму близки к тем, которые формируются в этих сталях после ускоренного охлаждения из МКИ.
4. На основе микроструктурных исследований и данных внутреннего трения выявлены факторы и дано объяснение экстремальному изменению предела текучести ДФМС сталей от температуры отпуска. Низкотемпературный отпуск позволяет увеличить у0,2 на 100-140 МПа, у0,2/ уВ до 0,65-0,75, и, главное, повысить на 20-25 % уровень ударной вязкости при снижении Т50 на 40-50оС по сравнению с исходным состоянием после охлаждения из МКИ.
Предварительная пластическая деформация повышает склонность ДФМС к старению, но её влияние не монотонно. Максимальная склонность к старению создается при деформации растяжением на 4-6%, увеличение степени деформации до 10%, сопровождающееся образованием ячеистой дислокационной структуры, приводит к замедлению процесса старения.
5. Разработана модель деформационного упрочнения ДФМС, учитывающая экспериментально установленное неравенство деформации феррита и мартенсита и её перераспределение между этими структурными составляющими в процессе нагружения. Получены количественные соотношения, позволяющие рассчитать напряжение течения в любой момент деформирования и величину истинной равномерной деформации в зависимости от таких структурных факторов, как объемная доля мартенсита, содержание углерода в стали, размер ферритного зерна. Справедливость предложенной модели проверена на ряде малоуглеродистых сталей, легированных марганцем, а также совместно марганцем и кремнием.
6. Экспериментально установлено, что при схемах напряженного состояния, соответствующих высадке, волочению, прессованию и прокатке, пластичность стали заданного состава с феррито-мартенситной структурой в 1,3-1,8 раза выше, чем в случае феррито-перлитной структуры.
Двухфазные феррито-мартенситные стали во всем изученном интервале изменения показателя напряженного состояния S/T (от -1,4 до -1) значительно превосходят стали того же химического состава с феррито-перлитной структурой по величине удельной работы при деформации до разрушения, интегрально учитывающей прочностные и пластические характеристики материала.
7. Научно обосновано и экспериментально подтверждено, что низкоуглеродистые стали с феррито-мартенситной структурой, получаемые термообработкой по вновь разработанной схеме ступенчатой закалки, имеют высокий комплекс механических свойств: стали 20 (уВ = 669 МПа, ??у0,2 = 400 МПа, добщ = 22 %, дР = 14 %) и стали 09Г2С (уВ = 760 МПа, ??у0,2 = 460 МПа, добщ = 21%, дР = 12 %). Это позволяет рекомендовать ступенчатую закалку как окончательную термообработку при производстве горячедеформированной продукции из низкоуглеродистых сталей.
8. На основе предложенной методики оценки свойств микрообъемов с помощью вдавливания индентера построены диаграммы « напряжение у - степень деформации сдвига Л» стали 10 и присутствующих в ней феррита и перлита. Это позволило описать поведение в ходе пластической деформации каждой структурной составляющей и оценить её вклад в пластическое течение металла: до Л ?0,3 перлит слабо участвует в пластической деформации металла, полное выравнивание степеней деформации феррита и перлита обнаружено при Л >1,4.
9. Основные положения, сформулированные в работе по созданию низкоуглеродистых феррито-мартенситных (бейнитных) сталей, как перспективного материала для изделий, изготавливаемых холодным деформированием или горячей деформацией, представлены к реализации на ряде предприятий машиностроителтного и металлургического комплексов, а также широко используются в учебном процессе при подготовке специалистов по ряду специальностей.
ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО В СЛЕДУЮЩИХ РАБОТАХ
Монография
1. Грачёв С.В., Бараз В.Р., Богатов А.А., Швейкин В.П. Физическое металловедение. Учебник для вузов. Екатеринбург. Изд. 2, доп. и испр. Изд-во УГТУ-УПИ, 2001, 534 с.
Статьи по теме диссертации
1. Прочность и пластичность двухфазных феррито-мартенситных сталей / Б.М. Бронфин., М.И. Гольдштейн, А.З. Шифман, В.П. Швейкин // ФММ. Т. 56, вып. 1.1983.С.179-185.
2. Бронфин Б.М., Емельянов А.А., Швейкин В.П. Двухфазные феррито-мартенситные стали, упрочненные карбидами ванадия / Химия, технология и применение ванадиевых соединений: Тезисы докладов IV Всесоюзного совещания. Нижний Тагил, 1982. С. 106.
3. Бронфин Б.М., Емельянов А.А., Швейкин В.П. Субструктурное упрочнение двухфазных феррито-мартенситных сталей // Субструктурное упрочнение металлов и дифракционные методы исследования. Киев: Наукова Думка. 1985. С. 133-135.
4. Применение малоуглеродистых низколегированных феррито-мартенситных сталей для деталей крепежа в автотракторостроении / Б.М. Бронфин, А.А. Емельянов, В.П. Швейкин, А.З. Шифман // Основные направления экономии и рационального использования металла в автотракторостроении: тезисы докладов Всесоюзной научно- технической конференции. Челябинск, 1984. С. 233-234.
5. Деформационное старение двухфазных феррито-мартенситных сталей / Б.М. Бронфин, А.А. Емельянов, В.П. Швейкин, А.З. Шифман // Термическая обработка, структура и свойства металлов: Межвузовский сборник научных трудов. Свердловск. 1985. С. 50-55.
6. Емельянов А.А., Швейкин В.П., Пышминцев И.Ю. Структура и конструктивная прочность феррито-мартенситной низколегированной стали / Молодые ученые и специалисты - техническому прогрессу в металлургии: Материалы н/т конференции. Донецк, 1985. С. 77-79.
7. Бронфин Б.М., Гольдштейн М.И., Швейкин В.П. Влияние скорости охлаждения из межкристаллического интервала температур на деформационное упрочнение и старение стали 05Г2С2 // МиТОМ. 1986. №11. С. 31-34.
8. Низколегированные феррито-мартенситные стали - резерв повышения качества металлопроката / Б.М. Бронфин, М.И. Гольдштейн, А.А. Емельянов, В.П. Швейкин // Повышение качества металлопроката путем термической и термомеханической обработки: Тезисы докладов Всесоюзной научно-технической конференции. Днепропетровск. 1985. С. 44. Для служебного пользования.
9. Устойчивость эпитаксиального феррита при отпуске малоуглеродистой низколегированной стали / Б.М. Бронфин, А.А. Емельянов, М.И. Гольдштейн, В.П. Швейкин // ФММ. 1986. Т.62, вып. 2. С. 358-361.
10. Перераспределение атомов при деформационном старении двухфазной феррито-мартенситной стали / Б.М. Бронфин, В.В. Овчинников, В.П. Швейкин, Г.Г. Амигуд, А.А. Емельянов // ФММ. 1986. Т.61, вып. 2. С. 354-360.
11. Бронфин Б.М., Шифман А.З., Швейкин В.П. Влияние типа микроструктуры на сопротивление усталости и разрушение малоуглеродистой низколегированной стали // Известия вузов «Черная металлургия».1986. №10. С. 73-77.
12. Bronfin B.M., Shveikin V.P. Influence of type of microstructure on fatigue resistanct and fracture of low carbon, alloy steel // Steel in the USSR.1986. Vol. 16, № 10. P. 494-496.
13. Исследование двухфазных феррито-мартенситных сталей для изготовления крепежных деталей / Б.М. Бронфин, А.А. Емельянов, А.З. Шифман, В.П. Швейкин // Новые материалы и упрочняющие технологии на основе прогрессивных методов термической и химико-термической обработки в автостроении: Тезисы докладов Всесоюзной научно-технической конференции. Тольятти. 1986. С. 10-11.
14. Бронфин Б.М., Гольдштейн М.И., Швейкин В.П. Деформационное упрочнение и пластичность сталей с феррито-мартенситной структурой // Изв. АН СССР. Металлы. 1987. № 1. С. 127-133.
15. Вязко-хрупкий переход в сталях с феррито-мартенситной структурой / Б.М. Бронфин, М.И. Гольдштейн, Е.И. Голуб, В.П. Швейкин // Изв. АН СССР. Металлы. 1987. № 2. С. 105-111.
16. Кинетика закалочного и деформационного старения стали с феррито-мартенситной структурой / Б.М. Бронфин, В.П. Швейкин, С.Б. Михайлов и др. // ФММ. 1988. Т.5, вып. 2. С. 326-331.
17. Ресурс пластичности металла при изготовлении сильфонов / С.В. Смирнов, А.В. Тропотов, Р.Е. Лаповок, В.П. Швейкин // Тезисы докл. Эффективные технологические процессы листовой штамповки. Н/т конференция. Москва. 1993. С.155-163.
18. Методики определения технологических свойств металла и его отдельных структурных составляющих в условиях сложного нагружения / А.А. Богатов, С.В. Смирнов, В.П. Швейкин, А.В. Нестеренко // Известия ВУЗов. Цветная металлургия, 1995, № 2. с. 42-49.
19. Смирнов С.В., Швейкин В.П. Методика определения диаграмм упрочнения отдельных структурных составляющих в многокомпонентных системах // ФММ. 1995, Т. 80, вып.1. С. 144-151.
20. Смирнов С.В., Швейкин В.П. Исследование процесса деформационного упрочнения многофазных материалов на микроуровне // ФММ, 1995. Е.80, вып. 1. С. 152-159.
21. R. Lapovok, S. Smirnov, Shveykin V. Ductility Defined as Critical Local Strain / Proceedings First Australasian Congress on Applied Mechanics, 1996, Melburne. Vol. 1. P. 181-185. (National Committee on Applied Mechanics).
22. Швейкин В.П. Разработка оборудования и программного обеспечения для экспресс-метода определения механических свойств структурных составляющих композиционных и порошковых материалов / Проблемы современных материалов и технологий, производство наукоемкой продукции. Вып. 2. Пермь, 1996. С.27-28.
23. Богатов А.А., Швейкин В.П. Упрочнение сталей 22ГЮ, 09Г2С и 37Г2С в потоке трубопрокатного агрегата / Тезисы докладов. Бернштейновские чтения по термомеханической обработке металлических материалов. Международная н/т конференция. Москва, МИСиС, 1996. С. 57-58.
24. Швейкин В.П. Разработка оборудования и программного обеспечения для экспресс-метода определения механических свойств структурных составляющих композиционных и порошковых материалов / Проблемы современных материалов и технологий, производство наукоемкой продукции. Вып. 3. Пермь, 1997. С. 29-30.
25. Смирнов С.В., Швейкин В.П., Соломеин В.А. Определение диаграмм упрочнения отдельных структурных составляющих в многокомпонентных системах Тезисы докладов. Бернштейновские чтения по термомеханической обработке металлических материалов. Международная н/т конференция. Москва, МИСиС, 1997. С. 68-73.
26. Определение коэффициентов в функциональной зависимости сопротивления деформации по результатам вдавливания конического индентора / С.В. Смирнов, В.К. Смирнов, А.Н. Солошенко, В.П. Швейкин // Металлы, № 6, 1998. С. 91-94.
27. Shveikin V.P., Smirnov S.V. Method for Determination of the Strain Hardening Law and for Analysis of Early Fracture Stages of Some Structural components / Key Engineering Materials. FRAKTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2. 145-9: Part 1 and 2. 1998, р.847-852.
28. Smirnov S., Soloshenko A.N., Shveykin V. Method for stress-strain equation (SSE) determination and early fracture stage analysis of some structural components/ Metal Forming 98, The University of Birmingham UK/ The 7 th Internftional Conference on Metal Forming . 1998, р. 107.
29. Швейкин В.П. Разработка метода исследования ранних стадий разрушения конструкционных материалов / Трансфертные технологии, комплексы и оборудование в металлургии и материаловедении. Выпуск 1. Пермь,1998. С. 4-6.
30. Термомеханическая обработка и современные способы производства высокопрочных труб / Л.Г. Марченко, С.Ю. Жукова, А.А. Богатов, В.П. Швейкин // Всероссийская конференция, посвященная 95-летию профессора В.В. Швейкина. УГТУ-УПИ, Екатеринбург. 1999, с. 73-76.
31. Применение термомеханической обработки в производстве высокопрочных труб / Л.Г. Марченко, С.Ю. Жукова, А.А. Богатов, В.П. Швейкин // Тезисы докладов Всероссийской научной конференции. Бернштейновские чтения по термомеханической обработке. Москва, МИСиС, 1999. С. 18.
32. Lapovok R., Smirnov S., Shveykin V. Damage mechanics for the fracture prediction of metal forming tools / International Journal of Fracture 103. 2000. P. 111-126.
33. Особенности деформационного упрочнения конструкционных сталей с регламентированной гетерогенной структурой / В.П. Швейкин, В.Р. Бараз, С.В.Смирнов, Н.В. Кобелева, Н.В. Лопатина //Сборник материалов Всероссийской ежегодной н/т конференции «Наука - Производство- Технологии - Экология». Киров. 2001. Том 2. С.123-124.
34. The Influence of the Stress State on the Plasticity of Transformation Induced Plasticity - Aided Steel / Yu. Pyshmintsev, M. De. Meyer, B.C. de Cooman R.A. Savray, V.P. Shveykin, M. Vermeulen // Metallurgical and Materials Transactions. A. 2002. V. 33A, №6, p. 1659-1667.
35. Богатов А.А., Швейкин В.П., Смирнов С.В. Механические свойства низколегированных сталей 22ГЮ и 09Г2С после термомеханической обработки/ Сб. Обработка металлов давлением. Раздел II. Реология, пластичность, разрушение, Екатеринбург, 2002. С. 39-45.
36. Bogatov A., Shveikin V., Rezer A. Physical simulation of the ductile damage under the metal forming / The 6th international ESAFORM Conference on Material Forming. Salermo, Italy. 2003. P. 723-726.
37. Марченко Л.Г., Жукова С.Ю., Богатов А.А., Швейкин В.П. Основы высокотемпературной термомеханической обработки труб. (Сборник научных трудов) Достижения в теории и практике трубного производства. Екатеринбург, УГТУ-УПИ, 2004, с. 395-403.
38. Швейкин В.П., Хотинов В.А., Фарбер В.М. Кинетика распада переохлажденного аустенита, сформировавшегося в межкритическом интервале температур / ФММ. 2007. Том 104, № 5. С. 510-516.
39. Швейкин В.П., Хотинов В.А., Фарбер В.М. Микроструктура и фазовый состав низкоуглеродистых сталей после нагрева в межкритический интервал температур // Изв. Вузов, Черн. Мет., № 6. 2008. с. 39-43.
40. Смирнов С.В., Нестеренко А.В., Швейкин В.П. Деформируемость молибдена при изготовлении тонкостенных труб / Металлы, № 5, 2008, с. 80-89.
41. Оценка деформационного упрочнения по данным микротвердости / В.П. Швейкин, С.В. Смирнов, В.М. Фарбер, А.А. Хотинов, К.А. Лаев, А.Г. Шерер // Механика микронеоднородных материалов и разрушение: Тезисы докладовV Всероссийской конференции. Екатеринбург, 2008. С. 183.
42. Швейкин В.П. Деформационные характеристики низкоуглеродистых сталей с гетерогенной структурой / Производство проката, 2009, № 5, с. 2-5.
Размещено на Allbest.ru
...Подобные документы
Графическое изображение равновесного фазового состояния сплавов в зависимости от температур и состава. Характеристика нонвариантных трехфазных превращений. Разбор структурно-фазовых превращений сплавов при охлаждении. Применение правила отрезков.
курсовая работа [547,5 K], добавлен 19.01.2013Закономерности формирования структуры поверхностных слоев сталей при высокоэнергетическом воздействии. Технологические варианты плазменного упрочнения деталей. Получение плазмы. Проведение электронно-лучевой и лазерной обработки металлических материалов.
дипломная работа [1,4 M], добавлен 06.10.2014Верхний предел температур нагрева для заэвтектоидных сталей. Температура нагрева и скорость охлаждения. Изменения структуры стали при нагреве и охлаждении. Твердость и износостойкость режущего инструмента. Выбор режима охлаждения при закалке стали.
презентация [209,6 K], добавлен 14.10.2013Принцип построения диаграммы состояний сплавов, образующих ограниченные твердые растворы. Описание структурных и фазовых превращений при медленном охлаждении из жидкого состояния сплава с заданным содержанием углерода. Превращения в структуре стали.
контрольная работа [1,1 M], добавлен 17.10.2011Производство проволоки из высоколегированных сталей и сплавов. Особенности технологии обработки высоколегированных сталей и сплавов. Технические требования, правила приемки, методы испытаний. Технологическая схема изготовления, транспортировка, хранение.
контрольная работа [32,7 K], добавлен 13.10.2011Основы технологии термической обработки металлов и сплавов. Термическая обработка - этап технологического процесса изготовления деталей. Улучшение обрабатываемости материалов давлением или резанием. Формирования технических и электрических свойств.
реферат [53,8 K], добавлен 20.01.2009Рассмотрение правил проведения макро- и микроанализа металлов и сплавов, определению твердости, исследованию структур и свойств сталей и чугунов, цветных сплавов и пластмасс. Практические вопросы термической и химико-термической обработки металлов.
учебное пособие [4,4 M], добавлен 20.06.2012Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.
контрольная работа [2,6 M], добавлен 24.08.2011Изучение методики построения диаграмм состояния металлических сплавов. Исследование физических процессов и превращений, протекающих при кристаллизации сплавов. Виды термической обработки. Анализ влияния температуры на растворимость химических компонентов.
контрольная работа [4,4 M], добавлен 21.11.2013Закаливаемость и прокаливаемость стали. Характеристика конструкционных сталей. Влияние легирующих элементов на их технологические свойства. Термическая обработка сплавов ХВГ, У8, У13 и их структуры после нее. Выбор вида и режима термообработки детали.
курсовая работа [4,9 M], добавлен 12.01.2014Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.
презентация [40,6 K], добавлен 29.09.2013Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.
курсовая работа [534,9 K], добавлен 28.12.2003Критические точки в стали, зависимость их положения от содержания углерода. Диаграмма состояния железоуглеродистых сплавов, фазы и структурные составляющие: линии, точки концентрации, температуры; анализ фазовых превращений при охлаждении стали и чугуна.
реферат [846,6 K], добавлен 30.03.2011Исследование основных литейных свойств сплавов, изучение способа получения отливок без дефектов и описание технологии отлива детали под давлением. Изучение схемы прокатного стана и механизма его работы. Анализ свариваемости различных металлов и сплавов.
контрольная работа [317,4 K], добавлен 20.01.2012Классификация и разновидности железоуглеродистых сплавов в зависимости от содержания в них углерода. Кристаллизация заэвтектического чугуна, этапы данного процесса и его конечные продукты. Формирование структуры при охлаждении сталей и серых чугунов.
презентация [3,7 M], добавлен 29.09.2013Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.
реферат [146,1 K], добавлен 02.04.2018Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.
методичка [1,2 M], добавлен 21.11.2012Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.
реферат [40,4 K], добавлен 25.12.2009Классификация и свойства твердых сплавов. Источники лома и основные способы его переработки: хлорирование, методы регенерации и окисления. Оборудование для предварительной обработки сырья. Разработка технологической схемы переработки. Материальный баланс.
курсовая работа [2,0 M], добавлен 04.01.2009Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.
презентация [3,3 M], добавлен 06.04.2014