Организационно-технологическая система обеспечения эксплуатационной надежности магистральных нефтепроводов

Методика расчета напряжений в подземном трубопроводе на пересеченном рельефе местности и метод снижения ущерба окружающей среде при авариях. Разработка методов расчета и оценки труб на прочность и долговечность с учетом фактического уровня дефектности.

Рубрика Производство и технологии
Вид автореферат
Язык русский
Дата добавления 14.02.2018
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- расходы на мероприятия по ликвидации последствий аварии;

- социально-экономические затраты, связанные с травмированием и гибелью людей (компенсационные выплаты);

- экологический ущерб (сумма ущербов от различных видов вредного воздействия на объекты окружающей природной среды);

- косвенный ущерб (убытки простоя производства, неустойки, штрафы и пени);

- потери государства от выбытия трудовых ресурсов (исходя из национального / регионального дохода по отрасли с учетом средней заработной платы на предприятии).

По результатам проведения диагностических обследований проводится корректировка расчетных параметров трубопровода и уровней интенсивностей риска R(t), что влечет за собой уточнение программ диагностики и ремонта трубопровода.

Программы диагностики и ремонта определяются сроками, методами и объемами (Зд и Зр) диагностических и ремонтных работ. Частое проведение диагностики, равно как и увеличение объемов ремонтных работ вплоть до устранения всех выявленных дефектов, уменьшает ожидаемый риск, но приводит к увеличению эксплуатационных затрат, а продление междиагностических периодов связано с ростом рисков.

Предложенная методика позволяет экономически обосновать программу диагностики и ремонта, оптимизирующую суммарные затраты З(t) за период времени t. Задача состоит в поиске минимума функции удельных затрат при соблюдении ограничений по уровням социальной и экологической безопасности (RN < [RN], RO < [RO]).

Реализация данной методики позволяет определить время, соответствующее минимуму функции , которое задает оптимальный срок следующей диагностики (рисунок 8).

В результате проведенного исследования установлено, что оптимальные сроки, объемы и методы диагностики и ремонта существенным образом зависят от параметров трубопровода, условий эксплуатации, уязвимости участков, по которым проложен трубопровод, характеристик транспортируемого продукта, механизмов и скорости развития дефектов, погрешностей диагностических обследований.

Рисунок 8 - Определение оптимального срока диагностики

магистрального нефтепровода

В этой связи, в отличие от существующих подходов к назначению сроков с фиксированной периодичностью, оптимальные программы диагностики и ремонта должны быть индивидуальны для нефтепровода в целом и каждого его участка в отдельности. Предложенная методика позволяет осуществить формирование оптимальной программы диагностики и ремонта с учетом ожидаемых социальных, экологических и технико-экономических рисков и затрат на ремонтные работы, проводимые в междиагностический период.

Пятая глава посвящена исследованию и разработке методов расчета трубопроводов на прочность и долговечность с учетом фактического уровня дефектности.

В основу методик расчета на прочность и долговечность труб с учетом фактического уровня дефектности положены результаты экспериментальных исследований прочности и долговечности натурных образцов труб с естественными и искусственными дефектами типа «риска», «трещина», «потеря металла». В качестве исходных данных для расчета используются механические характеристики металла труб и сварных соединений эксплуатируемых магистральных нефтепроводов, определенные по результатам испытаний стандартных и специальных образцов на статическое растяжение, малоцикловую усталость, ударный изгиб, статическую и циклическую трещиностойкость, а также результаты исследований структурного состояния основного металла и металла сварных соединений.

Теоретическую базу и методологию оценки работоспособности трубопроводов с дефектами составляют:

единый метод расчета конструкций с дефектами на прочность и долговечность, использующий энергетические критерии прочности и устойчивости, а также деформационные критерии механики разрушения;

упругопластические решения по определению напряженно-деформированного состояния поврежденной трубы при различных нагрузках;

положения нормативно-технических и методических документов, определяющих порядок расчетов прочности и долговечности, выбор показателей надежности конструкций с дефектами, выявленными в результате диагностических обследований;

система коэффициентов запаса, учитывающая последствия отказа, а также разброс значений по свойствам металла, по погрешности определения размеров дефектов при диагностических обследованиях, по значениям прогнозируемых скоростей роста дефектов.

Разработанные методы предназначены для расчетов на прочность и долговечность труб, классификации дефектов по степени опасности, определения предельных рабочих давлений и предельных сроков устранения дефектов по результатам диагностики магистральных и технологических нефтепроводов при оценке их работоспособности.

Анализ основных положений и области применения существующих нормативно-методических документов позволил сформулировать основные требования к разрабатываемым методикам расчета труб и сварных соединений с дефектами на прочность и долговечность. В качестве исходных данных для расчета используются реальные значения внешних нагрузок, фактические свойства металла труб и сварных соединений, результаты комплексной диагностики по выявлению формы, размеров и расположению дефектов.

В работе предложен общий методологический подход к расчету. Разработанный метод расчета на прочность и долговечность труб и сварных соединений с дефектами позволяет определять предельное (разрушающее) давление (расчет на прочность) в зависимости от срока эксплуатации с учетом деградации свойств металла, накопления повреждений, кинетики развития дефектов (расчет на долговечность). В качестве предельных состояний принимаются условия достижения предельной прочности и предельной пластичности.

Условие предельной прочности формулируется как

,(8)

где i - интенсивность деформаций; 0 - объемная деформация; iu и 0u - соответственно предельная интенсивность деформаций и предельная объемная деформация; - угол подобия девиатора деформаций.

Условие предельной пластичности формулируется как

,(9)

где и - соответственно разрушающая интенсивность деформаций и разрушающая объемная деформация.

Долговечность при циклическом нагружении определяется с учетом кинетических уравнений, описывающих изменение разрушающих деформаций и в зависимости от числа циклов N.

Число циклов нагружения участка за год принимается равным величине наибольшей (за три последних года) приведенной годовой цикличности нагружения, определенной по числу включений и технологических переключений насосных агрегатов.

По степени локализации указанные предельные состояния разделяют на общие и местные (локальные). Общие предельные состояния достигаются при действии на трубу экстремальных нагрузок, не предусмотренных проектом, и охватывают большие объемы металла. Примером достижения общего предельного состояния может служить образование гофра, когда достигается предельная несущая способность трубы при изгибе. При этом металл стенки трубы может сохранять сплошность. Местные (локальные) предельные состояния возникают в стенке (нетто-сечении) трубы с дефектом, который приводит к перераспределению силовых потоков в стенке, увеличению местных напряжений и деформаций (возникновению концентрации напряжений).

Долговечность трубы с растущим дефектом, например типа «потеря металла», определяется наступлением локального предельного состояния по критерию предельной прочности. Достижение предельной прочности в случае «острого» трещиноподобного дефекта сопровождается большой пластической деформацией в области вершины трещины. Дальнейшее повышение нагрузки приводит к исчерпанию запаса пластичности металла в области вершины трещины и к началу ее распространения.

При переменных нагрузках накопление поврежденности в области вершины трещиноподобного дефекта приводит к росту трещины по механизму усталости. Скорость роста усталостной трещины vуст (мм за цикл) определяется чувствительностью материала к воздействию переменных нагрузок и их интенсивностью:

, (10)

где определяется из условия:

, (11)

(12)

Здесь и - разрушающая объемная деформация и разрушающая интенсивность деформации соответственно. Приращения i и 0 - суть размах соответствующих значений i и 0 при усталостном нагружении. Значение определяется по результатам стандартных испытаний на усталость, а значение (мм) - по результатам специальных испытаний на статическую трещиностойкость.

Исходными данными для расчета на прочность участка нефтепровода с дефектами являются геометрия и размеры рассматриваемого участка; тип, размеры и расположение дефектов; условия возникновения и развития дефектов и их сочетаний; свойства металла труб и сварных соединений с учетом изменения в процессе изготовления, строительства и эксплуатации нефтепровода; внешние нагрузки и воздействия; собственные (остаточные) напряжения и деформации, возникающие при изготовлении труб, строительстве и эксплуатации нефтепровода.

В расчетных формулах размер дефекта, определенный по результатам диагностического обследования, увеличивают на величину поправки, устанавливаемой в зависимости от вида диагностического обследования и паспортных данных диагностического оборудования. При расчете также используется коэффициент запаса по предельной прочности трубы kтр, учитывающий рассеяние механических свойств металла и зависящий от марки стали и категории участка нефтепровода, по СНиП 2.05.06-85*. Для обоснования коэффициента запаса по предельной прочности трубы использованы экспериментальные данные, полученные по результатам стендовых испытаний, а также по результатам испытаний стандартных и специальных образцов; требования нормативных документов к обеспечению надежности магистральных трубопроводов. В общей сложности проведен анализ результатов испытаний более 900 стандартных и специальных образцов.

Возможное превышение рабочего давления относительно проектного давления pпроект (в зависимости от коэффициента надежности n) учитывается поправкой p. В расчете также учитываются коэффициенты запаса по скорости роста коррозионного дефекта типа «потеря металла» kVкорр и скорости роста усталостной трещины kVуст, которые зависят от марки стали и категории участка трубопровода. Кроме того, геометрические параметры трубы и выявленного дефекта корректируют в зависимости от степени деформирования конструкции под действием внешних нагрузок. Связь между интенсивностями напряжений i и деформаций ?i принята в виде степенной диаграммы деформирования. Концентрация напряжений в области дефекта оценивается соответствующими коэффициентами концентрации напряжений и деформаций .

При расчете на прочность и долговечность труб и сварных соединений с дефектами используются различные расчетные схемы: труба с дефектом геометрии стенки, с объемным и плоским дефектами, с внутренней и поверхностной трещинами. При расчете напряженно-деформированного состояния труб и сварных соединений с дефектами использован метод конечных элементов (МКЭ). При выполнении расчетов учитывалось упругопластическое деформирование металла в области дефекта. В результате расчетов определялось напряженно-деформированное состояние стенки трубопровода вне зоны дефекта, в ослабленном дефектом нетто-сечении стенки трубы и в зоне концентрации напряжений от дефекта.

Для расчета на прочность и долговечность труб и сварных соединений с дефектами разработана компьютерная программа решения системы нелинейных уравнений, связывающих компоненты напряжений и деформаций, полученные при расчете по методу МКЭ, с условиями достижения предельной прочности и (или) пластичности. Результатом решения системы нелинейных уравнений при выполнении равенства хотя бы в одном из двух условий (8) или (9) является величина разрушающего давления pf трубы с дефектом при заданных размерах дефекта L, w, H или глубина Hf дефекта, приводящего к разрушению трубы при заданных размерах L, w и давлении p.

По результатам расчетов на прочность и долговечность устанавливают предельное давление для трубы с дефектом при стационарных режимах перекачки, предельный срок эксплуатации трубы с дефектом при проектном давлении, сроки устранения дефектов с ограничением по давлению и величину рабочего давления до проведения ремонта.

Разработаны методы расчета на прочность и долговечность труб с механическими повреждениями типа «риска», дефектами геометрии трубы, коррозионными дефектами типа «потеря металла», дефектами сварных швов. На рисунке 9 показаны геометрические параметры дефекта типа «риска». Аналогичные схемы разработаны для других типов дефектов.

Рисунок 10 - Предельное давление для трубы 122020 мм с механическим повреждением типа «продольная риска» шириной 20 мм

Рисунок 11 - Предельная глубина механического повреждения

типа «продольная риска» шириной 20 мм для трубы 122020 мм

На рисунках 10 и 11 приведены результаты расчетов на прочность и долговечность труб с механическими повреждениями типа «продольная риска». На рисунке 12 показаны результаты расчета на долговечность трубы 122020 мм с определением глубины усталостной трещины, растущей на вмятине.

Рисунок 12 - Зависимости глубины усталостной трещины, растущей

на вмятине относительной глубиной 0,2…2,2 %,от количества циклов нагружения

Аналогичные расчеты выполнены для других типоразмеров труб и типов дефектов. Результаты расчетов вошли в отраслевой стандарт по расчету труб с дефектами на прочность и долговечность.

В шестой главе на основе анализа и обобщения технических требований, способов диагностики и методов расчета изложены принципы оценки технического состояния МН, позволяющие своевременно принять меры по обеспечению надежной эксплуатации МН. Рассмотрены также вопросы организации и проведения оценки технического состояния линейной части МН, подводных переходов через водные преграды и насосно-перекачивающих станций. Оценка технического состояния объектов МН является важным звеном организационно-технологической системы обеспечения надежности. Научно обоснованная организация и проведение оценки технического состояния позволяют своевременно устранить факторы, снижающие надежность и безопасность МН.

Оценка технического состояния проводится по результатам анализа комплексных диагностических обследований и включает оценку степени опасности выявленных дефектов, анализ безопасности при эксплуатации и оценку надежности с разработкой рекомендаций по приведению объекта в нормативное состояние и предложений к проектам планов диагностики. В качестве исходных данных для оценки технического состояния используются материалы проектной, исполнительной и технологической документации, а также результаты диагностики или обследования.

В работе предложены методология и регламент формализованного представления и оценки технического состояния объекта по результатам анализа комплексных диагностических обследований. Формализованное представление и оценка технического состояния МН включают:

сводное описание участков трассы МН с учетом их категорийности и положения на местности;

результаты оценки опасности дефектов с указанием их видов, мест расположения, допустимых сроков их устранения;

состояние системы противокоррозионной защиты, обеспечиваемой средствами электрохимической защиты и изоляционными покрытиями;

результаты оценки скорости коррозии;

результаты анализа технического состояния по показателям надежности (вероятность безотказной работы, интенсивность отказов, наработка на отказ, остаточный ресурс);

рекомендации по приведению объекта к нормативному состоянию с указанием приоритетов, объемов и сроков ремонтных работ;

перечень дефектов, наличие которых требует снижения рабочего давления без их устранения;

перечень дефектов, подлежащих устранению в текущем году и в последующие годы;

мероприятия по требуемому обустройству трассы.

Объектами магистрального нефтепровода, входящими в формализованное представление оценки его технического состояния, являются собственно линейная часть участка нефтепровода; участки, сваренные из спирально-шовных труб; перемычки; механотехнологическое и энергетическое оборудование, установленное на участке нефтепровода; камеры приема-пуска средств очистки и диагностики; оборудование электрохимической защиты от коррозии. Формализованное представление оценки технического состояния МН оформляется в виде нормативно-технического документа - стандарта предприятия. Данный документ является обязательным для исполнения службами эксплуатирующей МН организации. Информация, содержащаяся в данном документе, является основой для текущего и перспективного планирования программ технического перевооружения, реконструкции и капитального ремонта.

Седьмая глава посвящена разработке методологии формирования отраслевого информационного фонда.

Системное решение задач повышения качества проектирования, строительства и эксплуатации МН в целях обеспечения эксплуатационной надежности основано на комплексе взаимоувязанных правил и норм, иерархически выстроенных в соответствии с этапами жизненного цикла объекта. Подобное построение правил и норм реализуется в рамках формирования отраслевого информационного фонда.

Основной целью создания отраслевого информационного фонда является централизация информационных ресурсов системы магистральных нефтепроводов на основе сбора, обобщения, классификации и систематизации нормативных документов; внедрения информационных технологий в рамках деятельности эксплуатирующих предприятий, проектных, диагностических и других сервисных организаций, участвующих в обеспечении жизненного цикла объектов МН.

Комплектование отраслевого информационного фонда осуществляется на основе получения и введения в информационную систему данных, реквизитов и полнотекстовых копий указанных документов. Ведение и актуализация информационных ресурсов ОИФ осуществляются на основе централизованного Реестра НД. Структурно фонд состоит из нескольких взаимоувязанных баз данных со средствами их ведения, объединенных общим Реестром-рубрикатором и справочно-поисковым аппаратом. Реестр НД имеет иерархическую структуру, в соответствии с которой каждому НД соответствует уникальная запись. Информация об этапах жизненного цикла НД содержится в составных частях Реестра НД. Справочно-поисковый аппарат обеспечивает удобство навигации по фонду, оперативность и полноту поиска необходимой информации, наглядность отображения информации фонда, информационную поддержку действий пользователя. Комплектование фонда документами производится в бумажном и электронном видах. Документы в бумажном виде имеют статус официальных изданий. Бумажные документы включаются в фонд на правах дубликатов подлинников НД и подлежат соответствующей верификации. Документы в электронном виде включаются в фонд на правах информационно-справочных материалов. Актуализация фонда осуществляется путем получения и регистрации реестродержателем НД извещений об изменении (отмене) НД или о введении НД в действие и приобретения реестродержателем новых документов или их версий.

Жизненный цикл нормативного документа включает разработку, применение, совершенствование, продление или отмену действия НД. Нормативные документы относятся к документам длительного пользования и применяются до утверждения и ввода в действие новых, заменяющих их, документов. Организация, осуществляющая ведение ОИФ, отвечает за планирование, разработку предложений и проведение экспертизы технической документации на продукцию в соответствии с утвержденным графиком.

Одной из важнейших подсистем ОИФ является Реестр технических требований заказчика и технических условий, программ и методик приемо-сдаточных испытаний продукции производителей (Реестр ТТ и ТУ). С формальной точки зрения, Реестр ТТ и ТУ - это систематизированный перечень записей о нормативных и технических документах (НД и ТД), устанавливающих требования к закупаемой продукции. С содержательной точки зрения, Реестр ТТ и ТУ - это информационная база для функционирования систем подтверждения соответствия продукции и технологий поставщиков как в рамках технического надзора и контроля, так и в рамках систем добровольной сертификации.

Информация в Реестре ТТ и ТУ представлена следующими видами нормативных документов: национальными стандартами; общими и специальными техническими требованиями Заказчика; технической документацией на продукцию и сопровождающей информацией. При регистрации технической документации на продукцию организация, ведущая ОИФ, комплектует пакет информации по ТУ.

Ведение Реестра предполагает своевременное пополнение данными всех соответствующих информационных полей учетной записи, комплектование фонда НД, мониторинг движения информации, формирование отчетности и справочной информации на основе Реестра, оказание информационных услуг на его основе, разработку предложений по совершенствованию ОИФ и процедур его ведения.

Предложенная методология формирования ОИФ позволила сформировать информационную среду, в рамках которой обеспечивается эффективное функционирование разработанной организационно-технологической системы обеспечения эксплуатационной надежности магистральных нефтепроводов.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ

На основе проведенных исследований методов и способов обеспечения надежности магистральных нефтепроводов разработана структура организационно-технологической системы обеспечения эксплуатационной надежности магистральных нефтепроводов на протяжении их жизненного цикла (проектирования, строительства, эксплуатации), включающая:

нормирование технических показателей комплектующих материалов, изделий и оборудования как элементов системы магистральных нефтепроводов;

организацию выполнения проектных работ на основе применения типовых проектов и оценки соответствия проектной документации установленным требованиям;

вероятностный анализ безопасности принятых проектом и реализуемых в ходе строительства технических решений;

комплексную систему диагностики, оценки технического состояния и прогнозирования сроков службы элементов магистральных нефтепроводов с учетом их фактического технического состояния;

формирование и ведение отраслевого информационного фонда, включающего технические требования, регламенты, нормы заказчика и технические условия и спецификации поставщиков продукции и услуг.

Предложен метод поточной разработки проектов магистральных нефтепроводов, основанный на применении типовых проектов и комплексной экспертизе разрабатываемой проектной документации, позволяющей существенно сократить сроки проектирования, снизить зависимость качества проектирования от квалификации проектировщиков.

На основе результатов натурных и стендовых испытаний разработана система технических требований к основным материальным ресурсам как элементам магистральных трубопроводов, позволяющая обосновывать их показатели надежности. Классифицированы технические требования к качеству труб по их назначению в зависимости от условий эксплуатации магистральных нефтепроводов: трубы обычного исполнения, трубы в хладостойком исполнении, трубы повышенной эксплуатационной надежности.

Разработан метод повышения экологической безопасности за счет оптимального размещения запорной арматуры на линейной части магистрального нефтепровода, при этом в качестве критерия оптимальности размещения запорной арматуры принят минимальный экологический ущерб окружающей среде при авариях.

Введены понятия и количественные критерии проектной и запроектной аварий для системы магистрального трубопроводного транспорта нефти. Определены количественные значения допустимых уровней рисков в качестве критериев для оценки безопасности магистральных нефтепроводов.

Предложена система технического диагностирования объектов трубопроводного транспорта нефти, позволяющая дать комплексную оценку их технического состояния. Разработана методика определения оптимального интервала времени между диагностическими обследованиями магистрального нефтепровода, минимизирующая суммарные затраты на техническое обслуживание (диагностику и ремонт) и устранение последствий ожидаемых социальных и экологических рисков.

Разработаны методика и регламент формализованного описания технического состояния объектов магистрального нефтепровода, включающие расчет на прочность и долговечность труб, узлов и деталей оборудования, классификацию дефектов по степени опасности, определение предельных нагрузок и сроков устранения дефектов, позволяющие перейти от системы планово-предупредительного ремонта к планированию ремонтов по техническому состоянию.

Разработан метод расчета труб с дефектами на прочность и долговечность, основанный на прогнозировании развития дефектов во времени, в условиях деформирования размеров трубы под действием внутреннего давления. На основе результатов проведенных экспериментальных исследований установлены зависимости максимально допустимых внутренних давлений в магистральном нефтепроводе от вида и геометрии дефектов, свойств материалов, геометрических параметров трубопровода и характеристик нагружения.

Разработана методология формирования отраслевого информационного фонда, содержащего технические требования, регламенты и нормы заказчика и технические условия и спецификации поставщиков продукции и услуг, что позволяет сформировать объективную систему подтверждения соответствия предложений подрядчиков установленным требованиям.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ НАУЧНЫХ ТРУДАХ

1. Гаспарянц Р.С. Выбор оптимальной стратегии управления запасами труб при строительстве магистральных трубопроводов // Организация строительства магистральных трубопроводов: Сб. научн. тр. / ВНИИСТ. ? М., 1981. - С. 72?79.

2. Чирсков В.Г., Телегин Л.Г., Курепин Б.Н., Карпенко М.П.,

Гаспарянц Р.С. Управление запасами материальных ресурсов в системе материально-технического обеспечения строительства магистральных трубопроводов // Научно-технический обзор. Серия «Экономика, организация и управление строительством предприятий нефтяной и газовой промышленности». - М.: Информнефтегазстрой, 1982. ? № 5. - 61 с.

3. Гаспарянц Р.С. Оценка надежности функционирования потоков строительно-монтажной организации // Экономика, организация и управление строительством предприятий нефтяной и газовой промышленности: Реф. сб. ? М.: Информнефтегазстрой, 1982. ? № 5. - С. 11?13.

4. Гаспарянц Р.С. Выбор критерия при оценке эффективности системы управления запасами труб на строительстве магистральных трубопроводов // Строительство объектов нефтяной и газовой промышленности: Реф. сб. ? М.: Информнефтегазстрой, 1982. ? № 6. - С. 16?20.

5. Гаспарянц Р.С. Распределение поставок труб между линейными потоками строительно-монтажной организации // Строительство предприятий нефтяной и газовой промышленности: Реф. сб. ? М.: Информнефтегазстрой, 1984. ? № 11. - С. 14?17.

6. Бортаковский В.С., Гаспарянц Р.С. Об оптимизации производственного потенциала трубопроводостроительной организации // Строительство предприятий нефтяной и газовой промышленности: Реф. сб. ? М.: Информнефтегазстрой, 1985. ? № 11. - С. 17?20.

7. Гаспарянц Р.С. Классификация материально-технологических ресурсов для строительства магистральных трубопроводов // Строительство предприятий нефтяной и газовой промышленности: Реф. сб. - М.: Информнефтегазстрой, 1985. ? № 8. - С. 8?12.

8. Гаспарянц Р.С. Об одной задаче обеспечения материальными ресурсами строительной организации // Организация и управление строительством линейной части магистральных трубопроводов: Сб. научн. тр. / ВНИИСТ. - М., 1985. - С. 51-56.

9. Гаспарянц Р.С. Система оперативного управления строительством линейной части магистральных трубопроводов // Тр. ин-та / ВНИИСТ. ? М., 1986. - С. 96-101.

10. Гаспарянц Р.С. Основные направления совершенствования технологии и организации строительства магистральных трубопроводов в районах вечной мерзлоты // Строительство предприятий нефтяной и газовой промышленности: Реф. сб. ? М.: ВНИИПКтехоргнефтегазстрой, 1987. ? № 10. - С. 1?6.

11. Гаспарянц Р.С., Митрохин М.Ю. Формирование программы развития и совершенствования трубопроводного транспорта в нефтяных компаниях // Нефтепромысловое дело. ? М.: ВНИИОЭНГ, 1998. ? № 7-8. - С. 27?29.

12. Гаспарянц Р.С. Устойчивость работы магистрального трубопроводного транспорта как один из важнейших факторов обеспечения экономической безопасности государства // Магистральный трубопроводный транспорт. Перспективы развития. Законодательное обеспечение. ? М.: Издание Государственной думы РФ, 2001. - 62 с.

13. Гаспарянц Р.С., Горелов А.С. Индустриальная технология строительства промысловых трубопроводов ГНКМ Заполярное // Строительная ассамблея международного конгресса СIТОGIС-2000: Сб. ? М.: Информэлектро, 2001. - С. 21-27.

14. Гаспарянц Р.С., Грищенков А.И. Коррозия системы // Энергия Востока. ? М.: Издательский дом «Энергия Востока», 2001. ? № 3. ? С. 28?31.

15. Гаспарянц Р.С. Возможна ли гармонизация стандартов // Энергия Востока. ? М.: Издательский дом «Энергия Востока», 2002. ? № 2 (5). ?

С. 51?52.

16. Гаспарянц Р.С., Калинин В.В., Черекчиди Э.И. и др. Анализ риска в системе технического регулирования // Трубопроводный транспорт нефти. ? 2005. ? № 5. ? С. 2?5.

17. Гаспарянц Р.С. Нормативно-техническое обеспечение и основные технические решения нефтепровода ВСТО // Трубопроводный транспорт (теория и практика). ? М.: ВНИИСТ, 2005. ? № 2. - С. 6?13.

18. Гаспарянц Р.С., Пашуков Ю.Н., Чуркин Г.Ю., Головин С.В. Не догма, но правила игры // Нефть и Капитал. ? 2006. ? № 4. ? С. 74-75.

19. Гумеров А.Г., Азметов Х.А., Григорьева Н.В., Павлова З.Х.,

Гаспарянц Р.С. Оптимальное размещение запорной арматуры на линейной части магистральных нефте- и нефтепродуктопроводов // Нефтяное хозяйство. - 2007. ? № 6. - С. 91?93.

20. Гаспарянц Р.С. Некоторые особенности проектирования и строительства нефтепровода Восточная Сибирь - Тихий океан // Роль науки в развитии топливно-энергетического комплекса. Матер. научн. - практ. конф.

24 октября 2007 г. - Уфа, 2007. - С. 86?87.

21. Гаспарянц Р.С. Расчет на прочность и долговечность труб и сварных соединений с дефектами // Роль науки в развитии топливно-энергетического комплекса. Матер. научн. - практ. конф. 24 октября 2007 г. - Уфа, 2007. - С. 105?106.

22. Гаспарянц Р.С. Расчет на прочность и долговечность сварных стыков трубопроводов с дефектами // Нефтяное хозяйство. - 2007. ? № 12. -

С. 102?104.

23. Гаспарянц Р.С. Организационно-технологическая система обеспечения эксплуатационной надежности магистральных нефтепроводов. ? СПб.: ООО «Недра», 2007. ? 232 с.

24. Аладинский В.В., Гаспарянц Р.С. Прочность и долговечность труб с механическими повреждениями типа «риска» // Нефтегазовое дело. Эл. журнал, 13.07.07. http://www.ogbus.ru/authors/Aladinskij/Aladinskij_1.pdf.

25. Аладинский В.В., Гаспарянц Р.С., Маханев В.О. Методика расчета на прочность и долговечность труб с дефектами геометрии // Нефтегазовое дело. - Уфа, 2007. - Т. 5 - № 2.- С. 119-124.

26. Гумеров А.Г., Гаспарянц Р.С. Расчет на прочность и выбор рациональных конструктивных решений прокладки подземных нефтепроводов на пересеченном рельефе местности // Трубопроводный транспорт (теория и практика). - 2007. - № 4. - С. 24-25.

27. Гаспарянц Р.С. Расчет на прочность и долговечность трубопроводов с коррозионными дефектами потери металла // Нефтепромысловое дело. ? М.: ВНИИОЭНГ, 2008. ? № 1. - С. 34-39.

28. Гаспарянц Р.С. Обеспечение надежности и безопасности магистральных нефтепроводов на стадии проектирования // Нефтяное хозяйство. -2008. ? № 1. - С. 96?97.

29. Гаспарянц Р.С. Автоматизированная система формирования отраслевого информационного фонда в области магистрального нефтепроводного транспорта // Нефтяное хозяйство. - 2008. ? № 1. - С. 112?113.

30. Гаспарянц Р.С. Методология расчета на прочность и долговечность труб и сварных соединений с дефектами // Нефтепромысловое дело. ? М.: ВНИИОЭНГ, 2008. ? № 2. - С. 35-41.

31. Гаспарянц Р.С. Оценка технического состояния объектов трубопроводного транспорта нефти // Нефтяное хозяйство. - 2008. ? № 2. -

С. 101?103.

32. Гаспарянц Р.С. Техническое диагностирование объектов трубопроводного транспорта // Нефтепромысловое дело. ? М.: ВНИИОЭНГ, 2008. ? № 4. - С. 40?43.

33. Гаспарянц Р.С. Вероятностный анализ безопасности магистральных нефтепроводов // Нефтепромысловое дело. ? М.: ВНИИОЭНГ, 2008. ? № 4. - С. 43?45.

34. Р 445-81. Руководство по системе управления запасами труб в строительно-монтажных организациях Миннефтегазстроя. - М.: ВНИИСТ, 1982. - 45 с.

35. ВСН 197-86. Инструкция по межобъектной этапной специализации работ при сооружении линейной части магистральных трубопроводов. - М.: ВНИИСТ, 1986. - 17 с.

36. Р 615-87. Рекомендации по техническому оснащению колонны по сооружению и содержанию зимних дорог при строительстве магистральных трубопроводов на вечной мерзлоте. - М.: ВНИИСТ, 1987. - 12 с.

37. Р 612-87. Рекомендации по техническому оснащению технологического потока для строительства магистральных трубопроводов диаметром 1420 мм в районах распространения вечномерзлых грунтов. - М.: ВНИИСТ, 1989. - 8

38. ВСН 013-88. Строительство магистральных и промысловых трубопроводов в условиях вечной мерзлоты. - М.: ВНИИСТ, 1989. - 32 с.

39. ВСН 51-1-15-004-97. Инструкция по проектированию и строительству волоконно-оптических линий связи (ВОЛС) газопроводов. - М.: ИРЦ Газпром, 1997. - 80 с.

40. ОМД-1.1-05-2005. Положение об отраслевом информационном фонде. - М.: ОАО «АК «Транснефть», 2005. - 31 с.

41. РД-16.01-60.30.00-КТН-068-1-05. Правила технической диагностики нефтепроводов при приемке после строительства и в процессе эксплуатации. - М.: ОАО «АК «Транснефть», 2005. - 102 с.

42. РД-91.010.30-КТН-126-06. Требования к составу типовых проектных, типовых технических решений и типовых проектов. - М.: ОАО «АК «Транснефть», 2006. - 15 с.

43. РД-01.120.00-КТН-283-06. Требования к составу, содержанию и форме представления исходных данных для проведения вероятностного анализа безопасности объектов магистральных нефтепроводов. - М.: ОАО «АК «Транснефть», 2006. - 82 с.

44. РД-01.120.00-КТН-297-06. Методические рекомендации по выполнению вероятностного анализа безопасности (ВАБ) объекта МН. - М.: ОАО «АК «Транснефть», 2006. - 130 с.

45. ОСТ-23.040.00-КТН-574-06. Нефтепроводы магистральные. Нефтепроводы магистральные. Определение прочности и долговечности труб и сварных соединений с дефектами. - М.: ОАО «АК «Транснефть», 2006. -

Размещено на Allbest.ru

...

Подобные документы

  • Прочность полиэтилена при сложном напряженном состоянии. Механический расчет напорных полиэтиленовых труб на прочность, применяемых в системах водоснабжения. Программное обеспечение для расчета цилиндрических труб. Расчет тонкостных конструкций.

    курсовая работа [1,3 M], добавлен 22.08.2012

  • Технология изготовления и схема раскроя материала детали "Планка", анализ технологичности ее конструкции, в том числе и технологическая схема штамповки. Методика расчета исполнительных размеров пуансонов и матриц, а также расчета пуансона на прочность.

    курсовая работа [414,9 K], добавлен 08.02.2010

  • Конструкция компрессора ГТД. Расчет надежности лопатки компрессора с учетом внезапных отказов. Графики функций плотностей распределения напряжений. Зависимость вероятности неразрушения лопатки от коэффициента запаса прочности. Расчёт на прочность диска.

    курсовая работа [518,8 K], добавлен 15.02.2012

  • Марка и расчетные характеристики резервуара. Особенности проверочного расчета стенки резервуара на прочность. Расчет предельного уровня налива нефтепродуктов в резервуар. Расчет остаточного ресурса резервуара. Анализ результатов поверочного расчета.

    контрольная работа [48,7 K], добавлен 27.11.2012

  • Классификация и характеристика основных объектов нефтеперекачивающих станций магистральных нефтепроводов. Вспомогательные сооружения нефтеперекачивающих станций магистральных нефтепроводов. Резервуарные парки НПС. Нефтепродуктопроводы и отводы от них.

    контрольная работа [831,1 K], добавлен 14.10.2011

  • Общая характеристика конструкции и работы трехвалковой клети 430. Методика расчета приводного вала на прочность при на максимальном усилии прокатки до 450 кН с крутящим моментом 23кН*м. Оценка двухрядных сферических роликоподшипников на долговечность.

    курсовая работа [1,8 M], добавлен 10.03.2010

  • Методика выполнения измерений: сущность, аппаратура, образцы, методика испытания, обработка результатов. Теоретические основы расчета неопределенности. Проектирование методики расчета неопределенности измерений. Пример расчета и результаты измерений.

    курсовая работа [296,2 K], добавлен 07.05.2013

  • Конструктивное оформление конвективных рекуператоров. Факторы, влияющие на их прочность и долговечность. Способы компенсации температурных расширений рекуператорных труб. Расчет количества тепла, коэффициента теплопередачи и длины труб в теплообменнике.

    курсовая работа [104,1 K], добавлен 21.01.2014

  • Исследование способа снижения уровня остаточных напряжений в металлоконструкциях, стабилизации их формы и размеров, повышения циклической долговечности. Характеристика воздействия на металл конструкции знакопеременными нагрузками на резонансных частотах.

    презентация [439,1 K], добавлен 07.12.2011

  • Этапы технологического процесса формовки JCOE. Технология подгибки кромок на прессе. Методика расчета напряженно-деформированного состояния. Определение технических параметров подгибаемой кромки при однорадиусной формовке и при формовке по эвольвенте.

    курсовая работа [2,4 M], добавлен 29.05.2014

  • Краткие сведения о конструкции турбин и двигателя. Расчет надежности лопатки турбины с учетом внезапных отказов или длительной прочности, а также при повторно-статических нагружениях. Оценка долговечности с учетом внезапных и постепенных отказов.

    курсовая работа [223,5 K], добавлен 18.03.2012

  • Порядок расчета оценки уровня риска низковольтного светильника настольного "Blitz" производства фирмы Blitz Leuchten, Германия. Экспресс-анализ соответствия надежности технологической системы по производству варёных колбас параметрам допустимого риска.

    контрольная работа [951,4 K], добавлен 09.01.2015

  • Разработка модели концентрации с учетом физических параметров жидкости. Движение жидкости в трубопроводе, в баке и в пределах зоны резания. Модель концентрации механических примесей. Использование программных продуктов для получения результатов расчета.

    курсовая работа [351,0 K], добавлен 25.01.2013

  • Разработка кинематической схемы привода. Ориентировочный расчет и конструирование главного приводного вала. Выбор мотор-редуктора привода подачи валков. Расчет винтовой пары на прочность. Уточнение передаточного числа с учетом упругого скольжения.

    дипломная работа [2,3 M], добавлен 09.11.2016

  • Главные преимущества и недостатки трубопроводного транспорта. Состав и сооружение магистральных нефтепроводов и газопроводов. Совершенствование производства бесшовных труб для нефтегазовой отрасли. Энергетический мост между Европейским Союзом и Россией.

    курсовая работа [379,4 K], добавлен 23.09.2013

  • Выбор элементной базы пульта управления и индикации, его обоснование и анализ. Описание функциональной схемы модуля напряжений, разработка его конструкции. Расчет вибропрочности печатной платы, оценка надежности и порядок проведения теплового расчета.

    дипломная работа [1,3 M], добавлен 24.09.2012

  • Классификация нефтепроводов, принципы перекачки, виды труб. Технологический расчет магистрального нефтепровода. Определение толщины стенки, расчет на прочность, устойчивость. Перевальная точка, длина нефтепровода. Определение числа перекачивающих станций.

    курсовая работа [618,9 K], добавлен 12.03.2015

  • Обзор современных средств очистки и диагностики внутренней полости нефтепроводов. Разработка программы управления технологическими процессами на камере пуска и приёма средств очистки, диагностики для промышленного контроллера. Устройство и работа системы.

    дипломная работа [4,4 M], добавлен 22.04.2015

  • Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.

    реферат [29,8 K], добавлен 31.05.2010

  • Показатели ремонтопригодности: вероятность, среднее и гамма-процентное время восстановления. Сохраняемость объекта и комплексные показателей эксплуатационной надежности. Функции распределения случайных величин, сбор и обработка статистической информации.

    презентация [4,6 M], добавлен 04.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.