Развитие научных основ, разработка и реализация новых методов технической диагностики электрохимической защиты подземных стальных трубопроводов
Исследование механизма и кинетических особенностей влияния факторов системы сталь – изоляция - грунт на коррозию подземных стальных трубопроводов. Разработка методики определения степени электролитического наводороживания деформированных трубопроводов.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 08.02.2018 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
10,33
329,23
45,1
18,04
12,89
7,5
311,2
14,629
9,341
297,484
40,75
16,3
11,64
8
332
15,604
8,366
266,433
36,49
14,59
10,43
В предельном случае, когда давление в трубопроводе достигает максимально-допустимых значений, плотность тока катодной защиты не должна превышать плотность предельного тока по кислороду более, чем в 5…7 раз, то есть выделение водорода на катодно защищаемой поверхности должно быть сведено к минимуму, либо исключено.
Области возможного применения нового метода технической диагностики электрохимической защиты от коррозии подземных стальных трубопроводов. Разработанный метод контроля режимов катодной защиты должен применяться при регулировании потенциалов катодной защиты подземных стальных трубопроводов путем дополнительного измерения предельного тока электровосстановления кислорода и тока катодной защиты с последующим определением остаточной скорости коррозии и интенсивности электролитического наводороживания, с последующим прогнознымм определением степени коррозионного износа трубопровода и инкубационного периода образования стресс-коррозионных трещин в зависимости от превышения плотности тока катодной защиты над предельным по кислороду и механических напряжений в стенке трубопровода, создаваемых давлением транспортируемого продукта.
ЗАКЛЮЧЕНИЕ
В диссертации приведены разработанные автором теоретические и экспериментальные положения, являющиеся основой для технических решений при разработке новых методов технической диагностики систем электрохимической защиты подземных стальных трубопроводов, проложенныъх в нейтральных и слабощелочных грунтах. Внедрение новых методов в практику эксплуатации подземных катодно защищаемых трубопроводов внесет значительный вклад в повышение надежности трубопроводного парка страны. Предлагаемый критерий контроля режимов катодной защиты впервые позволяет с достаточной для практики точностью количественно определять остаточную скорость коррозии и время до появления стресс-коррозионных трещин при заданном режиме катодной защиты в диапазоне допустимых рабочих давлений транспортируемого продукта, что является решением крупной научной проблемы, имеющей важное практическое значение для повышения надежности эксплуатации трубопроводных систем транспорта нефти и газа.
Выводы
1. Изучен процесс коррозионного разрушения трубных сталей при различных внутренних напряжениях в зависимости от условий доставки кислорода к корродирующей поверхности, характеризуемой плотностью предельного тока по кислороду. Установлено, что плотность коррозионного тока в язвах с максимальной глубиной при увеличении внутренних напряжениях до составляет практически . В отсутствии внутренних напряжений плотность коррозионного тока в язвах с максимальной глубиной проникновения составляет 32 - 46% от плотности предельного тока по кислороду.
2. Показано, что установившиеся во времени значения плотности предельного тока кислорода, по мере увеличения диаметра дефекта, уменьшаются, что связано со снижением эффективности боковой доставки кислорода. При этом в любых пространственных положениях относительно трубопровода плотность тока катодной защиты находится в обратной пропорциональной зависимости от радиуса сквозного дефекта изоляции, что свидетельствует о том, что доставка кислорода к сквозному дефекту изоляции (рабочему электроду зонда) описывается уравнением сферической диффузии.
3. Разработана методика исследования коррозионных процессов в сквозных дефектах изоляции и под отслоившейся изоляцией в зоне контакта стальной поверхности с электролитом при различных режимах катодной защиты.
4. Впервые в практику катодной защиты трубопроводов от коррозии введено понятие «эффект саморегулирования катодной защиты». Разработаны теоретические основы эффекта саморегулирования катодной защиты трубопроводов в сквозных дефектах изоляционного покрытия и под отслоившейся изоляцией в зоне контакта оголенной поверхности трубопровода с электролитом, находящихся в различных условиях доставки кислорода относительно периметра трубопровода.
5. Экспериментально установлено отсутствие зависимости остаточной скорости коррозии от внутренних напряжений. Показано, что изменение электрохимической активности образца, вызванного внутренними напряжениями, компенсируется эффектом саморегулирования катодной защиты: увеличение тока коррозии за счет внутренних напряжений в отсутствии катодной защиты, при включении катодной защиты компенсируется пропорциональным увеличением тока катодной защиты.
6. Впервые показано, что отношение плотности тока катодной защиты к плотности предельного тока по кислороду является объективным критерием для количественного определения остаточной скорости коррозии трубопроводов при различных потенциалах катодной защиты. Cтепень подавления коррозии катодно-защищаемых образцов, независимо от внутренних напряжений, определяется режимом катодной защиты, характеризуемым отношением плотности тока катодной защиты к плотности предельного тока по кислороду.
7. Впервые в практику катодной защиты трубопроводов от коррозии введено понятие коэффициент полезного действия тока катодной защиты. Показано, что коэффициент полезного использования тока катодной защиты имеет максимальное значение, когда . Дальнейшее увеличение плотности тока катодной защиты приводит к незначительному увеличению защитного эффекта и снижению коэффициента полезного использования тока катодной защиты, что свидетельствует о начале протекания реакции выделения водорода, не оказывающей влияние на подавление коррозионного процесса.
8. Впервые экспериментально исследована динамика накопления водорода в образцах трубной стали ферритно-перлитного класса в зависимости от превышения плотности тока катодной защиты над плотностью предельного тока по кислороду. Показано, что при реально наблюдаемых плотностях тока катодной защиты, превышающих плотность предельного тока кислорода в 100 и более раз, интенсивность электролитического наводороживания ферритно-перлитной стали трубного сортамента возрастает в 1.5..2 раза при переходе наводороживания образца в нижнем положении, соответствующем положению сквозного дефекта изоляции у верхней образующей трубопровода, к потолочному, соответствующему нахождению сквозного дефекта изоляции у нижней образующей трубопровода.
9. Впервые разработан и предложен к практическому применению алгоритм определения времени появления стресс-коррозионных трещин на действующих магистральных трубопроводах при заданном рабочем давлении в трубопроводе в зависимости от превышения плотности тока катодной защиты над плотностью предельного тока кислорода.
10. На основе полученных теоретических и экспериментальных результатов разработан и прошел промышленные испытания в ООО «Газпром трансгаз Томск» полевой аппаратно-программный комплекс «ТА-Коррозия» для определения остаточной скорости коррозии и степени электролитического наводороживания напряженно-деформированных трубопроводов при различных режимах катодной защиты, впервые позволяющий контролировать появление коррозионных и стресс-кооррозионных повреждений на наружной катодно защищаемой поверхности трубопроводов при различных рабочих давлениях.
ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНО
в изданиях, рекомендованных ВАК России:
1. Хижняков В.И. О специфике коррозии подземных трубопроводов в условиях таежно-болотной зоны центральной части Западной Сибири. Защита металлов, М, Наука, 1983, № 5.
2. Хижняков В.И., Трофимова Е.В. Превышение тока катодной защиты над предельным по кислороду - фактор коррозионного растрескивания трубопроводов под напряжением. Практика противокоррозионной защиты, 2009, № 1, с. 57 - 61.
3. Хижняков В.И. Определение остаточной скорости коррозии трубопроводов при различных режимах катодной защиты. Практика противокоррозионной защиты, 2008, № 2, с. 18 - 22.
4. Хижняков В.И. Определение максимальной скорости коррозии подземных стальных трубопроводов. Практика противокоррозионной защиты, 2008, № 3, с. 31 - 34.
5. Хижняков В.И. Предупреждение выделения водорода при выборе потенциалов катодной защиты подземных стальных трубопроводов. - Коррозия: материалы, защита, 2009, № 8, с. 32 - 36.
6. Хижняков В.И. Новый критерий выбора режимов катодной защиты подземных стальных трубопроводов. - Практика противокоррозионной защиты, 2009, № 4, с. 40 - 43.
7. Хижняков В.И., Жилин А.В. Определение инкубационного периода образования дефектов КРН на катодно защищаемой поверхности подземных стальных трубопроводов. Практика противокоррозионной защиты, 2009, № 4, с. 43 - 46.
в прочих изданиях:
8. Хижняков В.И. Предупреждение аварийности подземных стальных трубопроводов по причине коррозии под напряжением. - Вестник Российской Академии Естественных Наук (Западно- сибирское отделение), 2008, вып. 10, с. 85 - 91.
9. Хижняков В.И. Влияние кислородной проницаемости грунтов таежно-болотной зоны центральной части Западной Сибири на работу гальванических макропар при коррозии нефтепроводов большого диаметра. Коррозия и защита в нефтегазовой промышленности, М., ВНИИОЭНГ, 1982, № 4.
10. Хижняков В.И. Влияние глубины укладки и промерзания грунта на распределение тока катодной защиты по периметру трубопроводов большого диаметра, Коррозия и защита в нефтегазовой промышленности. М., ВНИИОЭНГ, 1982, № 6.
11. Хижняков В.И. Коррозия трубной стали в дефектах изоляционного покрытия нефтепроводов центральной части Западной Сибири, Коррозия и защита в нефтегазовой промышленности, М., ВНИИОЭНГ,1882, № 10.
12. Хижняков В.И. О саморегулировании катодной защиты подземных трубопроводов. . Коррозия и защита в нефтегазовой промышленности, М., ВНИИОЭНГ, 1983, № 6.
13. Хижняков В.И., Гамза В.В., Обливанцев Ю.Н. Зонд и полевой полярограф для определения предельного тока кислорода при коррозии подземных трубопроводов. Коррозия и защита в нефтегазовой промышленности, М., ВНИИОЭНГ, 1984, № 4.
14. Хижняков В.И., Глазов Н.П., Налесник О.И. К оценке содержания кислорода в грунте по значению предельного тока по кислороду на платиновом электроде. Коррозия и защита в нефтегазовой промышленности, М.. ВНИИОЭНГ, 1978, № 2.
15. Хижняков В.И., Глазов Н.П., Налесник О.И. Математическая модель диффузии кислорода к поверхности подземного трубопровода. В сб. Теория и практика защиты от коррозии, Куйбышев, 1977.
16. Хижняков В.И., Глазов Н.П., Налесник О.И. Исследование процесса коррозии стальных образцов с поврежденной изоляцией в грунтах Томского Приобья. В сб. Прогрессивные материалы, технологии и оборудование для защиты изделий, металлоконструкций и сооружений от коррозии, Горький, 1983.
17. Хижняков В.И., Глазов Н.П., Налесник О.И. Исследование коррозии трубной стали во влажных грунтах Среднего Приобья. Коррозия и защита скважин, трубопроводов и морских сооружений в газовой промышленности, М., ВНИИОЭГазпром, 1982, № 4.
18. Хижняков В.И., Глазов Н.П., Налесник О.И. Об определении коэффициента диффузии кислорода в грунтах при коррозии подземных стальных сооружений. Коррозия и защита скважин, трубопроводов и морских сооружений в газовой промышленности, М., ВНИИОЭГазпром, 1983, № 3.
19. Хижняков В.И. Опыт коррозионного обследования магистральных нефтепроводов в условиях центральной части Западной Сибири. Трубопроводный транспорт нефти, М., 1992, № 6.
20. Хижняков В.И., Штин И.В. Анализ коррозионного состояния полости магистрального нефтепровода Александровское - Анжеро - Судженск. Трубопроводный транспорт нефти, М., 2000, № 4.
21. Хижняков В.И., Махрин В.И. Противокоррозионная защита резервуаров для хранения нефти. М., Трубопроводный транспорт нефти, М., 2003, № 3.
22. Хижняков В.И. Защита магистральных нефтепроводов от почвенной коррозии. . Трубопроводный транспорт нефти, М., 2004, № 12.
23. Хижняков В.И., Жилин А.В. Выбор режимов катодной защиты, исключающих стресс-коррозионное растрескивание подземных нефтегазопроводов. В сб. Экологические проблемы и тегногенная безопасность строительства, эксплуатации и реконструкции нефтегазопроводов. Новые технологии и материалы. Томск, 2005.
24. Хижняков В.И., Иванов Ю.А., Назаров Б.Ф. Переносной полевой прибор для определения остаточной скорости коррозии и степени наводороживания стенки нефтегазопроводов при различных режимах катодной защиты. В сб. Экологические проблемы и техногенная безопасность строительства, эксплуатации и реконструкции нефтегазопроводов. Новые технологии и материалы. Томск, 2005.
25. Хижняков В.И., Кудашкин Ю.А. Количественное определение остаточной скорости коррозии газопроводов при различных потенциалах катодной защиты. - В сб. Газотранспортные системы: настоящее и будущее, М. 2007 г.
26. Хижняков В.И. Иванов Ю.А., Назаров Б.Ф., Мошкин В.В. Датчики и приборы для диагностики и повышения эффективности катодной защиты газотранспортных систем. - В сб. Газотранспортные системы: настоящее и будущее, М. 2007 г.
27. Хижняков В.И. Противокоррозионная защита объектов трубопроводного транспорта нефти и газа, Томск, 2005, с.187.
28. Патент РФ № 2341589. Хижняков В.И., Хижняков М.В., Жилин А.В. Cпособ определения продолжительности периода до образования стресс-коррозионных трещин в стальных трубопроводах. Опубл. 20.12.2008. Бюл. № 35.
29. Патент РФ № 2308545.Хижняков В.И., Иванов Ю.А. Способ катодной защиты подземных стальных трубопроводов. Опубл. 20.10.2007. Бюл. № 29.
30. А.С. № 1693710. Хижняков В.И., Прасс Л.В. Устройство для защиты внутренней поверхности резервуаров для хранения нефти от коррозии. 2001.
31. А.С. № 1620506. Хижняков В.И., Лягушин В.А. Способ определения эффективности катодной защиты стальных сооружений и коррозионно-индикаторный зонд для его осуществления. 1994.
32. А.С. № 1694698. Хижняков В.И., Чертов С.В., Иванов Ю.А. Устройство для измерения максимальной скорости коррозии магистральных трубопроводов.1989.
33. Хижняков В.И., Кудашкин Ю.А. Количественное определение остаточной скорости коррозии газопроводов при различных потенциалах катодной защиты. - В сб. Современные методы и технологии защиты от коррозии, М. 2008, с. 29.
34. Хижняков В.И. Влияние режимов катодной защиты на степень подавления коррозии и на наводороживание стали 17ГС. - Всероссийская конференция по физической химии и нанотехнологиям «НИФХИ-90». Сборник тезисов, Москва, 2008, с. 178 - 179.
35. Хижняков В.И. Выбор режимов электрохимической защиты подземных трубопроводов, исключающих электролитическое наводороживание.- Всероссийская конференция «Физико-химические аспекты технологии наноматериалов, их свойства и применение. Сборник тезисов, Москва, 2009, с. 132.
36. Хижняков В.И., Трофимова Е.В. Превышение тока катодной защиты над предельным по кислороду - фактор электролитического наводороживания трубных сталей. - В сб. Современные методы и технологии защиты от коррозии и износа, М. 2009, с. 8 - 9.
37. Хижняков В.И. Влияние режимов катодной защиты на степень подавления почвенной коррозии трубных сталей и на объем поглощенного при этом водорода. - Вестник Российской Академии Естественных Наук (Западно-сибирское отделение), 2009, вып. 11, с. 160 - 166.
Размещено на Allbest.ru
...Подобные документы
Испытания смонтированного оборудования трубопроводов. Гидравлическое, пневматическое испытание стальных трубопроводов. Промывка, продувка. Методы неразрушающего контроля качества сварных соединений. Охрана труда при изготовлении и монтаже трубопроводов.
курсовая работа [39,7 K], добавлен 19.09.2008Схема газификации жилого микрорайона. Эксплуатация подземных и надземных газопроводов, газифицированных котельных. Расчёт поверхности трубопроводов, расположенных на территории микрорайона. Условия эксплуатации установок электрохимической защиты.
курсовая работа [53,7 K], добавлен 28.01.2010Общие сведения о вибрации. Параметры, характеризующие вибрационное состояние трубопроводов. Причины вибрации трубопроводов. Обзор методов защиты от вибрации. Конструкция и расчет высоковязкого демпфера. Расчет виброизолятора для устранения проблемы.
курсовая работа [1,1 M], добавлен 14.11.2017Анализ причин коррозии трубопроводов, происходящей как снаружи под воздействием почвенного электролита, так и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Способы электрохимической защиты.
курсовая работа [4,7 M], добавлен 21.06.2010Категорирование трубопроводов, их классификация по параметрам среды. Окраска и надписи на трубопроводах. Типовые режимы изменения состояния технологического оборудования ТЭС. Остановка оборудования с расхолаживанием трубопроводов, основные операции.
реферат [49,6 K], добавлен 15.04.2019Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Технологическая последовательность монтажа внутрицеховых и межцеховых трубопроводов. Метод крупноблочного монтажа конструкций.
курсовая работа [19,5 K], добавлен 19.09.2008Резервуары и сварные стальные металлоконструкции. Анализ условий и механизма протекания процессов стресс-коррозии магистральных трубопроводов. Пути предотвращения стресс-коррозионного разрушения нефтегазового оборудования в средах, содержащих сероводород.
курсовая работа [594,0 K], добавлен 20.11.2015Изучение способов очистки внутренней полости трубопроводов, оборудования для промывки и продувки. Приемка и ввод в эксплуатацию подземных газопроводов. Технология проведения аварийно-восстановительных ремонтов. Испытания газопроводов на герметичность.
реферат [890,4 K], добавлен 31.01.2013Основные этапы диагностирования трубопроводов. Анализ методов диагностики технического состояния: разрушающие и неразрушающие. Отличительные черты шурфового диагностирования и метода акустической эмиссии. Определение состояния изоляционных покрытий.
курсовая работа [577,3 K], добавлен 21.06.2010Особенности геологического строения и коллекторские свойства пластов Ромашкинского нефтяного месторождения. Анализ методов борьбы с коррозией трубопроводов, а также мероприятия по охране недр и окружающей среды, применяемые в НГДУ "Лениногорскнефть".
дипломная работа [3,6 M], добавлен 26.06.2010Почвенная коррозия - разрушение металла под воздействием агрессивной почвенной среды, ее механизм. Защита газопроводов от коррозии: пассивная и активная. Определение состояния изоляции подземных трубопроводов. Расчет количества сквозных повреждений.
реферат [1,5 M], добавлен 04.04.2015Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Трубы и детали трубопроводов из цветных металлов и их сплавов, их конфигурация, техническая характеристика, области применения.
курсовая работа [17,6 K], добавлен 19.09.2008Мировое и отечественное производство стальных труб. Тенденции на рынке горячекатаного проката. Виды труб для магистральных трубопроводов. Получение трубной стали контролируемой прокаткой. Служебные свойства трубных сталей и способы их повышения.
реферат [1,8 M], добавлен 13.12.2010Метод защиты подземных сооружений от электрохимической коррозии. Трансформаторные подстанции выше 1 кВ. Станции катодной защиты инверторного типа. Контрольно-измерительные пункты. Анодное заземление. Техническое обслуживание и ремонт воздушных линий.
курсовая работа [3,0 M], добавлен 22.01.2014Определение расчетных расходов воды. Гидравлический расчет подающих и циркуляционных трубопроводов. Разработка схемы трубопроводов системы горячего водоснабжения и теплового пункта. Подбор оборудования теплового пункта. Определение потерь теплоты.
курсовая работа [80,3 K], добавлен 05.01.2017Анализ корреляционного течеискателя Т-2001, преимущества: высокая чувствительность, независимость результатов от глубины прокладки трубопроводов. Знакомство с особенностями корреляционного метода поиска утечек жидкостей из трубопроводов под давлением.
презентация [719,7 K], добавлен 29.11.2013Знакомство со строительными работами, связанными с оборудованием и технологиями бестраншейной прокладки трубопроводов инженерных коммуникаций. Расчет объёмов котлована и земляных работ, выбор экскаватора. Технологии бестраншейной прокладки трубы-кожуха.
курсовая работа [843,7 K], добавлен 13.03.2013Бионический подход в разработке автоматизированных автономных устройств, его сущность и содержание. Разработка змееподобных роботов как перспективное направление развития робототехники. Исследование двадцатизвенной бесколесной модели, ее преимущества.
реферат [565,3 K], добавлен 24.11.2010Методы и комплексные процессы очистки полости трубопроводов от загрязнений. Качество очистки полости, обеспечивающее заполнение трубопровода транспортируемой средой без ее загрязнения и обводнения. Совершенствование систем обнаружения очистных устройств.
курсовая работа [616,5 K], добавлен 04.04.2014Классификация нефтеналивных причалов по назначению, расположению, характеру крепления к грунту и способу соединения с береговыми нефтехранилищами. Конструкция хранилищ и трубопроводов. Способы укладки, заглубления и обваловывания подводных трубопроводов.
реферат [491,0 K], добавлен 30.09.2014