Герметизация тальком – как способ минимизации энергозатрат при изготовлении свечей зажигания
Обзор и сравнительный анализ способа герметизации тальком с традиционными способами герметизации металлокерамических соединений в свечах зажигания газотурбинных двигателей. Оценка перспективности применения талька для герметизации свечей зажигания.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 10.03.2018 |
Размер файла | 667,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Герметизация тальком - как способ минимизации энергозатрат при изготовлении свечей зажигания
Домбровский Вадим Петрович, магистрант Московского физико-технического института, г. Долгопрудный
В статье обобщены результаты обзора и сравнительного анализа способа герметизации тальком с традиционными способами герметизации металлокерамических соединений в свечах зажигания газотурбинных двигателей. Показано, что формирование герметичного уплотнения тальком не требует нагрева металлокерамического соединения, что позволяет не только предотвратить изменения механических свойств сталей и сплавов, применяемых в корпусных деталях свечей зажигания, но и как следствие исключить тепловые энергозатраты при их производстве. Полученные результаты в процессе аналитического обзора свидетельствуют о перспективности применения талька для герметизации вновь разрабатываемых свечей зажигания.
Ключевые слова: герметизация, тальк, энергозатраты, свечи зажигания.
Введение
В условиях современной глобализации процессов разработки и создания высокотехнологичных изделий, таких как газотурбинные двигатели, разработчик имеет возможность комплектовать свой двигатель узлами и системами любого поставщика, независимо от страны производителя, что обязывает комплектовщика к постоянному повышению конкурентоспособности своей продукции. При этом к основным критериям при выборе разработчиком той или иной системы относятся ее надежность, стоимость и расходы, связанные с ее эксплуатацией в составе изделия. В случае свечей зажигания требуемая надежность обеспечивается конструкцией и проведением периодических испытаний, подтверждающих стабильность технологического процесса изготовления свечей зажигания, эксплуатационные расходы ограничиваются ресурсом свечей, по истечении которого требуется их замена, стоимость свечей определяется ценой применяемых материалов, производительностью технологического оборудования, энергозатратами при изготовлении. Учитывая, что фактический ресурс свечей зажигания ограничивается электроэрозионной стойкостью применяемых в их горячей части материалов, стоимость которых не зависит от разработчика, а самое современное высокопроизводительное технологическое оборудование доступно любому производителю, добиться конкурентного преимущества возможно сокращением стоимости свечи, минимизируяэнергозатраты, связанные с ее изготовлением. Одним из самых энергозатратных процессов при изготовлении свечи зажигания является герметизация ее металлокерамических соединений, традиционно связанная с высокотемпературным нагревом узла герметизации. В данной работе рассмотрены существующие технологические процессы герметизации свечей зажигания и проведен их сравнительный анализ с технологией герметизации тальком, с целью оценки возможности сокращения энергозатрат при изготовлении свечей зажигания.
Обзор способов герметизации свечей зажигания
Способ герметизации стеклогерметиком является традиционным среди мировых производителей свечей зажигания. Стеклогерметики являются неорганическими пластмассами, поскольку стекло представляет собой неорганический полимер, и при значительно более высокой температуре по сравнению с органическими пластмассами, характеризуются аналогичными свойствами, например пластической деформацией и т.п. Чаще всего используется низкоплавкое свинцовое стекло, температура размягчения которого составляет (650 - 816) ?С. Стеклогерметик состоит из наполнителя и стеклосвязки, которые содержат окислы кремния, алюминия, свинца, титана, бора, кальция, бериллия. Способ герметизации заключается в уплотнении размягченного стеклогерметика в нагретом до температуры порядка 750 С узле герметизации, с его последующим остыванием на воздухе (рис. 1).
Рис. 1. Конструкция свечи зажигания с герметичным уплотнением стеклогерметиком
Герметизация опрессовкой методом термоосадки относиться к классическому способу герметизации искровых свечей зажигания для поршневых двигателей. Однако такой способ нашел свое применение и при изготовлении свечей зажигания газотурбинных двигателей. Для обеспечения возможности такого способа герметизации снаружи на цилиндрическом корпусе свечи выполняется термоосадочная канавка (утонение корпуса). В процессе сборки керамический изолятор завальцовывают в металлическом корпусе свечи, затем одновременно нагревают корпус индуктором и осаживают на прессе, при этом термоосадочная канавка подвергается пластической деформации, а при остывании корпус термически осаждается и плотно охватывает изолятор (рис. 2). В результате термоосадки корпус оказывается в напряженном состоянии, что обеспечивает герметичность свечи на весь срок службы.
Рис. 2. Конструкция свечи зажигания с герметичным уплотнением термоосадкой (справа), нагрев узла герметизации индуктором (слева)
Герметизация с помощью металло-керамического паяного соединения (рис.3) применяется в случае необходимости обеспечения вакуумной герметичности, когда утечка газа через свечу не допускается и может быть выявлена только специальным оборудованием, например гелиевым течеискателем. Учитывая, что керамика не обладает адгезией с металлическими припоями, предварительно на поверхность керамики вжигается молибден-марганец-кремниевое покрытие в восстановительной среде водорода. Такое покрытие обладает адгезией с металлизационным покрытием, например никелем, который в свою очередь обладает отличной адгезией практически со всеми металлическими припоями. Такой тип уплотнения обеспечивает вакуумную герметичность при давлении в зоне рабочего торца свечи до 1200 кгс/см2. Однако паяные уплотнения имеют ряд ограничений, а именно:
? низкая прочность прецизионных сплавов (сплавов с заданным коэффициентом термического расширения, близким с коэффициентом расширения керамики), которые обеспечивают возможность герметичного металлокерамического паяного соединения;
? ограничена эксплуатационная температура (не более 400 ?С), так как при большей температуре происходит разрыв металло-керамического соединения, из-за разности коэффициентов термического расширения материалов металлического корпуса и керамического изолятора.
Рис. 3. Конструкция свечи зажигания с уплотнением пайкой
тальк герметизация свеча зажигание
Герметизация тальком при испытаниях опытных образцов обеспечила их надежную герметичность при давлении газа в зоне рабочего торца свечи до 50 кгс/см2, после циклических термонагружений узла герметизации температурой 600 С. Герметичность такого уплотнения обеспечивается опрессовкой талька между корпусом и изолятором. Однако, конструкция свечи зажигания с тальковым уплотнением имеет ряд ограничений, например, не допускается традиционная финальная промывка таких свечей в спирте (керосине) или в ультразвуковой ванне, так как спирт (керосин) может впитаться тальком, из-за чего может нарушиться равномерность уплотнения талька, и как следствие может нарушиться герметичность свечи. Преимущества такого способа уплотнения заключаются в том, что не требуется нагревать корпус при герметизации, имеется возможность повторной сборки узла, так как после его разборки все элементы узла герметизации сохраняют свою начальную конфигурацию.
Анализ обзора способов герметизации
В приведенном обзоре все способы обеспечения герметичного металлокерамического уплотнения, за исключением талькового, требуют высокотемпературного нагрева узла герметизации свечи для обеспечения локальной (в месте термоосадочной канавки) пластичности металлического корпуса, или для придания текучести (размягчения) стеклогерметику для заполнения им всех зазоров и микротрещин в металлокерамическом соединении, или для расплавления припоя при пайке металлизированной керамики с металлическим корпусом свечи. Особенно энергозатратными являются уплотнения стеклогерметиком и пайкой, так как оба этих способа требуют большихмпредварительных тепловых энергозатрат, связанных с приготовлением стеклогерметика (переплав нескольких видов стеков с добавкой легирующих добавок), или высокотемпературным вжиганием специального молибден-марганец-кремниевого покрытия, обеспечивающего возможность металлизации керамического изолятора, например никелем.
Выводы
Таким образом, из аналитического обзора способов герметизации металлокерамических соединений в свечах зажигания, очевидно, что единственным способом герметизации, не требующим тепловой энергии, используемой для придания пластичности, текучести или расплавления одного из материалов в металлокерамическом соединении, является способ герметизации тальком.
Проведенный анализ позволяет сделать вывод, что внедрение талькового уплотнения в конструкцию свечей зажигания существенно сокращает энергозатраты при их производстве и, как следствие, повышает их конкурентоспособность.
Литература
1. Волк М., Леффордж, Стетсон Р. Герметизация электротехнической и радиоэлектронной аппаратуры: Изд-во «Энергия», Москва 1966.
2. Световидов А.П. Руководящий технический материал Пайка керамики с металлами РТМ-1164-67: НИИ Технологии и организации производства НИАТ, Москва 1967, УДК 666.3.037.5(083.96).
3. Патент СССР №549434, 30.03.77.
4. Патент РФ №1720459, МПК(7) Н 01 Т 13/00, 30.03.1989.
5. Патент РФ №51445, МПК(7) Н 01 Т 13/00, 22.05.2005.
6. Патент РФ №54466, МПК(7) Н 01 Т 13/02, 27.06.2006.
7. Патент РФ №1713399, МПК(7) Н 01 Т 13/00, 22.05.2005.
Размещено на Allbest.ur
...Подобные документы
Общие сведение о современной системе зажигания карбюраторных двигателей. Прерыватель-распределитель, катушка, свечи и замок зажигания: устройство, предназначение и принцип действия. Схема батарейной системы зажигания. Установка зажигания в двигателе.
реферат [465,3 K], добавлен 14.07.2010Принцип действия, назначение и условия эксплуатации системы зажигания. Организационно-технические мероприятия по обслуживанию и ремонту системы зажигания. Экономическая эффективность проведения планово-предупредительного ремонта системы зажигания.
курсовая работа [865,9 K], добавлен 29.05.2019Применение микроконтроллеров в промышленности. Разработка системы управления механизмом зажигания. Виды конструкторской документации при производстве электронных устройств. Маршрутная карта технологического процесса при изготовлении печатной платы.
дипломная работа [183,2 K], добавлен 17.01.2011Общие элементы уплотнений различных типов. Рабочая, окружающая и разделительная среда. Уплотнительные элементы и уплотнительные устройства, используемые для герметизации соединений. Основные факторы, которые влияют на работоспособность уплотнения.
лекция [53,3 K], добавлен 24.12.2013История развития турбокомпрессоров и постройка образцов двигателей внутреннего сгорания. Использование турбонаддува у дизельных двигателей тяжёлых грузовиков. Основная задача промежуточного охладителя. Система зажигания и электронного впрыска топлива.
контрольная работа [241,3 K], добавлен 15.02.2012Превентор — рабочий элемент комплекта противовыбросового оборудования для герметизации устья нефтегазовой скважины. Характеристика: марка, диаметр проходного отверстия, максимальное рабочее давление Принцип работы кольцевого превентора, безопасность.
презентация [20,5 M], добавлен 05.12.2012Варианты крепления вставных насосов. Основные узлы станка-качалки типа СКД. Правила безопасности при эксплуатации скважин штанговыми насосами. Использование устьевого оборудования для герметизации затрубного пространства и отвода продукции скважины.
реферат [822,1 K], добавлен 21.05.2009Предназначение и принцип работы паротурбинных и газотурбинных двигателей. Опыт эксплуатации судов с ГТУ. Внедрение ГТД в различные отрасли промышленности и транспорта. Производство турбореактивного двигателя с форсажной камерой, схема его подключения.
презентация [2,7 M], добавлен 19.03.2015Описание стадий технологического процесса абсорбционной установки. Расчет параметров огнепреградителя. Анализ свойств веществ и материалов. Определение возможности образования в горючей среде источников зажигания. Расчет категории наружной установки.
курсовая работа [399,6 K], добавлен 18.06.2013Общая характеристика камеры сгорания, описание ее конструкции и основных элементов, система распределения топлива и зажигания. Обслуживание и ремонт газотурбинной установки, технология и методика расчета экономического эффекта от ее модернизации.
дипломная работа [570,7 K], добавлен 17.10.2013Характеристика метрологической службы ООО "Белозерный ГПК", основные принципы ее организации. Метрологическое обеспечение испытаний газотурбинных двигателей, их цели и задачи, средства измерения. Методика проведения измерений ряда параметров работы ГТД.
дипломная работа [9,6 M], добавлен 29.04.2011Проблемы, возникающие при эксплуатации систем автоматического управления двигателями типа FADEC. Характеристика газотурбинных двигателей. Гидропневматические системы управления топливом. Управление мощностью и программирование подачи топлива (CFM56-7B).
дипломная работа [6,0 M], добавлен 08.04.2013Технологический процесс выплавки стали в дуговой электропечах и место контура автоматизации в нем. Структурная схема контура регулирования и математическая модель процесса. Функциональная схема автоматизации. Конфигурации алгоритмов блоков контроллера.
курсовая работа [82,4 K], добавлен 04.03.2012Получение сварного соединения, сущность сварки, физико-химические процессы, происходящие при ней. Схема процесса зажигания дуги. Технология получения качественного сварного соединения. Схема сварочного трансформатора. Электроды для ручной дуговой сварки.
реферат [917,4 K], добавлен 16.01.2012Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.
лабораторная работа [1,1 M], добавлен 22.12.2009Обзор связи условий нагружения детали с пределом длительной прочности ее материала. Расчет эквивалентного времени наработки для лопатки рабочего колеса турбины. Анализ методики определения уравнения кривой длительной прочности при иной температуре детали.
контрольная работа [66,5 K], добавлен 27.02.2012Технические характеристики и режимы испытания двигателя. Характеристика испытательных стендов авиационных газотурбинных двигателей. Выбор и обоснование типа и конструкции испытательного бокса, его аэродинамический расчет. Тепловой расчет двигателя.
дипломная работа [1,6 M], добавлен 05.12.2010Обоснование выбора способа печати с анализом возможностей других альтернативных видов и способов печати. Оценка возможностей выбранного способа печати при изготовлении книжного издания. Технологические решения в допечатных процессах, их проектирование.
курсовая работа [55,1 K], добавлен 21.01.2013Основные элементы конструкций газотурбинных двигателей самолетов. Диски компрессоров и турбин. Оценка напряженности диска. Пределы упругости и текучести материала. Деформации наиболее нагруженных участков диска. Коэффициенты запаса по прочности диска.
курсовая работа [40,9 K], добавлен 14.06.2012Характеристика механических свойств конструкционных материалов для изготовления деталей машин. Расчет прочности детали, неразрушения подшипников и вала. Анализ работоспособности системы. Экономический эффект замены исходного материала на сталь 15Х2ГН2ТРА.
дипломная работа [247,8 K], добавлен 11.06.2014